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CODES AND L(2, 1)-LABELINGS IN SIERPIŃSKI GRAPHS

Sylvain Gravier, Sandi Klavžar and Michel Mollard

Abstract. The λ-number of a graph G is the minimum value λ such that G
admits a labeling with labels from {0, 1, . . . , λ} where vertices at distance two
get different labels and adjacent vertices get labels that are at least two apart.
Sierpiński graphs S(n, k) generalize the Tower of Hanoi graphs—the graph
S(n, 3) is isomorphic to the graph of the Tower of Hanoi with n disks. It is
proved that for any n ≥ 2 and any k ≥ 3, λ(S(n, k)) = 2k. To obtain the
result (perfect) codes in Sierpiński graphs are studied in detail. In particular
a new proof of their (essential) uniqueness is obtained.

1. INTRODUCTION

An L(2, 1)-labeling of a graph G is an assignment of labels from {0, 1, . . . , λ} to
the vertices of G such that vertices at distance two get different labels and adjacent
vertices get labels that are at least two apart. The λ-number λ(G) of G is the
minimum value λ such that G admits an L(2, 1)-labeling. The difference between
the largest label and the smallest label assigned by an L(2, 1)-labeling f is called
the span of f .

These concepts arose from the problem of assigning frequencies to radio trans-
mitters [9] and has been formulated as the L(2, 1)-labeling problem by Griggs and
Yeh [8]. The problem soon became an object of extensive research, of which [2,
4, 7, 11, 12, 16, 20, 22] is a sample of references. Note that many of these papers
are very recent, so it seems that the interest for this topic is increasing. We also
wish to point out that very recently Chang and Liaw [3] extended this concept to
digraphs. Concerning the complexity issues of the problem we refer to [6] and
references therein. One of the main messages of this extensive research is that it is
usually very difficult to precisely determine the λ-number of a graph or of a family
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graphs.

671



672 Sylvain Gravier, Sandi Klavžar and Michel Mollard

of graphs. For instance, to determine the λ-number of hypercubes seems to be an
utmost difficult problem [23].

Consider an L(2, 1)-labeling of a graph G and let Ci, 0 ≤ i ≤ λ, be the set of
vertices of G with label i. Then C0, . . . , Cλ form a partition of V (G) in which for
each i = 0, . . . , λ, distinct vertices in Ci have distance at least three. Such sets are
called codes (in graphs). So an L(2, 1)-labeling of a graph G is a partition of its
vertex set into codes.

The study of (perfect) codes in (distance regular) graphs was initiated by Biggs
[1]. Later Kratochv1́l with his co-workers considered (perfect) codes in general
graphs, see the monograph [17] and references therein. (For related complexity
results we refer to [10].) Cull and Nelson [5] showed that the Tower of Hanoi
graphs contain (essentially) unique 1-perfect codes, cf. also [18]. This result is
in [14] extended to the so-called Sierpiński graphs that form a two parametric
generalization of the Tower of Hanoi graphs.

The Sierpiński graphs S(n, k) were introduced in [13]. The motivation for
their introduction were topological studies in [19, 21] of Lipscomb’s space, where
it is shown that this space is a generalization of the Sierpiński triangular curve
(Sierpiński gasket). For some recent results on the Sierpiński graphs from the area
of topological graph theory see [15].

In this paper we determine the λ-numbers of the Sierpiński graphs. In the rest of
this section we recall the concepts of the Sierpiński graphs and codes in graphs, and
give a connection between the concepts. In Section 2 we closely analyze (perfect)
codes in the Sierpiński graphs. In particular we prove that the perfect codes in these
graphs are essentially unique, a result first proved in [14]. The present approach
enables a shorter and also simpler proof of the theorem. In the last section we then
prove that for any n ≥ 2 and any k ≥ 3, λ(S(n, k)) = 2k.

The graph S(n, k) (n, k ≥ 1) is defined on the vertex set {1, 2, . . . , k}n, two
different vertices u = (i1, i2, . . . , in) and v = (j1, j2, . . . , jn) being adjacent if and
only if u ∼ v. The relation ∼ is defined as follows: u ∼ v if there exists an
h ∈ {1, 2, . . . , n} such that

(i) it = jt, for t = 1, . . . , h− 1;
(ii) ih �= jh; and
(iii) it = jh and jt = ih for t = h + 1, . . . , n.

In the rest of the paper we will write 〈i1i2 . . . in〉 as short for (i1, i2, . . . , in). The
Sierpiński graphs S(3, 3) and S(2, 4), together with the corresponding vertex label-
ings are shown in Fig. 1.

A vertex of the form 〈ii . . . i〉 of S(n, k) is called an extreme vertex, the other
vertices will be called inner. The extreme vertices of S(n, k) are of degree k − 1
while the degree of the inner vertices is k. Note also that in S(n, k) there are k

extreme vertices and that |S(n, k)| = kn.
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Fig. 1. Sierpiński graphs S(3, 3) and S(2, 4)

A subset C of vertices of a graph G is a 1-code (or simply a code) if for any
distinct vertices u and v in C, we have dG(u, v) ≥ 3, where the distance dG(u, v)
(or, for short, d(u, v)) of vertices u and v is the number of edges on a shortest
u, v-path. A vertex u is dominated by a set C if it has a neighbor in C or u ∈ C. A
perfect code of G = (V, E) is a code C for which every vertex of V is dominated
by C. In other words, the closed neighborhoods of elements of C form a partition
of V . We will call a code C of S(n, k) an almost perfect code if all inner vertices
are dominated by C. Clearly, a perfect code of S(n, k) is also an almost perfect
code.

We have already mentioned that an L(2, 1)-labeling induces a partition of ver-
tices into codes. Conversely, we can state the following easy observation that
presents the starting point of this paper.

Proposition 1.1. Let G be a graph and {C0, C1, . . . , Ck} a partition of V (G),
where Ci is a code for 0 ≤ i ≤ k. Then λ(G) ≤ 2k.

Proof. Let x ∈ V (G). Then set �(x) = 2i, where x ∈ Ci.

2. (PERFECT) CODES IN SIERPIŃSKI GRAPHS

In this section we will prove that S(n, k) can be partitioned into perfect codes
and almost perfect codes. This will allow us to construct (in the next section) an op-
timal L(2, 1)-labeling. Along the way we will deduce the existence and uniqueness
of perfect codes of the Sierpiński graphs.
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The graph S(n + 1, k) can be constructed inductively from S(n, k) as follows
(cf. Fig. 1):

• Take k copies G1, G2, . . . , Gk of S(n, k), where for i = 1, 2, . . . , k we have

V (Gi) = {〈ia1a2 . . . an〉; 〈a1a2 . . . an〉 ∈ V (S(n, k))} .

• For any i and any j with i �= j, add an edge between the extreme vertex
〈ijj . . . j〉 of Gi and the extreme vertex 〈jii . . . i〉 of Gj .

Note that no edge incident to the extreme vertex 〈ii . . . i〉 of Gi is added. There-
fore these extreme vertices will be the only extreme vertices of S(n + 1, k).

Lemma 2.1. Let C be a subset of vertices of S(n+1, k). Then C is an almost
perfect code of S(n + 1, k) if and only if for i = 1, 2, . . . , k:

(a) C ∩ V (Gi) is an almost perfect code of G i, and

(b) for every j �= i, the extreme vertex 〈ijj . . . j〉 of Gi belongs to C if and only
if the extreme vertex 〈jii . . . i〉 of Gj is not dominated by C ∩ V (Gj).

Proof. Let C be an almost perfect code of S(n+1, k). Clearly C ∩V (Gi) is a
code of Gi, and since the inner vertices of Gi are inner in S(n+1, k), C∩V (Gi) is
an almost perfect code of Gi, thus (a) holds. Assume that for some i �= j, 〈ijj . . . j〉
belongs to C. Since 〈ijj . . . j〉 is adjacent to 〈jii . . . i〉, the vertex 〈jii . . . i〉 of Gj

is not dominated by C ∩ V (Gj). The converse holds since C is an almost perfect
code of S(n + 1, k) and since 〈jii . . . i〉 is not extreme in S(n + 1, k). Hence (b)
holds as well.

For the converse assume that we have a subset C which satisfies (a) and (b).
First, we claim that C is a code in S(n + 1, k). Let u, v ∈ C, u ∈ V (Gi) and
v ∈ V (Gj). By (a) we can assume that j �= i. If u and v are inner vertices of
Gi and Gj , respectively, then clearly d(u, v) ≥ 3. Now suppose that d(u, v) ≤ 2.
Then a shortest u, v-path is unique and uses the edge 〈ijj . . . j〉〈jii . . . i〉. We may
without loss of generality assume that u = 〈ijj . . . j〉. Thus 〈jii . . . i〉 is dominated
by v ∈ C ∩ V (Gj) which contradicts (b) and proves the claim.

To conclude the proof we must show that every inner vertex w of S(n + 1, k)
is dominated. If w is an inner vertex of some Gi, this follows from (a). So let
w = 〈ijj . . . j〉 with j �= i. If w is not dominated by C ∩ V (Gi) then by (b), it
must be dominated by the vertex 〈jii . . . i〉.

Theorem 2.2. Let n ≥ 1, k ≥ 1, and let C be an almost perfect code of
S(n, k).

If n is an odd integer, then one of the following two possibilities occurs:
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(1) There is no extreme vertex in C. Then C is unique (denoted by S) and no
extreme vertex is dominated by C.

(2) For some i, 〈ii . . . i〉 ∈ C. Then C is unique (denoted by Pi) and for all
j �= i, 〈jj . . . j〉 /∈ C. Moreover, all extreme vertices are dominated by C.

Furthermore the codes S, P1, . . . , Pk exist and partition the vertex set of S(n, k).
If n is an even integer, then one of the following two possibilities occurs:

(3) For some i, 〈ii . . . i〉 ∈ C. Then C is unique (denoted by A) and for all j,
〈jj . . . j〉 ∈ C.

(4) For some i, 〈ii . . . i〉 is not dominated by C. Then C is unique (denoted by
Bi), and for all j �= i, 〈jj . . . j〉 /∈ C but is dominated by C.

Furthermore the codes A, B1, . . . , Bk exist and partition the vertex set of S(n, k).

The possibilities that occur in Theorem 2.2 are schematically presented in
Fig. 2.

Fig. 2. Codes in S(n, k) for odd n (above) and even n (below).

Before proving Theorem 2.2 we note that it immediately implies the following
result from [14]:

Corollary 2.3. If n is odd then the only perfect codes of S(n, k) are P 1, P2, . . . ,
Pk . If n is even then A is the unique perfect code of S(n, k).

Proof of Theorem 2.2. Our proof works by induction on n. Since S(1, k) is
the complete graph on k vertices the result is clear for n = 1. Assume now that the
assertions hold for some n ≥ 1 and let C be an almost perfect code of S(n+ 1, k).

Suppose first that n is odd. By Lemma 2.1, for every i, C ∩V (Gi) is an almost
perfect code of S(n, k). Moreover, by induction hypothesis, C ∩ V (Gi) must be
equal to S or to Pj for some j.
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Case 1. For some i, 〈ii . . . i〉 ∈ C.
This implies that C ∩ V (Gi) is equal to Pi. By (2), for all j �= i, the vertex
〈ijj . . . j〉 /∈ C and is dominated by a vertex in C ∩ V (Gi). Thus, by Lemma 2.1,
the vertex 〈jii . . . i〉 is dominated by some vertex in C ∩V (Gj) and 〈jii . . . i〉 /∈ C.
Since 〈jii . . . i〉 is dominated in Gj , by the induction hypothesis C ∩V (Gj) cannot
be S, hence C ∩ V (Gj) = Pj . Thus, C is uniquely determined.

Now, consider the set A defined by A ∩ V (Gi) = Pi for all i. Then for every
i and j, by the definition of Pi and Pj , A satisfies the hypothesis of Lemma 2.1,
and so A is an almost perfect code satisfying (3).

Case 2. For every i, 〈ii . . . i〉 /∈ C and 〈ii . . . i〉 is dominated by some vertex
in C.
This implies that for every i, C ∩ V (Gi) �= S and C ∩ V (Gi) �= Pi. Therefore, for
a fixed i, there is some j �= i such that C ∩ V (Gi) = Pj . Moreover, there is some
l �= j such that C ∩ V (Gj) = Pl. The vertices 〈ijj . . . j〉 and 〈jii . . . i〉 violate
Condition (b) of Lemma 2.1. Therefore Case 2 never occurs.

Case 3. For every i, 〈ii . . . i〉 /∈ C and there is some j with 〈jj . . . j〉 not
dominated by C.
This implies that C ∩ V (Gj) = S. By (1), none of the vertices 〈jii . . . i〉 is
dominated by C ∩ V (Gj). Since C is an almost perfect code, Lemma 2.1 implies
that 〈jii . . . i〉 must be dominated by 〈ijj . . . j〉, therefore for every i �= j we have
C ∩ V (Gi) = Pj . Thus, C is uniquely determined.

Now, consider the set Bj defined by Bj ∩ V (Gi) = Pj for all i �= j and
Bj ∩ V (Gj) = S. To verify that Bj is an almost perfect code, select a vertex
〈abb . . .b〉 and check condition (b) of Lemma 2.1 according to the cases:

- a �= j and b �= j.
- a = j.

Furthermore, Bj satisfies (4).

To complete the case when n is odd, notice that for all j, we have V (Gj)∩A =
Pj , and for all i �= j, V (Gi) ∩ Bj = Pj , and V (Gj) ∩ Bj = S. Moreover, by
the induction hypothesis, S, P1, . . . , Pk partition V (Gj) = S(n, k) which in turn
implies that A, B1, . . . , Bk partition S(n + 1, k).

Now assume that n is even. By Lemma 2.1, for every i, C∩V (Gi) is an almost
perfect code of S(n, k). Moreover, by the induction hypothesis, C ∩ V (Gi) must
be equal to A or to Bj (for some j).

Case 1. For every i, 〈ii . . . i〉 does not belong to C.
This implies that for a fixed i, we have C ∩ V (Gi) = Bj . We claim that j = i.
Indeed, in the opposite case the vertex 〈ijj . . . j〉 is neither dominated by C∩V (Gi),
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nor by 〈jii . . . i〉 in Gj by property of the Bl’s. Moreover 〈ijj . . . j〉 is not an
extreme vertex of S(n + 1, k) which contradicts that C is an almost perfect code.
Thus, C is uniquely determined with C ∩ V (Gi) = Bi for all i.

Now consider the set S defined by S∩V (Gi) = Bi for all i. By (4), S satisfies
condition (b) of Lemma 2.1, so in each copy Gi, the vertex 〈ii . . . i〉 is the only
vertex in S which is not dominated. Moreover, since S ∩ V (Gi) = Bi is an almost
perfect code of Gi, we have that S is an almost perfect code of S(n+1, k) satisfying
(1).

Case 2. There is some i such that 〈ii . . . i〉 belongs to C.
This implies that C∩V (Gi) = A. Choose j �= i. Thus, the vertex 〈ijj . . . j〉 belongs
to C, and so 〈jii . . . i〉 is not dominated by C∩V (Gj). Therefore, C∩V (Gj) = Bi.
Thus, C is uniquely determined with C ∩ V (Gi) = A and C ∩ V (Gj) = Bi for all
j �= i.

Now, consider the set Pi defined by Pi ∩ V (Gj) = Bi for all j �= i and Pi ∩
V (Gi) = A. First, check property (b) of Lemma 2.1 for the edges 〈ijj . . . j〉〈jii . . . i〉,
and 〈jll . . . l〉〈ljj . . . j〉 with j and l �= i. Secondly, observe that 〈jj . . . j〉 /∈ Pi and
is dominated by Pi ∩ V (Gj) for all j �= i. Finally, Pi satisfies (2).

To complete the proof of Theorem 2.2 it is enough to notice that for all j, we
have V (Gj)∩ S = Bj , and for all i �= j, V (Gi)∩Pj = Bj , and V (Gj)∩Pj = A.
Moreover, by the induction hypothesis, A, B1, . . . , Bk partition V (Gj) = S(n, k)
which implies that S, P1, . . . , Pk partition S(n + 1, k).

3. L(2, 1)-LABELINGS OF SIERPIŃSKI GRAPHS

In this section we give an optimal L(2, 1)-labeling of the Sierpiński graphs.
First we need the following lemma:

Lemma 3.1. Let � be an L(2, 1)-labeling of the complete graph Kn such that
the span of � is at most 2n − 1. Then the image of � is either {0, 2, . . . , 2n − 2},
or {1, 3, . . . , 2n − 1}, or there is an i such that the image of � is {0, 2, . . . , 2i−
2, 2i + 1, 2i + 3, . . . , 2n− 1}.

Proof. Let I be the image of �. If I contains no odd number then I =
{0, 2, . . . , 2n− 2}. Now, assume that 2i + 1 is the smallest odd number occurring
in I . So, I contains at most i even numbers among {0, 2, . . . , 2i − 2}. Thus I
must contain at least n − i − 1 numbers from {2i + 3, 2i + 4, . . . , 2n − 1} ; and
the only possibility is to take all the odd numbers from this set. We conclude that
I = {0, 2, . . . , 2i− 2, 2i + 1, 2i + 3, . . . , 2n− 1}.

Theorem 3.2. For any n ≥ 2 and any k ≥ 3, λ(S(n, k)) = 2k.
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Proof. By Theorem 2.2, the vertex set of S(n, k) can be partitioned into k + 1
codes X0, X1, . . .Xk. Thus λ(S(n, k)) ≤ 2k by Proposition 1.1.

In the rest of the proof we need to show that there is no labeling of S(n, k)
with a smaller span. As S(n, k) is an isometric subgraph of S(n + 1, k) (for
any n ≥ 1), it suffices to show that λ(S(2, k)) ≥ 2k for k ≥ 3. The graph
S(2, k) consists of k complete subgraphs on k vertices induced by the vertex sets
Li = {〈ij〉 | j = 1, 2, . . . , k}. In addition, for i �= j, the vertex 〈ij〉 ∈ Li is
adjacent to the vertex 〈ji〉 ∈ Lj .

Let � be an L(2, 1)-labeling of S(2, k) and define �(Li) = {�(〈ij〉) | j =
1, 2, . . . , k}. Clearly, the span of �(L1) is at least 2k−2. If it is equal 2k−2, then
�(L1) = {0, 2, . . .2k − 2}. Consider the vertex 〈12〉 of L1 and let �(〈12〉) = 2r,
where r ∈ {0, 1, . . . , k − 1}. The vertex 〈12〉 ∈ L1 is adjacent to the vertex
〈21〉 ∈ L2, hence the distance between 〈12〉 and a vertex of L2 is at most 2. It
follows that �(〈2s〉) �= 2r for 1 ≤ s ≤ k, and consequently λ(S(2, k))≥ 2k − 1.

Suppose λ(S(2, k)) = 2k − 1. Let

S0 = {1, 3, 5, . . . , 2k − 1}, Sk = {0, 2, 4, . . . , 2k − 2} ,

and for i = 1, 2, . . . , k − 1 set

Si = {0, 2, . . . , 2i− 2, 2i + 1, 2i + 3, . . . , 2k − 1} .

Since Li induces a Kk and λ(S(2, k)) = 2k − 1, then by Lemma 3.1, for any i
there exists an r ∈ {0, 1, . . . , k} such that �(Li) = Sr. Moreover, we claim that
�(Li) �= �(Lj) whenever i �= j. Indeed, consider the edge xy where x ∈ Li, y ∈ Lj .
Then �(x) /∈ �(Lj) which implies the claim. We now consider two cases.

Case 1. For any i, �(Li) �= S0; or for any i, �(Li) �= Sk.
If for any i, �(Li) �= S0, then the label 0 is used in each �(Li). We claim that
�(x) = 0 if and only if x is an extreme vertex. Indeed, since a non extreme vertex
of Li is adjacent to some Lj with j �= i, we have �(x) /∈ l(Lj). Therefore, all the
extreme vertices of S(2, k) are labeled 0. We may assume without loss of generality
that �(L1) = Sk. Let �(〈1j〉) = 2 and �(〈1j ′〉) = 4. Then 2 and 4 are forbidden
labels for Lj and Lj′ , respectively. Hence �(Lj) = S1. Moreover, since �(Lj′) is
either S1 or S2, we must have �(Lj′) = S2. Consider the edge xy between Lj and
Lj′ . Since x is on distance at most two from vertices of Lj′ , �(x) = 3. Similarly
it follows that �(y) = 2, but this is not possible as x is adjacent to y.

If for any i, �(Li) �= Sk, then we can argue analogously as above with the label
2k − 1 in place of the label 0 and by setting �(L1) = S0.

Case 2. For some i and j, �(Li) = S0 and �(Lj) = Sk .
We may assume that �(L1) = Sk. Suppose first that k ≥ 4. Because �(L1) = Sk,
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there are two vertices u and v of L1 such that none of them is an extreme vertex
and that �(u) = 2t and �(v) = 2(t + 1) for some t. Let the neighbor of u outside
L1 lie in Lr and the neighbor of v outside L1 belong to Ls. Then �(Lr) = St

and �(Ls) = St+1. Similar to Case 1, consider the edge xy between Lr and Ls.
From the distances between x and Ls and between y and Lr we conclude that
�(x) = 2t + 1 and �(y) = 2t which is not possible.

It remains to consider the case k = 3. We have �(L1) = {0, 2, 4} and we
may assume in addition �(L2) = {1, 3, 5}. Suppose �(L3) = {0, 2, 5}. Then
we immediately see that �(〈13〉) cannot be 0 or 2, so �(〈13〉) = 4. Similarly,
�(〈31〉) must be 5, but this is impossible. The subcase �(L3) = {0, 3, 5} is treated
analogously and the proof is complete.

We note that in the above proof Cases 1 and 2 could be merged into a single
one for k ≥ 4. However, this would make the analysis of the case k = 3 longer
and pedestrian. We also wish to add that we have excluded the cases k = 1, k = 2,
and n = 1 from the statement of the theorem from aesthetical reasons and since the
corresponding λ-values are well known. Indeed, S(n, 1) is isomorphic to K1 for
any n, and S(n, 2) is the path on 2n vertices, while S(1, k) is Kk.

ACKNOWLEDGEMENT

We thank the referees for careful reading of the paper. This research was
supported in part by the Slovene-Franch projects Proteus 00874RL and Proteus
BI-FR/04-002.

REFERENCES

1. N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B, 15 (1973), 289-296.

2. G. J. Chang and D. Kuo, The L(2, 1)-labeling on graphs, SIAM J. Discrete Math., 9
(1996), 309-316.

3. G. J. Chang and S.-C. Liaw, The L(2, 1)-labeling problem on ditrees, Ars Combin.,
66 (2003), 23-31.

4. G. J. Chang and C. Lu, Distance-two labelings of graphs, European J. Combin., 24
(2003), 53-58.

5. P. Cull and I. Nelson, Error-correcting codes on the Towers of Hanoi graphs, Discrete
Math., 208/209 (1999), 157-175.
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15. S. Klavžar and B. Mohar, Crossing numbers of Sierpiński-like graphs, submitted.
16. S. Klavžar and A. Vesel, Computing graph invariants on rotagraphs using dynamic

algorithm approach: the case of (2,1)-colorings and independence numbers, Discrete
Appl. Math., 129 (2003), 449-460.
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Ved Rada Mat. Prírod. Ved, no. 7, Akademia Praha, 1991, p. 126.

18. C.-K. Li and I. Nelson, Perfect codes on the Towers of Hanoi graphs, Bull. Austral.
Math. Soc., 57 (1998), 367-376.

19. S. L. Lipscomb and J. C. Perry, Lipscomb’s L(A) space fractalized in Hilbert’s l2(A)
space, Proc. Amer. Math. Soc., 115 (1992), 1157-1165.

20. D. Liu and R. K. Yeh, On distance-two labelings of graphs, Ars Combin., 47 (1997),
13-22.
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