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Abstract
A set S of vertices of a graph G is a geodetic set if every vertex of

G lies in at least one interval between the vertices of S. The size of a
minimum geodetic set in G is the geodetic number of G. Upper bounds
for the geodetic number of Cartesian product graphs are proved and
for several classes exact values are obtained. It is proved that many
metrically defined sets in Cartesian products have product structure
and that the contour set of a Cartesian product is geodetic if and only
if their projections are geodetic sets in factors.
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1 Introduction

In the varied field of metric graph theory studies are often motivated by
classical concepts from other fields, say by convexity and boundary sets from
Euclidian spaces. Different boundary sets (contour, eccentric, peripheral) in
graphs were investigated in [3, 5, 9, 10], while in [8] a certain convexity
number of graphs was studied. Some other concepts have a more graph-
theoretic flavour, which is certainly true for geodetic sets and the geodetic
number of a graph introduced in [13], and studied further in [2, 11, 12].

Two of the mentioned concepts were combined in [3, 4] where the follow-
ing question was posed: for which graphs G the contour set of G is also its
geodetic set? For several classes of graphs the answer (positive or negative)
is known. On the other hand, the problem is open for bipartite graphs [4]
and in particular for median graphs [1].

Knowing that the shortest-path metrics in Cartesian product graphs is
in straightforward correlation with the metrics in factor graphs, it is natural
to consider metrically defined concepts in the Cartesian product setting,
see [6, 7, 14, 16, 17]. Geodetic sets in prisms which are the simplest Cartesian
products of two graphs (products of the form G2K2) were studied already
in [12] and [15]. Recently the geodetic number of the Cartesian product of
arbitrary two connected graphs was investigated [16], and sharp lower and
upper bounds were obtained for G2H.

In this paper we further study the presented concepts in Cartesian prod-
uct graphs. In the next section we consider upper bounds for the geodetic
number g(G2H) of the Cartesian product of graphs G and H. We give a
short proof of the main result from [16] and improve the bound for products
whose factors G and H possess so-called linear geodetic sets of sizes g(G)
and g(H), respectively. We also present several classes of graphs that enjoy
this property. In Section 3 we obtain several exact values for g(G2H). We
prove in particular that g(G2H) = max{g(G), g(H)} holds for any trees G
and H. The question of when g(G2G) = g(G) is also partially answered.
Then, in Section 4, we consider the boundary, the contour, the eccentric and
the peripheral sets in arbitrary Cartesian product of graphs and show that
they all have a product structure. In the concluding section we show that
the contour set of a Cartesian product of graphs G2H is a geodetic set of
this product if and only this holds in both G and H.

We next introduce the key concepts of this paper.
All graphs in this paper are connected and finite. The distance dG(u, v)

between vertices u, v ∈ V (G) is the usual shortest path distance. If the graph
G will be clear from the context we will abbreviate dG(u, v) to d(u, v). A
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shortest u, v-path is called a u, v-geodesic. The interval IG[u, v] between
vertices u, v of a graph G is the set of vertices of all shortest paths between
u and v in G. Again, we will sometimes write I[u, v] for IG[u, v] when G
will be clear.

Let S be a set of vertices of a graph G. Then the geodetic closure
IG[S] is the union of intervals between all pairs of vertices from S, that is,
IG[S] = ∪u,v∈SIG[u, v]. A set S of vertices of G is a geodetic set in G if
IG[S] = V (G). The size of a minimum geodetic set in a graph G is called
the geodetic number of G and denoted g(G).

The Cartesian product G¤H of graphs G and H is the graph with the
vertex set V (G) × V (H) in which vertices (g, h) and (g′, h′) are adjacent
whenever gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). The most
important metric property of the Cartesian product operation is that for
any graphs G and H,

dG ¤ H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′) .

We also recall that the Cartesian product is associative and commutative
with K1 as its unit. For further information on this graph product see [14].

2 Upper bounds on the geodetic number

In this section we consider upper bounds on the geodetic number of Carte-
sian product graphs. We first give a short proof of a general upper bound
proved for the first time in [16]. Then we introduce the so-called linear geode-
tic sets and show that the general upper bound can be improved, roughly
speaking, by a factor of 2, provided that factor graphs contain linear mini-
mum geodetic sets.

For the announced short proof we recall the following lemma that is a
well-known part of the folklore. It is around at least since the book [17] has
been published.

Lemma 2.1 Let X = G ¤H be the Cartesian product of (connected) graphs
G and H and let (g, h) and (g′, h′) be vertices of X. Then IX [(g, h), (g′, h′)] =
IG[g, g′]× IH [h, h′]. Moreover, IX [(g, h), (g′, h′)] = IX [(g′, h), (g, h′)].

Using Lemma 2.1 we now give a short argument for the following theo-
rem.

Theorem 2.2 ([16]) Let G and H be graphs with g(G) = p ≥ g(H) = q ≥ 2.
Then g(G¤H) ≤ pq − q.
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Proof. Set X = G¤H. Let S = {g1, . . . , gp} and T = {h1, . . . , hq} be
geodetic sets of G and H, respectively. Set

U = (S × T ) \ ∪q
i=1{(gi, hi)} .

We claim that IX [U ] = V (X). Let (g, h) be an arbitrary vertex of X. Then
there exist indices i and i′ such that g ∈ IG[gi, gi′ ], and there are indices j
and j′ such that h ∈ IH [hj , hj′ ]. Since p, q ≥ 2 we may assume that i 6= i′ and
j 6= j′. Indeed, if, say g = gi ∈ S, then select i′ to be an arbitrary index from
{1, . . . , p} different from i. Set B = {(gi, hj), (gi, hj′), (gi′ , hj), (gi′ , hj′)}.

Suppose that one of the vertices from B is not in U . We may without loss
of generality assume (gi, hj) /∈ U . This means that i = j. Therefore i′ 6= j
and i 6= j′. Then we infer that (g, h) ∈ IX [(gi, hj′), (gi′ , hj)]. Otherwise all
vertices from B are in U . But then (g, h) ∈ IX [(gi, hj), (gi′ , hj′)]. 2

Note that if G and H are graphs with g(G) = g(H) = 2 then Theorem 2.2
implies g(G¤H) = 2.

In the proof of the upper bound of Theorem 2.2 not much of the structure
of the Cartesian product is used. As it was demonstrated in [16] the bound
cannot be improved in general. However, under some additional assump-
tion(s) one can employ the product structure. We next give an example of
such a result.

Let G be a graph and let S = {x1, . . . , xk} be a geodetic set of G. We
say that S is a linear geodetic set if for any x ∈ V (G) there exists an index
i, 1 ≤ i < k, such that x ∈ I[xi, xi+1].

Theorem 2.3 Let G and H be graphs on at least two vertices with g(G) = p
and g(H) = q. Suppose that both G and H contain linear minimum geodetic
sets. Then

g(G¤H) ≤
⌊pq

2

⌋
.

Proof. Set X = G ¤H and let S = {g1, . . . , gp} and T = {h1, . . . , hq} be
linear geodetic sets of G and H, respectively. Set

U = (S × T ) \
⋃
i+j
even

{(gi, hj)} .

We claim that U is a geodetic set of X. Let (g, h) be an arbitrary vertex
of X. Since S is linear, there exists an index i, 1 ≤ i < p, such that
g ∈ IG[gi, gi+1], and because T is linear, there exists an index j, 1 ≤ j < q,
such that h ∈ IH [hj , hj+1].
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Suppose that i + j is odd. Then (i + 1) + (j + 1) is odd as well, hence
(gi, hj) ∈ U and (gi+1, hj+1) ∈ U . Because (g, h) ∈ IX [(gi, hj), (gi+1, hj+1)]
it follows that (g, h) lies in the geodetic closure of U . Suppose next that i+j
is even. Then both i+(j +1) and (i+1)+ j are odd and thus (gi, hj+1) ∈ U
and (gi+1, hj) ∈ U . Since by Lemma 2.1, (g, h) ∈ IX [(gi, hj+1), (gi+1, hj)],
also in this case (g, h) lies in the geodetic closure of U .

To conclude the proof observe that |U | = bpq/2c. 2

Many graphs admit linear minimum geodetic sets, complete graphs and
graphs G with g(G) = 2 are obvious instances of such graphs. For another
example consider complete bipartite graphs Kn,m with n,m ≥ 4. It is
known [12] and easy to see that g(Kn,m) = 4. Moreover, selecting the first
two vertices of a minimum geodetic set from one bipartition set and the last
two vertices from the other yields a linear geodetic set.

An example of a graph G that does not admit a linear minimum geodetic
set is shown in Fig. 1.

Figure 1: Graph that does not admit a linear geodetic set

Clearly, g(G) = 3, where the vertices of large degree form a unique minimum
geodetic set, but this set is not linear. Similar examples of graphs that do
not admit linear minimum geodetic sets can be obtained from the cycle C3k,
k ≥ 2, to which three vertices are evenly attached.

3 Exact geodetic numbers

In this section we give several exact geodetic numbers of Cartesian prod-
uct graphs. In all the cases, the value coincides with the bound from the

5



following theorem.

Theorem 3.1 ([16]) For any graphs G and H, g(G ¤H) ≥ max{g(G), g(H)}.

We begin with the following application of Theorem 2.3 (and Theo-
rem 3.1):

Corollary 3.2 Let G be a graph on at least two vertices that admits a linear
minimum geodetic set and let H be a graph with g(H) = 2. Then g(G¤H) =
g(G).

Proof. Use Theorem 2.3 for the upper bound and Theorem 3.1 for the lower
bound. 2

For the next exact result we introduce the following property of geodetic
sets. Let G be a graph. If S is a geodetic set of G such that

∀u ∈ V (G) \ S,∀v, w ∈ S : u ∈ I[v, w], (1)

we say that S is a complete geodetic set of G. (Clearly any complete geodetic
set is also a linear geodetic set.)

Proposition 3.3 Let G and H be nontrivial graphs both having a complete
minimum geodetic set. Then g(G¤H) = max{g(G), g(H)}.

Proof. Set X = G ¤H and let S = {g1, . . . , gp} and T = {h1, . . . , hq} be
complete minimum geodetic sets of G and H, respectively. Without loss of
generality we may assume that p ≥ q, and note that q ≥ 2. Set

U = {(g1, h1), (g2, h2), . . . , (gq, hq), (gq+1, hq), . . . , (gp, hq)}.

We claim that U is a geodetic set of X. We distinguish four cases (in which
we will use Lemma 2.1 several times without referring to it).

Case 1: g ∈ S and h ∈ T . Then there are indices i, j such that g = gi

and h = hj . We may assume i 6= j, otherwise (g, h) ∈ U . Then note that
(g, h) ∈ IX [(gj , hj), (gi, hσ)], where σ = i if i ≤ q, and σ = q if i > q.

Case 2: g ∈ S and h 6∈ T . Then g = gi for some i ∈ {1, . . . , p}. Let σ be
defined as in the previous case, and let j ≤ q be an integer different from σ.
Since h ∈ I[hj , hσ] we derive (g, h) ∈ IX [(gj , hj), (gi, hσ)].

Case 3: g 6∈ S and h ∈ T . Then h = hj for some j ∈ {1, . . . , q}. Let i ≤ q
be an integer different from j. Then clearly (g, h) ∈ IX [(gi, hi), (gj , hj)].

Case 4: g 6∈ S and h 6∈ T . In this case we have (g, h) ∈ IX [(g1, h1), (g2, h2)].
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Hence U is a geodetic set, and since |U | = p = max{g(G), g(H)} we
derive that U is a minimum geodetic set and g(X) = p. 2

Examples of graphs having a complete minimum geodetic set include
complete graphs, stars, and graphs with geodetic number 2. Odd cycles
are examples of graphs that admit a linear minimum geodetic set but not
a complete minimum geodetic set. Note that g(C2n+1) = 3 for any n ≥
1. A set of three vertices in g(C2n+1), comprised of any vertex and its
two eccentric vertices, is a minimum geodetic set which is linear, but not
complete as soon as n ≥ 2.

Yet another class of graphs that achieve the lower bound of Theorem 3.1
are trees. Note that the unique minimum geodetic set of a tree is the set of
its leaves [12]. For the proof we need the following two simple properties.

Lemma 3.4 Let T be a tree and L the set of its leaves.
(P1) If x ∈ L and u ∈ V (T ) then there exists y ∈ L (different from x)

such that u ∈ IT [x, y].
(P2) If x, y ∈ L and u ∈ IT [x, y] then for any z ∈ L we have u ∈ IT [x, z]

or u ∈ IT [y, z].

Proof. (P1) is clear. For (P2) note that T − u is a disconnected graph,
and since u ∈ IT [x, y] we infer that x and y belong to distinct connected
components of T − u. Let C be the component of T − u in which z lies,
and clearly not both x and y are in C. Now, if x 6∈ C then u ∈ IT [x, z],
otherwise u ∈ IT [y, z]. 2

Theorem 3.5 For any trees T1 and T2,

g(T1 ¤T2) = max{g(T1), g(T2)} .

Proof. Let p = g(T1) ≥ g(T2) and denote by L1, L2 the sets of leaves
of T1 and T2, respectively. Let f : L1 → L2 be an arbitrary surjective
mapping from L1 = {x1, . . . , xp} onto the set of leaves of T2. We claim that
S = {(xi, f(xi)) | i = 1, . . . , p} is a geodetic set of T1 ¤T2.

Consider an arbitrary vertex (g, h) ∈ V (T1 ¤T2). Clearly there exist
xi, xj ∈ L1 such that g ∈ IT1 [xi, xj ]. If h ∈ IT2 [f(xi), f(xj)] then by Lemma
2.1 we get (g, h) ∈ I[(xi, f(xi)), (xj , f(xj))] as desired. Now suppose h 6∈
IT2 [f(xi), f(xj)]. By (P1) from Lemma 3.4 there exists y ∈ L2 such that
h ∈ IT2 [f(xi), y]. Then by (P2) we infer that also h ∈ IT2 [f(xj), y]. Choose
any x ∈ f−1(y). Since g ∈ IT1 [xi, xj ] we get from (P2) that g ∈ IT1 [xi, x]
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or g ∈ IT1 [xj , x]. In the first case we derive (g, h) ∈ I[(x, y), (xi, f(xi))] and
in the second case (g, h) ∈ I[(x, y), (xj , f(xj))]. Hence S is a geodetic set of
T1 ¤T2 with |S| = p = |L1|. 2

In the rest of this section we consider the geodetic number of the square
of a graph G, that is, of G¤G. A natural question arises from Theorem 3.1
of when is g(G¤G) = g(G).

We say that a set of vertices S in a graph G is a double geodetic set if for
any pair of vertices x, y ∈ V (G) there exist vertices a, b ∈ S such that both
x, y ∈ I[a, b]. Clearly any double geodetic set is a geodetic set. Converse is
of course not true in general (for instance the unique minimum geodetic set
of a graph from Fig. 1 is not a double geodetic set). The obvious fact that
every complete geodetic set is a double geodetic set implies that a graph can
have a double geodetic set which is at the same time a minimum geodetic set
(e.g. complete graphs, stars, graphs with geodetic number 2, etc.). Trees
present another example of graphs that have a double minimum geodetic
set.

Proposition 3.6 If a graph G has a double minimum geodetic set then
g(G¤G) = g(G).

Proof. Let S = {x1, . . . , xk} be a double minimum geodetic set of a graph
G (with g(G) = k). Hence, given a vertex (g, h) ∈ V (G)×V (G), there exist
vertices xi, xj ∈ S such that both g, h ∈ IG[xi, xj ]. By Lemma 2.1 we derive
that (g, h) ∈ IG ¤ G[(xi, xi), (xj , xj)]. Therefore {(xi, xi) | i = 1, . . . , k} is a
geodetic set of G and so g(G¤G) = k. 2

We wonder if the converse of Proposition 3.6 is true. The following
observation is easy. If the set {(xi, xi) | i = 1, . . . , k} is a geodetic set of
G ¤G and g(G) = k (implying g(G2G) = g(G)), then {xi | i = 1, . . . , k} is
a double geodetic set of G. However, could it happen that G2G would not
have a minimum geodetic set of such a (diagonal) structure?

4 Contour and other boundary sets

In [4] several variations of boundary/peripheral sets were considered. In this
section we study the structure of these sets in Cartesian product graphs and
show that they all have a product structure. This will be in particular used
in the last section where the question of when the contour set of a product
is its geodetic set is considered.
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Let G be a graph. The eccentricity of a vertex u ∈ V (G) is defined as
ecc(u) = max {d(u, v) : v ∈ V (G)}. Given u, v ∈ V (G), the vertex v is called
an eccentric vertex of u if no vertex in V is further away from u than v, that
is, if d(u, v) = ecc(u).

Lemma 4.1 For every (g, h) ∈ V (G¤H), eccG ¤ H(g, h) = eccG(g)+eccH(h).

Proof. Let (g, h) ∈ V (G¤H) and let (g′, h′) be an eccentric vertex of (g, h),
that is, dG ¤ H((g′, h′), (g, h)) = eccG ¤ H(g, h). We claim that g′ is an eccen-
tric vertex of g in G. Suppose to the contrary that there exists g′′ ∈ V (G)
such that dG(g′′, g) > dG(g′, g). Then we have dG ¤ H((g′′, h′), (g, h)) =
dG(g′′, g) + dH(h′, h) > dG(g′, g) + dH(h′, h) = dG ¤ H((g′, h′), (g, h)), a con-
tradiction with the assumption. In a similar way we can prove that h′ is an
eccentric vertex of h in H. We derive eccG ¤ H(g, h) = dG ¤ H((g′, h′), (g, h)) =
dG(g′, g) + dH(h′, h) = eccG(g) + eccH(h). 2

As usual, NG(v) stands for the set of neighbors of a vertex v ∈ V (G).
Then the boundary ∂(G) of a graph G is the set

∂(G) = {v ∈ V (G) | ∃u ∈ V (G) such that ∀w ∈ NG(v) : d(u,w) ≤ d(u, v)}.

The contour set Ct(G) of a graph G is defined by

Ct(G) = {v ∈ V (G) | ecc(u) ≤ ecc(v) ,∀u ∈ NG(v)}.

The eccentricity Ecc(G) of a graph G is the set

Ecc(G) = {v ∈ V (G) | ∃u ∈ V (G) such that ecc(u) = d(u, v)}.

Finally, the periphery Per(G) of a graph G is the set

Per(G) = {v ∈ V (G) | ecc(u) ≤ ecc(v) for all u ∈ V (G)}.

Theorem 4.2 For any graphs G and H:
(i) ∂(G¤H) = ∂(G)× ∂(H),
(ii) Ct(G¤H) = Ct(G)× Ct(H),
(iii) Ecc(G¤H) = Ecc(G)× Ecc(H),
(iv) Per(G ¤H) = Per(G)× Per(H).

Proof. (i) Suppose (g, h) ∈ ∂(G¤H) and g /∈ ∂(G). Then for every
g′ ∈ V (G) there exists g′′ ∈ NG(g) such that dG(g′, g′′) > dG(g′, g). Now
consider a vertex (g′′, h) ∈ NG ¤ H(g, h). For arbitrary h′ ∈ V (H) we de-
rive dG ¤ H((g′, h′), (g′′, h)) = dG(g′, g′′)+dH(h′, h) > dG(g′, g)+dH(h′, h) =
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dG ¤ H((g′, h′), (g, h)), a contradiction with the assumption (g, h) ∈ ∂(G¤H).
Thus g ∈ ∂(G). Similarly, we prove that h ∈ ∂(H).

Now, let g ∈ ∂(G) and h ∈ ∂(H). Thus there exists a vertex g′ ∈
V (G) such that for every g′′ ∈ NG(g), dG(g′, g′′) ≤ dG(g′, g) and there
is a vertex h′ ∈ V (H) such that for every h′′ ∈ NH(h), dH(h′, h′′) ≤
dG(h′, h). Let (g′′, h′′) be an arbitrary vertex from NG ¤ H(g, h). We may
without loss of generality assume that g′′g ∈ E(G) and h′′ = h. Then
dG ¤ H((g′, h′), (g′′, h′′)) = dG(g′, g′′) + dH(h′, h′′) ≤ dG(g′, g) + dH(h′, h) =
dG ¤ H((g′, h′), (g, h)) and (g, h) ∈ ∂(G¤H).

(ii) Let (g, h) ∈ Ct(G¤H). Suppose g is not a contour vertex in G.
Then there exists g′ ∈ NG(g) such that eccG(g′) > eccG(g) which implies
eccG ¤ H(g′, h) = eccG(g′) + eccH(h) > eccG(g) + eccH(h) = eccG ¤ H(g, h)
(by Lemma 4.1), a contradiction.

Conversely, let g ∈ Ct(G) and h ∈ Ct(H). Suppose that (g, h) 6∈
Ct(G ¤H). Then there is a vertex (g′, h′) ∈ V (G¤H) adjacent to (g, h)
such that eccG ¤ H(g′, h′) > eccG ¤ H(g, h). Since (g, h) and (g′, h′) are ad-
jacent we can without loss of generality assume that g = g′ and hh′ ∈
E(H). Thus from eccG ¤ H(g′, h′) > eccG ¤ H(g, h) by Lemma 4.1 follows
that eccH(h′) > eccH(h), a contradiction with the assumption.

(iii) Suppose that for a vertex (g, h) ∈ V (G¤H) there exists a vertex
(g′, h′) such that eccG ¤ H(g′, h′) = dG ¤ H((g′, h′), (g, h)). Hence

eccG(g′) + eccH(h′) = dG(g, g′) + dH(h, h′).

We claim that eccG(g′) = dG(g, g′). Indeed, if eccG(g′) > dG(g′, g), this
implies eccH(h′) < dG(h′, h) which is impossible. Hence eccG(g′) = dG(g, g′),
that is g ∈ Ecc(G), and analogously we find that h ∈ Ecc(H).

Let g ∈ Ecc(G) and h ∈ Ecc(H). Thus there are vertices g′ and h′ in
V (G) and V (H), respectively, such that eccG(g′) = dG(g′, g) and eccH(h′) =
dH(h′, h). By Lemma 4.1 it is again easy to derive that eccG ¤ H(g′, h′) =
dG ¤ H((g′, h′), (g, h)).

(iv) First we prove Per(G¤H) ⊆ Per(G)×Per(H). Suppose g /∈ Per(G).
Then there exists g′ ∈ V (G) such that eccG(g′) > eccG(g). Let h be an
arbitrary vertex in V (H). Then eccG ¤ H(g′, h) = eccG(g′) + eccH(h) >
eccG(g) + eccH(h) = eccG ¤ H(g, h), thus (g, h) /∈ Per(G ¤H). We infer
g ∈ Per(G) and we prove h ∈ Per(H) analogously.

Now suppose g ∈ Per(G) and h ∈ Per(H). Then by Lemma 4.1 it easily
follows that eccG ¤ H(g, h) ≥ eccG ¤ H(g′, h′) for all (g′, h′) ∈ V (G ¤H), that
is (g, h) ∈ Per(G¤H). 2
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5 Contour sets as geodetic sets

In [3] and [4] graphs G in which Ct(G) is a geodetic set were studied. It
is known that this holds for chordal graphs and distance-hereditary graphs,
and it is an open problem whether it is true for bipartite graphs. In this
short concluding section we consider the problem with respect to Cartesian
product graphs.

First a lemma about geodetic sets in products that could be of indepen-
dent interest. For G¤H let pG and pH be the projection maps onto factors,
that is, for u = (g, h) ∈ V (G¤H) let pG(u) = g and pH(u) = h.

Lemma 5.1 Let X be a geodetic set of G¤H. Then pG(X) and pH(X)
are geodetic sets of G and H, respectively.

Proof. Let g ∈ V (G). If g ∈ pG(X) there is nothing to be proved. So
suppose g /∈ V (G). Let h be an arbitrary vertex of H. As X is a geodetic
set of G¤H, there are vertices (g′, h′) and (g′′, h′′) in X such that (g, h) ∈
IG ¤ H [(g′, h′), (g′′, h′′)]. Since g /∈ pG(X) it follows that g′ 6= g and g′′ 6= g.
Therefore also g′ 6= g′′. Let Q be a (g′, h′), (g′′, h′′)-geodesic containing (g, h).
Then pG(Q) is a g′, g′′-geodesic containing g. As g′, g′′ ∈ pG(X) the proof is
complete. 2

The converse of Lemma 5.1 need not hold, consider G = H = C4.
Let g, g′, g′′ be different vertices in G and {h, h′} ⊂ V (H), dH(h, h′) =
2. Then {g, g′, g′′} and {h, h′} are geodetic sets in factors while X =
{(g, h), (g′, h′), (g′′, h)} is not a geodetic set in G¤H.

On the other hand, the following equivalence can be easily verified.

Lemma 5.2 Sets S ⊆ V (G) and T ⊆ V (H) are geodetic sets of G and H,
respectively, if and only if S × T is a geodetic set of G¤H.

Proof. Let (g, h) ∈ V (G¤H). Since S is a geodetic set in G there exist
g′, g′′ ∈ S such that g ∈ IG[g′, g′′], and similarly, h ∈ IH [h′, h′′] for some
h′, h′′ ∈ T . By Lemma 2.1, (g, h) ∈ IG ¤ H [(g′, h′), (g′′, h′′)]. The converse
follows from Lemma 5.1. 2

Theorem 5.3 Ct(G¤H) is a geodetic set of G¤H if and only if Ct(G)
and Ct(H) are geodetic sets of G and H, respectively.

Proof. By Theorem 4.2 (ii) we have Ct(G¤H) = Ct(G) × Ct(H). Com-
bining this formula with Lemma 5.2 the theorem follows. 2
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