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Abstract

We show that any isometric irredundant embedding of a
graph into a product of complete graphs is the canonical iso-
metric embedding. This result is used to design a simple
O(mn) algorithm for recognizing Hamming graphs.

1 Introduction

All graphs considered in this paper are finite undirected graphs with-
out loops and multiple edges. Throughout the paper, for a given
graph G, let n and m stand for the number of its vertices and edges,
respectively.

Graphs that can be embedded isometrically in a Cartesian prod-
uct of complete graphs are called Hamming graphs. Interest in Ham-
ming graphs has been decisively stimulated by the work of Graham
and Pollak [10, 11] in communication theory and Firsov [8] in lin-
guistics. In biology, Hamming graphs appear as “quasi-species” [6].

Several algorithms for recognizing Hamming graphs have been
proposed. The first algorithm is due to Winkler [16]. Its running time
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is bounded by O(n®). Aurenhammer, Formann, Idury, Schéffer and
Wagner (2] improved Winkler’s algorithm to run in O(D(m,n) 4+n?)
time, where D(m,n) is the time needed to compute the distance ma-
trix of the graph. Wilkeit [14] presented another algorithm running
in O(n3) time.

In 1985 Graham and Winkler [12] published a fundamental pa-
per on isometric embeddings into Cartesian product graphs. Using
their results together with a result of Aurenhammer and Hagauer
(4] one can give an O(mn) algorithm to recognize Hamming graphs.
Aurenhammer and Hagauer [3] also proposed another algorithm of
the same complexity to recognize binary Hamming graphs.

In this paper we present an O(mn) algorithm to recognize Ham-
ming graphs. Our algorithm is also based on the theory of isometric
embeddings into Cartesian product graphs. However, our approach
needs a minimum of theory and the algorithm itself is simple and
straightforward. We have taken care that everything up to and in-
cluding Section 4 is self-contained. In particular, this includes all
results about binary Hamming graphs.

In the next section we state the necessary definitions and recall
a connection between Hamming graphs and the Cartesian product
of graphs. In Section 3 we introduce the relation © and reprove a
characterization of binary Hamming graphs. Section 4 follows with
an algorithm for the recognition of binary Hamming graphs. In the
last section we prove that any isometric irredundant embedding of a
graph into a product of complete graphs is the canonical isometric
embedding. With the aid of this result we extend the algorithm for
binary Hamming graphs to all Hamming graphs.

2 Hamming graphs and the Cartesian prod-
uct

Let ¥ be a finite alphabet and let w; and we be words of equal
length over ¥. Then the Hamming distance between w; and wo,
H (w1, ws), is the number of positions k in w; and w, such that the
k-th symbol in w; differs from the k-th symbol in ws. A graph G
is called a Hamming graph, if each vertex v € V(G) can be labelled
by a word of fixed length, a(v), such that H(a(v), a(v)) = da(u,v)
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for all u,v € V(G). Here dg(u,v) denotes the usual shortest path
distance in G between u and v. In particular, if ¥ = {0,1}, we call
G a binary Hamming graph.

The Cartesian product G O H of graphs G and H is the graph with
vertex set V(G) x V(H) and (a,z)(b,y) € E(G O H) whenever ab €
E(G) and z =y, or a = b and 2y € E(H). The Cartesian product is
commutative, associative and K is a unit. Also, GOH is connected
if and only if both G and H are connected. For G10G20- - - OGy, we
shall also write [[%; Gi.

For G = [1F.,Gi let p; : V(G) = V(Gy), i € {1,2,...,k}, be
the natural projection of G onto the i-th factor Gy, ie. for v=
(v1,v2,...,v) € V(G) we set p;(v) = v; € V(G;). For X C V(G)
let pi(X) = {pi(z) | z € X}. In particular, for e = wv € E(G)
let p;i(e) = {pi(u),pi(v)}. We also introduce a product coloring c :
E(G) = {1,2, ..., k} (with respect to the product representation) as
follows. For uv € E(G) we set c(uv) =1 if and only if v and v differ
in coordinate . Clearly cis a mapping from E(QG) into {1, 2, ..., k}.
It is not an edge coloring in the usual sense, because incident edges
may have the same color.

A subgraph H of a graph G is an isometric subgraph if dg(u,v) =
dg(u,v) for all u,v € V(H). In addition, if o : V(H) — V(G) maps
edges into edges and «(H) is an isometric subgraph of G, we call a
an isometric embedding of H into G.

The following observation is a starting point in studying isometric
subgraphs of Cartesian products of graphs.

Lemma 2.1 For G=[1%,Gi, k> 1, let w=(uy,ug,...,ux) and
v=(v1, V2, ..., V) be arbitrary vertices of G. Then dg(u,v) = >k
do; (Ui, vi).

With Lemma 2.1 it is an easy exercise to characterize Hamming
graphs:

Theorem 2.2 A graph G is a Hamming graph if and only if G is
an isometric subgraph of a Cartesian product of complete graphs. O

Theorem 2.2 in particular implies that binary Hamming graphs
are isometric subgraphs of hypercubes (the k-dimensional hypercube
Qk, k > 1, is the Cartesian product of k copies of K3).
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3 The relation ©

In this section we present a characterization of binary Hamming
graphs which is essential for a fast recognition algorithm.

Let G be a connected graph. Define a relation © on E(G) as
follows. If e = wu’ € E(G) and € = vv' € E(G), then e©¢ if and
only if

d(u,v) +d(/,v") # d(u,v’) +d(, v).

This relation, which was first introduced in an alternative form in
(5], plays a central role in our investigation. The relation © is well-
defined, reflexive and symmetric, yet it need not be transitive. We
denote its transitive closure by ©*.

Lemma 3.1 Let P be a shortest path in a graph G. Then no two
different edges of P are in relation ©.

Proof. Let ugu; - - un, be a shortest path, and let e = w;u;41, € =
UjUj+1, © < j. Then

d(ui, u5) + A(uir, Uia) = (d(uir1,5) + 1) + (d(ui, vjp — 1),

hence e is not in the relation © with ¢’ ]

It follows from Lemma 3.1 that for a tree on n vertices ©* consists
of n — 1 equivalence classes, each containing a single edge. Lemma
3.1 also implies that two adjacent edges are in relation © if and only
if they lie in a common triangle.

Lemma 3.2 Suppose P is a path connecting the endpoints of an edge
e. Then P contains an edge f with eOf.

Proof. Let upu; - - - unuo be a closed path with e = u,,up and e; =
u—u; fori=1,2,..., m. Set

(e, e:) = d(um, ui—1) + d(uo, ;) — d(tm, u;) — d(uo, ui—1)

and consider

5= uerer)
=1
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Clearly s = 2, which means that at least one of the summands
ule, e;) # 0, i.e. eOe;. O

For an edge uv of a graph G let
Vuw = {w | we V(G)’ dc(U),U) < dG(wiv) }

Lemma 3.3 Let e = uv be an edge of a connected bipartite graph G
and let
E. = {f l fEE(G)) e@f}

Then G\E. has exactly two components. Furthermore, they are in-
duced by the vertex sets Vi, and V.

Proof. G\ E; is disconnected by Lemma 3.2.

Let w € Vi, and let P be a shortest w — w path. Then vP is a
shortest v —w path. Hence, using Lemma 3.2 again, no edge of P is
in relation © with e. It follows that P connects v and w in G\ E,.

Since G is bipartite, d(w,u) # d(w,v). Therefore V,, and V,,
form a partition of V(G). In addition, no edge ww' € E(G), where
w,w’ € Vi, is in relation © with e. m]

For Cartesian product graphs Lemma 2.1 immediately implies:

Lemma 3.4 Let G =[[%, G; and let e, ' € E(G).
(i) If c(e) = c(€') =i and p;(e) = pi(e) then eOe'.
(ii) If c(e) # c(€') then e©¢’ does not hold.

Consider the product GOH of two graphs. Then Lemma 3.4
(i) claims that if ab € E(G), then (a,z)(b,z) is in relation © with
(a,y)(b,y), for any z, y € V(H). Lemma 3.4 (ii) on the other hand
says that if ab € E(G) and zy € E(H), then (a, 2)(b, z) is not in
relation © with (¢, z)(c,y), for any ¢ € V(G) and z € V(H), i.e.
edges with different colors with respect to the product coloring are
not in relation ©. In other words, every color class (with respect to
the product coloring) is the union of one or more equivalence classes
with respect to ©*.

Theorem 3.5 {16, Winkler] A graph G is a binary Hamming graph
if and only if G is bipartite and ©* = ©.
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Proof. Assume G is an isometric subgraph of a hypercube. Then G
is clearly bipartite.

Define a relation R on E(G) as follows. For e, ¢’ € E(G) let eRe’
if and only if c(e) = c(e’). Let c(e) = c(e’) = i. Then p;(e) = pi(e’) =
{0,1} and hence, by Lemma 3.4 (i), e©e’. Furthermore, by Lemma
3.4, e and ¢ are not related by @ if ¢(e) # c(e’). It follows R = ©.
As R is transitive, we conclude ©* = O.

Conversely, let G be bipartite and let ©* = O. Let e; = z1y1,
€ = TolYa, ..., €k = TkYk, k > 1 be representatives of each equiva-
lence class of ©*. Define an embedding a : V(G) — Qx = {0,1}*
in the following way. Let v € V(G). Fori =1, 2, ..., k let the i-th
coordinate of a(v) be 0 if v € V4, and 1 if v € Vj;5,. We claim that
« is an isometric embedding.

Let uv € E(G) and assume uv belongs to the equivalence class
of e;. By Lemma 3.3, a(u) and a(v) differ in the i-th coordinate.
Furthermore, if j # i then d(u,2;) + d(v,y;) = d(u,y;) + d(v,z;).
Thus a(u) and a(v) have same j-th coordinate. It follows that o
maps edges to edges.

As G is bipartite and © = ©*%, no two adjacent edges are in the
same equivalence class. Furthermore, if P is a shortest path between
u and v then, by Lemma 3.1, a(u) and a(v) differ in just as many
coordinates as the number of edges of P, i.e., the distance dg(u,v).
O

4 Recognizing binary Hamming graphs

In a direct implementation of Theorem 3.5 we must check for all
pairs of edges whether they are in relation ©. For a given graph G
this leads to an algorithm with time complexity O(m?). In order to
improve this complexity, we introduce relation ©;, which is due to
Feder [7].

Let T be a spanning tree of a graph G. Then edges e,€’ € E(G)
are in the relation ©; if and only if they are in relation © and if at
least one of the edges e and e’ belongs to T'. Let Ei, Ea, ..., Ex be
the equivalence classes of the relation ©}. Fori = 1,2, ..., k let
G denote the graph (V(G), E(G)\E;) and let C; 1, Cia, ..., Cim;
denote the connected components of G;. Form the graphs G}, i =
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1,2, ..., k, by letting V(G}) = {Ci1, Ciz, ..., Cim;} and taking
Ci;Ci j to be an edge of G} if some edge in E; joins a vertex in Cj ;
to a vertex in Cj ;.

We now define the natural contraction ¢; : V(G) — V(G}) by
setting a;(v) = C;; if v € Cj ;. Finally, we obtain a mapping

k
a:V(G) - ]G (%)
i=1

by setting
a(v) = (a1(v), 0(v), ..., %(®)). (%)

It is important for our algorithm that £ < n — 1. Indeed, let
e = wv € FE;. By Lemma 3.2 any path in G from u to v must
traverse at least one edge from E;. This is in particular true for the
path between u and v in T, hence there is at least one edge of T
belonging to E;.

This also means that © = ©7 in a binary Hamming graph. For,
suppose e© f. Then there is an ¢’ € T with €/Ge. Since © = ©* we
also have ¢'Of and e©}f. Hence © C ©3}. Since ©; C © we also
have ©] C ©* = O, which proves the assertion.

Algorithm BHG

Input: a connected graph G.

Output: TRUE, and a labeling, if G is a binary Hamming graph.
FALSE, otherwise.

1. If G is not bipartite then return FALSE and stop.

2. Compute ©7.

3. Compute G;, 1 =1, 2, ..., k and a(v), v € V(Q).

4. For i = 1, 2, ..., k, compute m;, i.e., the number of compo-
nents in G;. If for some i, m; > 2, then return FALSE and
stop.

5. Return TRUE and the labeling of G obtained in step 3.

Theorem 4.1 Algorithm BHG correctly recognizes binary Hamming
graphs and can be implemented to run in O(mn) time using O(m)
space.
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Proof. Suppose that G is a binary Hamming graph. Then © = ©]
and every G; has exactly two components by Lemma 3.3. It thus
remains to show that « is an isomorphism, if every G; has exactly
two components.

Let P be a shortest path between v and v in G. By Lemma 3.1
no two edges of P are in relation © and thus all edges of P belong
to different ©7F classes. This means that the labels of u and v differ
in just as many coordinates as the number of edges of P, i.e. the
distance dg(u, v). This proves the correctness of the algorithm.

Concerning the running time we first note that it is trivial to
check bipartiteness in O(m) time and space.

Let T be a spanning tree of G and let uv be an edge of T. Then
we can calculate the distances from u and v to all other vertices in
O(m) time and O(m) space. Hence we get all the edges in G related
to e under ©; in the same time, and in time O(mn) over all edges in
T. To get the equivalence classes of ©] we merge equivalence classes
of two edges whenever we determine that they are in the relation ©;.
During the execution of the procedure there will be at most m — 1
such union operations and m(n —1) find operations. It is well-known
that these can be done in O(mn) time using O(m) space (see, for
example, (1]).

When E; is known, it is easy to construct the graph G; in O(m)
time. As k < n — 1, all the G; can be obtained in O(mn) time.
Since every edge in G; corresponds to an edge of G, we get all the G
using O(m) space. In addition, we don’t need to store the complete
information on a(v), it is enough to store the value o;(v) if it is
different from o;(u) for some uv € E(G). O

Graham [9] proved that there exists a fixed small ¢ such that
m < enlogn for any subgraph of a hypercube. Thus:

Corollary 4.2 Algorithm BHG can be implemented to run in
O(n?logn) time using O(nlogn) space.

5 Recognizing Hamming graphs

We are going to modify Algorithm BHG to recognize general Ham-

ming graphs.
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Let a be the mapping (x) defined in Section 4. Call an iso-
metric embedding 8 : G — [Iit; H} irredundant if |Hy| > 2, i =
1,2, ..., m, and for all h € V(H;), h occurs as a coordinate value
of the image of some g € V(G). This is the principal result in the
theory of isometric embeddings into Cartesian product graphs:

Theorem 5.1 [12, Graham and Winkler] The mapping « is an iso-
metric embedding of G into [[E., G}, the so-called canonical em-
bedding. Furthermore, the embedding o is irredundant and has the
largest possible number of factors among all irredundant isometric
embeddings of G.

Graham and Winkler [12] proved Theorem 5.1 for the relation O,
while Feder [7] showed 0} = ©*.

For the isometric embeddings into products of complete graphs
we have:

Theorem 5.2 {16, Winkler] Any two isometric embeddings of a graph
into products of complete graphs are equivalent.

Equivalence in Theorem 5.2 essentially means that equivalent iso-
metric embeddings can be obtained from one another by discarding
unused factors, permuting factors, and permuting vertices within a
factor.

The following theorem is crucial for our algorithm.

Theorem 5.3 Let § : G — [[iz H; be an isometric irredundant
embedding of a graph G into a product of complete graphs H;. Then
this embedding is the canonical isometric embedding.

Proof. By Theorem 5.2 we have to show that any two edges e, €’ in
B(G) are in the relation ©* if they have the same color with respect
to the product coloring of []i~; H;.

Consider now i-layers U and V with respect to H;. We claim
that p;(8(G) NU) C pi(B(G) N V) or vice versa. If this is not the
case, there are vertices u,u’ € U and v, v’ € V such that

weB(G)NU, u' ¢ BG)NU
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(C vO ) o >V

Figure 1: Layers U and V

and
veB@G) NV, v ¢ BG) NV,

where p;(u) = pi(v'), pi(w) = pi(v) (see Fig. 1).

Suppose the distance between U and V in []X, H; is k. Then
k+1 = dy(u,v) = dg(g)(u,v), which is only possible if 4’ € 5(G) or
v' € B(G). This proves the claim.

Thus, let the i-colored edges e, €’ in B(G) be in the i-layers U and
V, respectively. If p;(8(G)NU) C pi(B(G)NV), then by Lemma 3.4
(i) there is an edge €” in B(G) NV with e@e”. Since B(G) NV is
complete we have ¢”’O¢/, and hence e©*¢’. ]

Algorithm HG

Input: a connected graph G.

Output: TRUE, and a labeling, if G is a Hamming graph. FALSE,
otherwise.

1. Compute ©1.
2. Compute G;,i=1,2, ..., k and a(v), v € V(G).

3. If forsomei=1,2,..., k, Gf is not a complete graph, then
return FALSE and stop.

4. Return TRUE and the labeling of G obtained in step 2.

Theorem 5.4 Algorithm HG correctly recognizes Hamming graphs
and can be implemented to run in O(mn) time using O(m) space.

54



Proof. Correctness of the algorithm follows from Theorem 5.3.
The complexity can be argued as in the proof of Theorem 4.1 with
the exception of Step 3. Every edge of a factor graph G} correspond
to an edge of G and furthermore, this correspondence is injective. It
follows 3%, |E(G?)| < m. Hence to implement Step 3 in the desired
time and space it is sufficient to count the number of edges in the
G}'s. a

Remark

We wish to add that the same algorithm was mentioned by F.R.K.
Chung, R.L. Graham, and M.E. Saks in their paper “A Dynamic
Location Problem for Graphs”, Combinatorica 9 (1989), 111-131, for
the recognition of weak retracts of Cartesian products of complete
graphs. In this paper they proved that this class of graphs consists
of those Hamming graphs which are “imprint closed” as defined in
their paper.

In presenting the algorithm, they claimed that it recognizes this
subclass of Hamming graphs, when in fact it recognizes the entire
class. The authors have communicated to us that they omitted an
additional statement that once a graph has been represented as a
Hamming graph it is routine to check in polynomial time that the
graph is imprint closed, as this only requires computing the imprint
of every ordered triple of vertices and checking that it is in the graph.
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