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Abstract

An edge of a graph is called a square-edge if it lies in exactly
one 4-cycle. A graph G is a square-edge graph if it contains a se-
quence of square-edges whose removal produces a spanning tree of
(. Cube-free median graphs can be characterized as square-edge
graphs which contain no Q3 as a subgraph. Among square-edge
graphs, the class of partial cubes coincides with the class of semi-
median graphs. A recognition algorithm for square-edge graphs of
complexity O(a(G)|E(G)]) is also presented, where a(G) is the ar-
boricity of a graph G.
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1 Introduction

An edge of a graph G is a square-edge if it lies in exactly one 4-cycle of G.
Square-edges were introduced in [7] in the context of median graphs and
partial cubes. (From [7] we recall the following result to be used in the
sequel.

Theorem 1.1 Let e be a square-edge of a median graph G. Then G —e
is a median graph. Conversely, let e be a square-edge of a graph G and let
G — e be a median graph. If e does not lie in a subgraph of G isomorphic
to Q3 then G is a median graph.

Here we continue the investigation of the concept of square-edges and
proceed as follows. In the rest of this section we recall the necessary con-
cepts and notations. In Section 2 we introduce square-edge graphs which,
for instance, include cube-free median graphs. We prove that square-edge
graphs are bipartite and contain m —n + 1 4-cycles, where n is the number
of vertices of a given graph and m the number of its edges. In Section 3
we show that cube-free median graphs can be characterized as square-edge
graphs that contain no Q3 as a subgraph. We also give a short argument for
a result from [6] and prove that among square-edge graphs, partial cubes
and semi-median graphs coincide. In Section 4 we present a recognition
algorithm for square-edge graphs of complexity O(a(G)m), where a(G) is
the arboricity of G.

The Cartesian product GOH of graphs G and H is the graph with
vertex set V(G) x V(H) and (a,z)(b,y) € E(GOH) whenever ab € E(G)
and x =y, or, ifa = band xy € E(H). n-cube Q,, is the Cartesian product
of n copies of the complete graph on two vertices K». Q3 is also shortly
called the cube, and a graph is cube-free if it contains no Q3 as a subgraph.
Q5 denotes the graph obtained from the 3-cube by removing one of its
vertices.

The distance dg(u,v) between vertices u and v of a graph G will be the
usual shortest path distance. A subgraph H of a graph G is an isometric
subgraph, if dg(u,v) = dg(u,v) for all u,v € V(H) and H is conver if
for all u,v € V(H) all the shortest u,v-paths lie in H. Partial cubes are
isometric subgraphs of n-cubes. A median graph is a connected graph such
that, for every triple of its vertices, there is a unique vertex lying on a
geodesic (i.e. shortest path) between each pair of the triple.

For an edge ab of a graph G let
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Wes = {w | w € V(G), dg(w,a) < dg(w,b)},
Uap = {u € Wy | u is adjacent to a vertex in Wy, },
Fop = {uwv | u € Ugp,v € Upy} .

A partial cube G is a semi-medien graph if the sets U, induce connected
subgraphs. Median graphs form a proper subclass of semi-median graphs,
and, by the definition, semi-median graphs form a proper subclass of partial
cubes [5].

Let G' be a graph and let G and G% be subgraphs of G’ such that
V(G NV(GY) # @ and V(G UV(GS) = V(G'). Assume in addition
that G} and G} are isometric subgraphs of G' and that there is no edge
between a vertex of G} \ G and a vertex of G4, \ G}. An ezpansion of a
graph G' (with respect to G and G4) is a graph G, obtained from G’ in
the following way.

(i) Replace each vertex v € V(G}) N V(G5) by adjacent vertices v;
and vs.

(i) Join v and v to all neighbors of v in V(G})\V(G5) and V(G5)\
V(GY), respectively.

(ili) If v,u € V(G)) N V(G}) are adjacent in G, then join v to wy

and vy to us.

Let Gy = G{ N GY. Then the expansion is connected (convez) if Gy is
connected (convex). In 1978 Mulder [8, 9] proved his convex expansion
theorem: A graph is a median graph if and only if it can be obtained from
the one vertex graph by a sequence of convex expansions. Later Chepoi
[2] proved the analogous result for partial cubes. They can be obtained by
a sequence of expansions from the one vertex graph. Finally, semi-median
graphs can be obtained by a sequence of connected expansions from the
one vertex graph [5].

The Djokovié-Winkler’s relation © introduced implicitly in [4] and ex-
plicitly in [10] is defined on the edge-set of a graph in the following way.
Two edges e = zy and f = wv of a graph G are in relation 0 if dg(z,u) +
da(y,v) # da(z,v) + de(y,u). Relation © need not be transitive, in fact
Winkler [10] proved, that a bipartite graph is a partial cube if and only
if © is transitive. Hence is partial cubes and in particular in semi-median
graphs and median graphs, @ is an equivalence relation.

For X C V(@) we write (X) for the subgraph of G induced by X.
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2 Square-edge graphs

Let G be a graph and suppose that there exists a sequence of connected
graphs G = G;, Gj_1, ..., Go = T, and a sequence of edges ¢;, ¢j1,...,€1,
where

(1) Gi :Gi+1 —ei+1,fori:j—l,j—2,...,0,

(i) e; is a square-edge of G, for i = 34,7 - 1,...,1, and

(iii) T is a spanning tree of G.
Then we say that G is a square-edge graph and the sequence of edges
€j,€j—1,.--,€1 i & square-edge sequence. Example of a square-edge graph
is given in Fig. 1.

Figure 1: Square-edge graph with its square-edge sequence

Proposition 2.1 Square-edge graphs are bipartite.

Proof. Let G be a square-edge graph with a corresponding square-edge
sequence ej,ej_1,...,€1. Let G =Gy, Gi = Gip1—eipr forj—1242>0
and set Gy = T. Clearly, T is bipartite. We need to show that G;t1 is
bipartite provided that G; is such. Let e;y1 = uv. As G; is bipartite,
dg, (u,v) = 3. This means that v and v belong to different bipartition sets
of G; an so G441 is bipartite as well. 0

Note that square-edge graphs contain no K3 as a subgraph. Indeed,
every edge of K3 3 is contained in two 4-cycles, thus no edge of K 3 will be
removed in an eliminating process. Analogously we see that a square-edge
graph contains no ()3 as a subgraph.

Trees and Cartesian products of two paths are simple examples of
square-edge graphs. In order to find more interesting examples we first state
the following lemma that follows by a simple induction from the already
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mentioned fact that semi-median graphs can be obtained by a sequence of
connected expansions from the one vertex graph.

Lemma 2.2 Let G be a (K9OCy:)-free semi-median graph, t > 2. Then
G can be obtained from the one vertex graph by a connected ezpansion
procedure, in which every ezpansion step G, is a tree.

We continue with another result from our lemma department.

Lemma 2.3 Let G be a graph and let F' be its O-equivalence class with at
least two edges. Then F contains at least two square-edges in each of the
following two cases:

(i) G is a (K20C%)-free semi-median graph, t > 2;

(i) G is a cube-free median graph.

Proof. (i) Let F be a ©-equivalence class of G’ with at least two edges. Let
ab € F. It follows from Lemma 2.2 that (Uy;) is a tree, hence it contains
at least two vertices of degree 1, say z and y. If zz' and yy' are the edges
from F then by the expansion theorem we conclude that z2' and yy' are
square-edges.

(22) If G is a median graph, then G is also a semi-median graph. More-
over, if G is cube-free then it can be obtained from the one vertex graph
by a (convex) expansion procedure, in which every expansion step is done
with respect to a convex cover with a convex tree as intersection, cf. [6).
Thus G is a (K20Cy)-free semi-median graph, which means that we are
in the first case. a

Corollary 2.4 Cube-free median graphs are square-edge graphs. In par-
ticular, the Cartesian product T10Ty of trees T1 and Ty is a square-edge
graph.

Proof. Let G be a cube-free median graph. Then by Lemma 2.3 (i) it has
a square-edge ¢ and by Theorem 1.1 the graph G — e is a cube-free median
graph. Induction completes the proof that cube-free median graphs are
square-edge graphs.

Cartesian products of median graphs are median graphs. As trees are
median graphs and 77075 is clearly cube-free, 71075 is a cube-free median
graph. 0O

Another interesting property of square-edge graphs is the following.
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Proposition 2.5 Let G be a square-edge graph with n vertices and m
edges. Then the number of 4-cycles in G is equal to m —n + 1.

Proof. Let ej,ej-1,...,€e1 be a square-edge sequences of G and let T be
the appropriate spanning tree. It is not hard to see that deletion of a
square-edge destroys exactly one square and creates no new squares Since
j=m—n+1 and T has no 4-cycles, the proof easily follows. O

To show that the converse of Proposition 2.5 does not hold in general,
consider the graph G which we obtain from C¢0Cs by adding a path of
length two between diagonal vertices of one of its squares. Clearly, G has
37 vertices, 74 edges and 36 + 2 = 38 squares and som —n + 1 = 38. (We
note that one can find easier examples of this type, but the one presented
here is also tiled, cf. the next section.)

We conclude this section with the following result, which is in particular
useful from the algorithmic point of view.

Theorem 2.6 Let G be a square-edge graph and let e* be a square-edge of
G. Then G* = G — e* is a square-edge graph.

Proof. Suppose that the theorem is false and let G be a counterexample
with |E(G)| as small as possible. Let S = ej,ej—1,...,€1 be an arbitrary
square-edge sequence of G and let G; = G and G; = Giy1 — ejp for
0<i<j-1L

Suppose first that e* = e for some 1 < k < j. Clearly, as G*
does not have a square-edge sequence, k < j. We claim that S* =
€j,€j1y- - Chtly Ck—1,---,€1 15 2 square-edge sequence of G*. Since e* =
e, it is enough to see that €j,...,exy1 form a part of a square-edge se-
quence in G*. Assume thus that e; cannot be removed from G; — e* for
some t with j > ¢t > k + 1. Thus, e; must lie in a square containing ey.
However, since S is a square-edge sequence of G, this implies that ey = e*
lies on two different 4-cycles of G, which is not possible. It follows that 5™
is a square-edge sequence of G*, a contradiction.

We may thus assume that e* does not belong to any square-edge se-
quence of G. Let a,b and ¢ be the edges which, together with e*, form the
unique square containing e*. Clearly, at least one of the edges a, b and ¢
belongs to S. We may assume that a = e is the first among these three
edges that appears in S. If k = j, then it is easy to see that e*,ej_1,...,€1
is a square-edge sequence of G containing e*, which is not possible. There-
fore k < j. Note that e* is a square-edge in G. Now, by the minimality
assumption, we may assume that Gy —e* is a square-edge graph and that
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there is a square-edge sequence of Gy, of the form e*, e} _,,...,e}. But then
€ty -y Chil, €% €, 1,...,€) I8 a square-edge sequence of G containing e*.
This final contradiction completes the proof. a

3 Square-edge graphs and partial cubes

In this section we present some results which demonstrate that square-edge
graphs are not only interesting as such, but can also be used in studying
(subclasses of) partial cubes. We begin with the following characterization
of cube-free median graphs, which follows from Corollary 2.4. (See [1] for
two additional characterizations of this class of graphs.)

Proposition 3.1 A graph G is a cube-free median graph if and only if G
is a square-edge graph and contains no Q3 as a subgraph.

Proof. Let G be a cube-free median graph. Then G is also Q)3 -free, for
otherwise a Q3 would give rise to a 3-cube. G is a square-edge graph by
Corollary 2.4.

Conversely, if G is Q3 -free, then it is clearly cube-free. Moreover, by
Theorem 1.1 G is also a median graph and so the induction on |E(G)|
completes the proof. a

Let G be a cube-free median graph with n vertices, m edges and &
equivalence classes of the relation ©®. Then, by Corollary 2.4, G has a
square-edge sequence. Note that whenever we remove a square-edge, the
number of ©-classes increases by one. We end up with a spanning tree,
thus finally we have n — 1 ©-classes. Since we have removed m — n + 1
edges, we conclude that k+(m—n+1) =n—1,1e 2n—-m—k = 2. Thus,
in a cube-free median graph we have

n-m—k=2,

a result established in [6].

We can not apply the above argument to semi-median graphs, since
semi-median graphs are not hereditary for removing square-edges. Con-
sider, for instance, the semi-median graph G from Fig. 2. Any edge e of
its outer 6-cycle is a square-edge, but G — e is not a semi-median graph.
(In fact, G — e is not even a partial cube.)

For the sake of simplicity we will next consider a cycle also as the
set of its edges. An even graph is a graph whose every vertex has even
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Figure 2: A semi-median graph

degree. Let H be a even subgraph of a graph G. Then a set of 4-cycles
F={Cy,C4,...,Cp} in G is a tiling of H if

HzCl@CQGB---@Op.

Call a graph G tiled if every cycle of G has a tiling. (Or in other words, G
has a cycle basis comprised of 4-cycles.)

Proposition 3.2 Square-edge graphs are tiled.

Proof. Let G be a square-edge graph with a corresponding square-edge
sequencé €j,€j—1,...,€1. Let G = Gj, Gi=Gy1—€ep1forj—1>i2>0
and set Go = T. Denote by C; the unique 4-cycle in GG;, which contains e;.
Note that e; do not belongs to none of cycles C;_q,...,C1. This implies
that cycles Cj, ..., are independent. Since j = m —n + 1 it follows that
these cycles comprise cycle basis. ]

Using Proposition 3.2 we can prove the following result which connects
partial cubes with semi-median graphs.

Theorem 8.3 Let G be a square-edge graph. Then G is a partial cube if
and only if G is a semi-median graph.

Proof. Since semi-median graphs are partial cubes, we only need to show
that a square-edge graph which is a partial cube is also a semi-median
graph. By Proposition 3.2 it suffices to show that a tiled partial cube is a
semi-median graph.

Thus let G be a tiled partial cube and assume that G is not a semi-
median graph. Then there exists an edge ab € F(G) such that (Ug) is not
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connected. Let (UL,) and (UZ) be two different connected components of
(Uap), and let (UL) and (U2,) be the appropriate connected components of
(Upa). Let uyv; and uqvy be edges from Fyy, with u; € (Ul,) and v; € (Uf,)
for i = 1,2. We may assume that u; and ug are as close as possible under
the above assumptions. Then there is an induced (in fact even isometric)
cycle C' = u1 PusvyQuiuy of G such that the path P lie in Wy \ Ugs.
Observe first that the length of C is at least 6. Since G is tiled, there
exists a set of cycles C = {C1,...,Cp} (p > 2) of G such that C' = C1 &
---@ Cp. Note that, if the 4-cycle C; has an edge in Fyp, then it has exactly
two edges in F,p. Since u;v; and usvg are the only two edges of C' which
are in Fy, there exists a subset C, = {C,,...,C;, } of C, where every Cj;
has two edges in Fy; and Foy NE(Cy, &+ ®Ci,) = {u1v1, ugv2}. But then
we observe that in C;, @ --- @ C;, there is a uq, up-path whose every inner
vertex is in (U,p). This is a contradiction, for we assumed that the vertices
u1, ug are in different connected components of (Uys). O

4 Recognizing square-edge graphs

In this section we present an algorithm of complexity O(a(G)m) which rec-
ognizes square-edge graphs, and find a square-edge sequence, if one exists.
The algorithm depends on the work of Chiba and Nishizeki [3].

The first part of our algorithm is basically analogous to Algorithm C4
from [3]. It finds all the quadrangles of a given graph and prepares data
structures for the second part. For each vertex v of a graph it finds all the
quadrangles containing v. Let w be a vertex with dg (v, w) = 2. Then, as
square-edge graphs contain no K, 3 as a subgraph, there are at most two
potential neighbors of both w and v. They are denoted by f,, and s, in the
algorithm. If on the vertices v, w, fy, s we find an induced triangle, the
graph is rejected, since a square-edge graph is bipartite. Every quadrangle,
found by the algorithm, is stored in the set ¢, which contains its four edges.
The indices of the quadrangles containing the edge e are stored in L.

In the second part the algorithm constructs a square-edge sequence.
The array I represents the list of indices of @. The indices are sorted such
that the quadrangles with a square-edge are at the beginning of I. Applying
* Theorem 2.6 the algorithm at each step tries to find a quadrangle containing
a square-edge. If no such edge is found, the graph is rejected; otherwise
the array S representing the square-edge sequence is augmented and the
sets L. are updated for every edge e of the quadrangle involved. If the
updated set L. contains a square-edge, index of its quadrangle is set at the
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beginning of the list I. The procedure is repeated until I = @. If we end
up with a tree, the graph is accepted.

Procedure SEQUENCE(G);
{ Let G = (V, E) be a connected graph. }
begin

1. Finding quadrangles and computing L-sets

¢ := 0; { Quadrangles counter }
Sort the vertices in V in a way that d(vy) > d(v2) > ..
for each vertex v € V do begin f, := 0; s, := 0; end,
for ¢ := 1 to n do begin
for each vertex u adjacent to v; do
for each vertex w # v; adjacent to © do begin
if v;w € E then REJECT;
if f, =0 then f, :=u
else if s, = 0 then s, := u else REJECT;
end;
for each vertex w with s, # 0 do begin
if fy5, € E then REJECT,
ci=c+ 1;Qc = { vifw, ViSw, Wfu, Wsy };
L fu 7= Lo, g, U{e}; Ly sy, = Lugs, U{ch
Lyt = Luy,p, U{c}; Lus, := Lu,s, U{ch
end;
for each vertex w with f,, # 0 do begin f, := 0; s, := 0; end;
Delete the vertex v; from G and let G be the new graph;
end;

.2 d(vn);

2. Searching for a square-edge sequence

Sort the indices of @ such that if exists e € Q; with |L.| = 1, then
put ¢ in the beginning of list I;
k=1,
while there is an index in I do begin
Let ¢ be the first index of I;
Let e;, j € {1,2,3,4} be the edges of Q; such that |L,| =1,
if |L.,| # 1 then REJECT;
Spi=e k=k+1;
for j:=2toddo L, := L,,\ { i };
for j:=2to4do
if |L¢;| = 1 then put £ € L., at the beginning of the list I;
Delete i from I;
end;
if G\ S is a tree then ACCEPT else REJECT;
end.
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Recall that the arboricity a(G) of a graph G is the minimum number of
edge-disjoint spanning forests into which G can be decomposed.

Proposition 4.1 Let G be a graph with m edges. Then Algorithm SE-
QUENCE decides in O(a(G)m) time whether G is a square-edge graph and
finds a square-edge sequence if one exists.

Proof. The correctness of the algorithm follows from the above discussion.

Since the first part of the algorithm is similar to Algorithm C4, it can
be shown along the same lines as in [3] that this part of the above algorithm
obtains all the quadrangles of G in O(a(G)m) time.

The second part of the algorithm can be divided into three steps. In
the first step the indices of the quadrangles are ordered such that the quad-
rangles with a square-edge are at the beginning of the list. The number
of quadrangles is bounded with O(a{G)m), thus this ordering can be done
within the same time.

Concerning the while loop, note that the body of it can be executed in
a constant time. Therefore, the total running time is again bounded with
the number of quadrangles.

In the last step we need to check if a given graph is a tree. This can
clearly be done in O(n) time. We conclude that the total running time of
the algorithm is bounded by O(a(G)m). O

Corollary 4.2 Let G be a cube-free median graph on n vertices. Then
Algorithm SEQUENCE obtains a square-edge sequence of G in O(n) time.

Proof. We have seen that the first part of SEQUENCE runs in the same
time as Algorithm C4. It was shown in [3] that the complexity of C4 is at
most:

O(m) +0(m) +0( > min{d(u),d(v)}).

wEE(G)
Let S be a square-edge sequence of G and let 7" be a spanning tree obtained
after deleting the edges of S. Then the summation from the above can be
written as
O( > min{d(u),d(v)} + Y min{d(u),d(v)}).

uveS wveT
In Section 2 we have shown that m = 2n—2—k holds in a cube-free median
graph. Hence m = O(n). Therefore the complete running time is bounded
as

O(m) +0(n) + 0 _ d(vi) + Y d(v)) < O(n) .
i=1 i=1
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Since the running time of the second part of the SEQUENCE is bounded
by the number of quadrangles (that cannot exceed the number of edges)
the assertion follows. O
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