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Abstract

This note extends results of Fernández, Leighton, and López-Presa
on the uniqueness of rth roots for disconnected graphs with respect to
the Cartesian product to other products and shows that their methods
also imply new cancelation laws.
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1 Introduction

In a recent paper [2] Fernández, Leighton, and López-Presa showed among
others that the isomorphism of the Cartesian powers Gr and Hr implies
the isomorphism of G and H. As the authors note, in the case of con-
nected graphs their result follows immediately from the unique prime factor
decomposition theorem of Sabidussi [7] and Vizing [9].

∗This work was supported in part by the Ministry of Science of Slovenia under the
grants J1-6150.
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Unique prime factorization also implies the cancellation property for
connected graphs. In this note we show the validity of the cancellation
property for Cartesian products without the connectedness assumption and
that the isomorphism of Gr and Hr implies that of G and H also for certain
classes of infinite graphs.

We also note that the same method of proof implies the cancellation
property for the strong product and, in the class of nonbipartite graphs, the
direct one. Moreover the implication Gr ∼= Hr =⇒ G ∼= H, where powers
are taken with respect to the strong or the direct product, also holds.

Interestingly, the latter results have already been shown by Lovász [5],
except for the cancellation property

A× C ∼= B × C =⇒ A ∼= B.

Lovász proves it in the case when there are homomorphisms from A and B
to C, which need not be satisfied in the case we treat.

Finally we wish to note that the implication

Gr ∼= Hr =⇒ G ∼= H

and the cancellation property hold for the lexicographic product too [3].
The note ends with a few remarks about infinite graphs.

2 Results

The main idea of the proof in [2] is based on the fact that finite graphs
form a commutative semiring with unit K1 with respect to Cartesian mul-
tiplication and disjoint union, see [4, page 30]. Every connected graph is
uniquely representable as a product of prime graphs. This allows an em-
bedding of all (connected or disconnected) finite graphs into a polynomial
ring R with integer coefficients that is compatible with Cartesian multipli-
cation and disjoint union. The indeterminants are just the graphs that are
indecomposable with respect to the Cartesian product. Every finite graph
G is thus uniquely representable in R as a polynomial P (G) with positive
coefficients.

Theorem 2.1 Let A, B, C be finite graphs such that A �C ∼= B �C. Then
A ∼= B.

Proof. It is easy to see that P (A �C) = P (A) · P (C). Clearly,

P (A �C) = P (B �C)
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whence
P (A) · P (C) = P (B) · P (C) ,

and thus P (A) = P (B) by the cancellation property inR. Therefore A ∼= B.
�

The same approach can also be used for direct and strong products of
graphs. Recall that both the direct product G×H and the strong product
G � H of graphs G and H have the same vertex sets as the Cartesian
product. Two vertices of the direct product are joined by an edge whenever
their projections form edges in both factor graphs. The edge set of the
strong product is the union of the edge sets of the Cartesian and the direct
product.

Just as the Cartesian product, the strong product also has the unique
prime factor decomposition property for connected graphs [1], cf. also [4].
Again K1 is a unit and we have distributivity with respect to the disjoint
union. Thus, as in the case of the Cartesian product, we obtain a commu-
tative semiring that can be embedded into R, which allows the derivation
of the same results. We have thus found an easy proof of the following
proposition:

Proposition 2.2 Let Gr and Hr be powers of G and H with respect to the
strong product. If Gr ∼= Hr, then G ∼= H. Furthermore, if A, B, C are
graphs such that A � C ∼= B � C, then A ∼= B.

Let us consider the direct product now. It is convenient to consider this
product in the class of simple graphs with loops, which we will denote by
Γ0. The following theorem of Lovász [5] holds:

Theorem 2.3 Let G, H ∈ Γ0. If Gr ∼= Hr, where powers are taken with
respect to the direct product, then G ∼= H. Furthermore, if A,B, C ∈ Γ0

and if there are homomorphisms from A and B to C, then A×C ∼= B ×C,
implies A ∼= B.

Let us see how this compares with the results we can achieve by our
method. In order to obtain a commutative semiring of graphs with unit
that can be embedded into R we have to allow loops and restrict attention
to nonbipartite graphs. The reason is, that K1 is not a unit for the direct
product, but the one vertex graph K∗

1 with a loop is. Furthermore, for
the direct product the unique prime factorization theorem does not hold in
general, but it does hold for connected nonbipartite graphs in Γ0. Thus, the
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class of nonbipartite graphs in Γ0 is a commutative semiring with respect
to the direct product and the disjoint union, and K∗

1 as a unit. Every
connected graph in this class has a unique prime factorization with respect
to the direct product [1, 6], and this allows an embedding into R as before.
We thus obtain the following results:

Proposition 2.4 Let the nonbipartite graphs Gr and Hr be powers of G
and H with respect to the direct product. If Gr ∼= Hr, then G ∼= H.

Theorem 2.5 If A, B, C are nonbipartite graphs such that A×C ∼= B×C,
then A ∼= B.

The proposition is a special case of the result of Lovász, but Theorem
2.5 is somewhat stronger than the second part of Theorem 2.3.

We show now that Theorem 2.3 implies Proposition 2.2. The reason is
that the strong product G � H of two graphs can be obtained by addition
of loops to every vertex of G and H, multiplication of the resulting graphs
with respect to the direct product, and subsequent deletion of the loops.
The strong product can thus be considered as special case of the direct one.
Moreover, since every graph with a loop is nonbipartite, we do not need
such a restriction for the strong product. This already takes care of the
first part of Proposition 2.2. The second part follows since there are always
homomorphisms from A and B into C if C has at least one loop. (Simply
map A and B into such a vertex and its loop).

For the sake of completeness we wish to remark that Proposition 2.2 also
holds for the lexicographic product, see [3] or [4]. The lexicographic product
is the only noncommutative standard product of graphs. For its definition
and further properties we also refer to [4].

3 Concluding remarks

The Cartesian product of infinitely many nontrivial graphs is disconnected,
every one of its connected components is called a weak Cartesian product. It
is well known, see e.g. [4] that every connected (finite or infinite) graph has
a unique prime factorization with respect to the weak Cartesian product.
This implies, that the rth root of a connected graph with respect to that
product is unique if it exists. One can presumably use this to show that the
equality of Gr and Hr, where powers are taken with respect to the Cartesian
product, implies the equality of G and H also in the case of infinite graphs
if G and H have only finitely many components.
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Clearly, the cancellation law does not hold for infinite graphs, not even
for connected ones. For more information on infinite graphs we refer to [8].
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