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Abstract

Carbon nanorings are macrocyclic aromatic hydrocarbons that represent the segments of carbon

nanotubes and have received considerable attention due to their novel nanoelectronic and photophysical

capabilities. The cycloparaphenylene (CPP), a carbon nanoring with a ring-like structure comprising

of only benzene units, has been the subject matter of several studies. The carbon nanoring struc-

tures bearing polycyclic aromatic hydrocarbons such as hexabenzocoronene and pyrene molecules are

also found to exhibit exciting characteristics and applications. This in turn evolves a wide range of

novel chemical structures whose behaviour and attributes are to be studied and explored. Molecular

descriptors help us to study such novel nanostructures by providing a greater understanding of their

unique properties, whereas such characterization remains challenging due to their ring-shaped arrange-

ment. In this study, we investigate cycloparaphenylene series and show that such structures are not

bounded by the partial cube family. We also derive the exact analytic expressions of degree, distance

and closeness-related descriptors. We have also computed the thermodynamic and kinetic stabilities

of the three structures using the graph spectra, resonance energies, HOMO-LUMO gaps and Kekulé

counts obtained from the graph spectra and combinatorial methods whereas the CPPhbc[5] structure

is thermodynamically more stable, the CPPyr[9] is kinetically more stable. Furthermore, we have em-

ployed combinatorial generating function methods to compute the NMR and ESR spectra of the title

compounds.

Keywords: Cycloparaphenylenes; topological indices; cut method; energetics; NMR and ESR

spectra.
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1 Introduction

Carbon is an exceptional element with diverse forms and unique properties that have attracted the

attention of researchers for centuries [1–3]. Even after the discovery of graphite and diamond, it continues

to fascinate the scientists with much more interesting class of new allotropes namely fullerene [4], graphene

[5] and carbon nanotubes (CNTs) [6]. As a crucial element for all fabricated components [3,7], they serve as

game-changing elements in the electronic and optoelectronic industries with their encouraging properties

and revolutionary applications. Carbon and its allotrope-based nanocomposites have captured practically

every sector of research and technological progress due to their unique bonding properties. Carbon

nanotubes are tubular carbon structures comprising of one or more seamless cylindrical shells of graphitic

sheets with nearly 0.34 nm adjacent shell separation [6], that possess high strength [8], exceptional field

emission [9] and mechanical properties [10]. They are categorized as single (SWCNT) [11, 12], double

(DWCNT) [6, 13], and multi-walled (MWCNT) carbon nanotubes [6] based on the number of concentric

walls of CNT as this parameter plays a significant role in estimating various attributes of the structure.

As these nanomaterials possess unique electric properties [14], they are used as active semiconductor

materials [15] and key elements in electronic devices such as transistors [16], logic circuits [15] and so on.

Apart from their electrical application, numerous studies were made to attain magnetic CNTs [17, 18],

resulting in the successful preparation of one-dimensional magnetic tubes [19] and thus covering the fields

of wearable electronics [20], nanofluidic devices [21], and even as capsules for magnetic enabled drug

delivery [19]. In spite of several challenges, these nanomaterials are also employed in various biomedical

[22] and biosensing [23] applications.

Figure 1: Cycloparaphenylene structure CPP[24]

Carbon nanorings (CNRs) are π-conjugated molecular structures representing the fragments of car-

bon nanotubes with diameter ranging from 300 nm to 500 nm and width ranging from 5 nm to 15 nm

that are utilized as templates for the construction of nanostructures. The design and synthesis of these

macrocyclic architectures continues to claim their own recognition for many decades, as they represent

significant progress in the study of synthetic chemistry and nanoscience. Cycloparaphenylene (CPP) is
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one of the most studied CNR, with simple curved structure comprising of n benzene units that are bonded

at their para positions to form a ring as shown in Figure 1. It was theoretically hypothesized and exam-

ined for more than half a century because of its unique structural properties [24, 25] and its successful

synthesis [26–28] have led to the synthesis of several variants of CPPs [29, 30] and its related deriva-

tives [31–36], owing to its potential role in the fields of electronics, material science, and supramolecular

chemistry [37–41]. The strong host-guest interactions of CPPs [42–44] enables the exploitation of a family

of new novel carbon materials and thus accelerates the study of numerous functionalized and hetero-atom-

subbed CPPs [45–47]. Furthermore, the successful synthesis of the chiral CNR by Omachi et al. [48] have

led to the exploration of a unique chiral nanoring (a CPP chiral CNR bearing anthracene) with excitation

energies that grows as a function of its size [49]. Furthermore, these extended crown structures have arisen

the interest of synthetic chemists [50,51]. Recently an exciting possibility of inserting twisted Au2 (diphos-

phine) corners into cycloparaphenylenes has been considered [52]. The topological techniques developed

here can provide considerable insights into such twisted structures of cycloparaphenylene derivatives es-

pecially when comparing the topological properties with and without Au2 insertions.

Pyrene is a fluorescent probe that can be linked covalently to protein side chains as sulfhydryl groups.

The appearance of a broad, unstructured band at longer wavelengths (ranging from 425 to 550 nm,

centered around 460 nm) when two pyrene rings are nearly 10Å from each other, seems to be a remarkable

feature of pyrene fluorescence emission that can be utilized for protein conformational analysis [53, 54].

Cycloparaphenylene-2,7-pyrenylene (CPPyr) depicted in Figure 2, is the first pyrene-containing carbon

nanoring synthesized by Yagi et al. [35] and is believed to possess extra-ordinary properties such as long

fluorescence lifetime [55] and excimer emission [56], owing to the structural and physical properties of

pyrene and its derivatives.

Figure 2: Cycloparaphenylene-2,7-pyrenylene structure CPPyr[9]

Hexa-peri-hexabenzocoronene (HBC) [57, 58] is a discotic polycyclic aromatic hydrocarbon which

serves as a well defined D6h-symmetrical substructure of graphene [1]. It is found to be a highly stable

and insoluble molecular compound with strong intermolecular forces that strengthens its self-assembling
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behavior [59] and its ability to store high levels of lithium and sodium signifies its rich optoelectronic

applications [58, 60, 61]. Cyclo[12]-paraphenylene[2]-2,11-hexabenzocoronenylene (CPPhbc) is another

hexabenzocoronene-containing CPP carbon nanoring as shown in Figure 3, which is recently synthesized

via Pd- and Ni- mediated cross-coupling reactions [34] and characterized by high resolution mass spec-

trometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy techniques. These HBC bearing

carbon nanorings are expected to be acceptable precursors in the revolution of various carbon nanotube

structures and this study facilitates it with the structural characterization of the above discussed novel

CPP-based structures.

Figure 3: Cyclo[12]-paraphenylene[2]-2,11-hexabenzocoronenylene structure CPPhbc[5]

Chemical graph theory deals with the theoretical study of molecular compounds by envisaging the

molecular structure comprising of atoms and bonds as a graph with vertices and edges respectively.

Numerous graph-theoretical techniques are employed to quantify the molecular structure via different

structural parameters. As most of the attributes of the molecule depends on the underlying topology

and connectivity of the chemical structure, the structural parameters tend to reflect certain physico-

chemical properties including superaromaticity, aromaticity, topological resonance energies, ring-current

diamagnetism, and drug activity of the concerned molecular compound [62–67]. They encode the given

structure with a numerical value based on its molecular topology describing various attributes such as

centrality, cyclicity, extremality etc., and are usually called as topological indices. This ability of the

descriptors in portraying the atomic structure with a unique numerical entity play a remarkable role in

the advancement of quantitative structure property and activity relationships [68–71]. In addition to

biological networks, nowadays they are also employed in analyzing various complex networks including

communication and social networks. Consequently, an extremely large amount of topological descriptors

are discovered and studied till date for the study of the structure-dependent behaviour and characteristics
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of many novel molecular structures [72–79].

The mathematical computation of topological indices based on the distance-degree is complicated

for ring-shaped structures. As evident from the literature, for instance, the Wiener index of cyclopara-

phenylene computed by algorithms [80] and a large number of molecular descriptors have recently been

computed for a series of cycloparaphenylenes [81] by the cut method. But it is unfortunate that the results

pertaining to the Wiener index do not match in both papers [80,81] and we prove that the results of the

paper [81] were erroneous due to constructional defects. The exact values of the topological indices of

cycloparaphenylenes and their related structures are computed using rigorous mathematical techniques in

this study. We have derived the thermodynamic and kinetic stabilities of the three structures computed

from their graph spectra, resonance energies, HOMO-LUMO gaps and Kekulé counts. Furthermore, we

have computed the NMR and ESR spectra of three of the compounds in the series using graph theory

and combinatorial generating function methods.

2 Mathematical Preliminaries

In this section, we discuss definitions, concepts, and know results from the area of chemical graph theory

needed in this paper. Let V (G) and E(G) denote the vertex set and the edge set, respectively, of a

simple connected graph G. The number of edges incident to a vertex u is called the degree dG(u) of the

vertex u, and the number of edges adjacent to the edge f is termed as the degree of the edge dG(f). The

number of edges on a shortest path connecting the vertices a and b is defined as the distance dG(a, b)

between them. In a similar way, the distance dG(u, f) between a vertex u and an edge f = ab is defined

as min{dG(u, a), dG(u, b)} and the distance DG(f, g) between two edges f = ab and g = cd is given as

min{dG(f, c), dG(f, d)}. Note that if f and g are incident edges, then dG(f, g) = 0, although the edges

f and g are different. Hence the distance function and the set E(G) do not form a metric space, but

the definition is nevertheless suitable for our purposes and by abuse of language the function can still be

called a distance. For any edge f = ab in E(G), we define its weighted sum and weighted product as

w+
e (f) = dG(a) + dG(b) and w∗

e(f) = dG(a)dG(b) respectively.

We now define the neighborhood NG(u) of a vertex u and the closeness sets Na(f |G), Ma(f |G) of an

edge f = ab as follows:

NG(u) = {x ∈ V (G) : dG(x, u) = 1},

Na(f |G) = {y ∈ V (G) : dG(a, y) < dG(b, y)},

Ma(f |G) = {e ∈ E(G) : dG(a, e) < dG(b, e)}.
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The parameters na(f |G) and ma(f |G) represent the cardinalities of the sets Na(f |G) and Ma(f |G) re-

spectively and ta(f |G) = na(f |G) + ma(f |G). In a similar way, we can define the parameters nb(f |G),

mb(f |G) and tb(f |G) for an edge f = ab. A subgraph K of a graph G is said to be convex if all the

shortest paths between any two vertices a, b ∈ K lie completely in K, and isometric if for any two vertices

a, b ∈ K, dG(a, b) = dK(a, b). A n-dimensional hypercube Qn is obtained by taking the Cartesian product

of n copies of the complete graph K2. Isometric subgraphs of Qn are called partial cubes. The quotient

graph G/F , where F ⊆ E(G), is defined as a graph in which the vertices are the connected components

of the graph G − F , and two components A and B are linked by an edge if there exists an edge ab ∈ F

such that a ∈ A and b ∈ B.

A graph G in which a pair of strength-weighted functions (SWV , SWE) is assigned to the vertex set

V (G) and edge set E(G) is a strength-weighted graph [76] Gsw = (G,SWV , SWE), wherein the strength-

weighted functions (SWV , SWE) are defined as follows:

(i) SWV = (wv, sv), where wv, sv : V (G) → R+
0 are vertex-weight and strength functions,

(ii) SWE = (we, se), where we, se : E(G) → R+
0 are edge-weight and strength functions.

For a strength-weighted graph Gsw, all the notations and terminologies of the structural parameters

remains the same as that of a simple graph G except the degree and the closeness set parameters of a

vertex u and an edge h = uv which are defined as follows:

dGsw(u) =
∑

x∈NGsw (u)

se(ux),

nu(h|Gsw) =
∑

x∈Nu(h|Gsw)

wv(x),

mu(h|Gsw) =
∑

x∈Nu(h|Gsw)

sv(x) +
∑

f∈Mu(h|Gsw)

se(f).

The Wiener index is the first and one of the most studied molecular descriptors used to characterize

chemical compounds. Based on its significance in analyzing the potential physicochemical properties of

the structure, a wide variety of topological indices based on various parameters of the molecular graph

have been proposed in mathematical chemistry and are investigated for different families of molecular

structures till date. The topological indices (TI) based on distance-degree such as Wiener (W ), edge-

Wiener (We), vertex-edge Wiener (Wev), vertex-Szeged (Szv), edge-Szeged (Sze), edge-vertex Szeged

(Szev), total-Szeged (Szt), Padmakar-Ivan (PI), Schultz (S), Gutman (Gut), Mostar (Mo), edge-Mostar

(Moe), total-Mostar (Mot), weighted plus mostar variants (w+Mo, w+Moe, w+Mot), and weighted

product Mostar variants (w∗Mo, w∗Moe, w
∗Mot) are originally defined for a molecular graph and we
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now rewrite for a strength-weighted graph Gsw in the following to ease the computation process.

(i) Distance-based topological indices:

� W (Gsw) =
∑

{x,y}⊆V (Gsw)

wv(x)wv(y)dGsw(x, y)

� We(Gsw) =
∑

{x,y}⊆V (Gsw)

sv(x) sv(y) dGsw(x, y) +
∑

{g,h}⊆E(Gsw)

se(g) se(h) DGsw(g, h)

+
∑

x∈V (Gsw)

∑
h∈E(Gsw)

sv(x) se(h) dGsw(x, h)

� Wev(Gsw) =
1
2

( ∑
{x,y}⊆V (Gsw)

{
wv(x) sv(y) + wv(y) sv(x)

}
dGsw(x, y)

+
∑

x∈V (Gsw)

∑
h∈E(Gsw)

wv(x) se(h) dGsw(x, h)

)
(ii) Degree and distance-based topological indices:

� S(Gsw) =
∑

{x,y}⊆V (Gsw)

[
wv(y)[dGsw(x) + 2sv(x)] + wv(x)[dGsw(y) + 2sv(y)]

]
dGsw(x, y)

� Gut(Gsw) =
∑

{x,y}⊆V (Gsw)

[dGsw(x) + 2sv(x)][dGsw(y) + 2sv(y)]dGsw(x, y)

(iii) Bond-based topological indices:

(a) Variants of Szeged indices:

� Szv(Gsw) =
∑

h∈E(Gsw)

se(h)nu(h|Gsw)nv(h|Gsw)

� Sze(Gsw) =
∑

h∈E(Gsw)

se(h)mu(h|Gsw)mv(h|Gsw)

� Szev(Gsw) =
1
2

∑
h∈E(Gsw)

se(h)
[
nu(h|Gsw)mv(h|Gsw) + nv(h|Gsw)mu(h|Gsw)

]
� PI(Gsw) =

∑
h∈E(Gsw)

se(h)
[
mu(h|Gsw) +mv(h|Gsw)

]
(b) Variants of Mostar indices:

� Mo(Gsw) =
∑

h∈E(Gsw)

se(h)|nu(h|Gsw)− nv(h|Gsw)|

� w+Mo(Gsw) =
∑

h∈E(Gsw)

w+
e (h)|nu(h|Gsw)− nv(h|Gsw)|

� w∗Mo(Gsw) =
∑

h∈E(Gsw)

w∗
e(h)|nu(h|Gsw)− nv(h|Gsw)|

(c) Variants of edge-Mostar indices:

� Moe(Gsw) =
∑

h∈E(Gsw)

se(h)|mu(h|Gsw)−mv(h|Gsw)|
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� w+Moe(Gsw) =
∑

h∈E(Gsw)

w+
e (h)|mu(h|Gsw)−mv(h|Gsw)|

� w∗Moe(Gsw) =
∑

h∈E(Gsw)

w∗
e(h)|mu(h|Gsw)−mv(h|Gsw)|

(d) Variants of total-Mostar indices:

� Mot(Gsw) =
∑

h∈E(Gsw)

se(h)|tu(h|Gsw)− tv(h|Gsw)|

� w+Mot(Gsw) =
∑

h∈E(Gsw)

w+
e (h)|tu(h|Gsw)− tv(h|Gsw)|

� w∗Mot(Gsw) =
∑

h∈E(Gsw)

w∗
e(h)|tu(h|Gsw)− tv(h|Gsw)|

It should be noted that TI(Gsw) = TI(G) if wv = 1, sv = 0, we = 1 and se = 1. Computational

techniques for determining topological indices serve as powerful tools in the evaluation of molecular

descriptors by dissecting the original graph into smaller fragments to study the properties of the whole

graph structure [74–76, 82]. The cut method is an important computational procedure developed to

evaluate the topological indices. It was designed for the first time in [83] for the case of the Wiener

index. The method was then extensively developed for other indices and was also generalized in different

directions. It is still being revised to suit the different graph families, cf. [72, 74, 76, 82]. The Djoković-

Winkler relation Θ is defined on the edge set of a graph G as follows: edges f = ab and g = cd are in

relation Θ if dG(b, d) + dG(a, c) ̸= dG(a, d) + dG(b, c). The relation continues to play a prominent role

in the development of the cut method. Obviously, Θ is reflexive and symmetric, but not transitive in

general whereas the transitive closure Θ∗ forms an equivalence relation thereby enabling the Θ∗-partition

of the edge set E(G) as E1, . . . , Ep. These classes split each of the graphs G−Ei into two or more smaller

convex components to analyze the given descriptor of the chemical graph. The computational technique

of various topological indices TI is described in the following theorem.

Theorem 1. [74–76] Let G be a molecular graph that admits a Θ∗-partition E (G) = {E1, E2, ..., Ep}. If

TI ∈ {W,We,Wev, Szv, Sze, Szev, P I, S,Gut,Mo,Moe,Mot, w
+Mo,w+Moe, w

+Mot, w
∗Mo,w∗Moe, w

∗Mot},

then

TI(G) =

p∑
i=1

TI(G/Ei, (w
i
v, s

i
v), (w

i
e, s

i
e)),

where

(i) wi
v : V (G/Ei) → R+

0 , w
i
v(X) =

∑
x∈V (X)

wv(x), ∀ X ∈ V (G/Ei),

(ii) siv : V (G/Ei) → R+
0 , s

i
v(X) =

∑
xy∈E(X)

se(xy) +
∑

x∈V (X)

sv(x), ∀ X ∈ V (G/Ei),
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(iii) wi
e : E(G/Ei) → R+

0 , w
i
e(XY ) =

∑
xy∈Ei

x∈V (X), y∈V (Y )

we(xy), ∀ XY ∈ E(G/Ei),

and whenever

� if TI ∈ {w+Mo,w+Moe, w
+Mot}, wi

e(XY ) = w+i
e (XY ) =

∑
xy∈Ei

x∈V (X),y∈V (Y )

(dG(x) + dG(y)),

∀ XY ∈ E(G/Ei),

� if TI ∈ {w∗Mo,w∗Moe, w
∗Mot}, wi

e(XY ) = w∗i
e (XY ) =

∑
xy∈Ei

x∈V (X), y∈V (Y )

dG(x)dG(y),

∀ XY ∈ E(G/Ei).

� if TI is other than the above indices, wi
e is not needed.

(iv) sie : E(G/Ei) → R+
0 , s

i
e(XY ) =

∑
xy∈Ei

x∈V (X), y∈V (Y )

se(xy),∀ XY ∈ E(G/Ei).

In addition to distance based topological indices, the vertex degree based indices are generally defined

as TI(G) =
∑

(α,β)∈E(G)

TI(dG(α), dG(β). If we denote drs(G) = |{αβ ∈ E(G) : dG(α) = r and dG(β) = s}|,

then TI(G) =
∑

(r,s)∈P
drs(G) TI(r, s) where P represents the degree edge partition of G. Here we list some

popular index functions such as first Zagreb index M1(r, s) = r + s, Sombor index SO(r, s) =
√
r2 + s2,

second Zagreb index M2(r, s) = rs, sum-connectivity index SC(r, s) = 1√
r+s

, inverse sum indeg index

ISI(r, s) = rs
r+s , atom-bond connectivity index ABC(r, s) =

√
r+s−2

rs , symmetric degree division index

SDD(r, s) = r
s +

s
r , harmonic index H(r, s) = 2

r+s , forgotten index F (r, s) = r2 + s2, augmented Zagreb

index AZ(r, s) =
(

rs
r+s−2

)3
, and geometric-arithmetic index GA(r, s) = 2

√
rs

r+s .

3 Results and Discussion

The technical inadequacies in that Ref. [81] for the construction of Θ-classes of cycloparaphenylenes and

their related carbon nanorings are highlighted in this section. We also use the transitive closure of the

Θ relation to correct the class formation approach and confirming that these structures are not members

of the partial cube family. We use strength-weighted graphs to derive the correct analytic expressions

of distance-bond topological indices based on that Θ∗-partition and degree edge partition to find the

degree-based indices.

The cycloparaphenylenes CPP[n] with even number of benzenes were considered [81] as members of

the partial cube family and taken diametrically opposite acute/obtuse slanting bonds of two benzenes

at an equal interval to form Θ-classes. Before arguing that this is not the case, we prove the following
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general result that will simplify our arguing. Recall that an edge e of a connected graph G is a bridge if

G− e is not connected.

Proposition 2. Let G be a connected graph and e a bridge of G. If edges f and f ′ lie in different

components of G− e, then f and f ′ are not in relation Θ.

To prove Proposition 2, let e = xx′ be a bridge of G and suppose that f = uv and f ′ = u′v′ are

edges of G such that they lie in different components of G− e. We may assume without loss of generality

that uv lies in the same component as x and that u′v′ lies is the component together with x′. There are

three cases to consider. If dG(u, x) < dG(v, x) (or the other way around) and dG(u
′, x′) < dG(v

′, x′) (or

the other way around), then the edges f and f ′ lie on a common shortest path between v and v′ that is

passing through the edge e. Since in general no two edges of a shortest path can be in relation Θ, we

conclude that f and f ′ are not in relation Θ. In the second case suppose that dG(u, x) = dG(v, x) = k

and dG(u
′, x′) = dG(v

′, x′) = ℓ. Then dG(u, u
′) + dG(v, v

′) = 2k + 2ℓ + 1 = dG(u, v
′) + dG(v, u

′), hence

f and f ′ are again not in relation Θ. In the final case suppose that dG(u, x) = dG(v, x) = k and

that, without loos of generality, ℓ = dG(u
′, x′) < dG(v

′, x′). Then, clearly, dG(v
′, x′) = ℓ + 1. But now

dG(u, u
′) + dG(v, v

′) = 2k + 2ℓ+ 3 = dG(u, v
′) + dG(v, u

′), and we have the same conclusion. This proves

the proposition.

Figure 4: Construction procedure for Θ∗-class in CPP[8]

As shown in Figure 4, the set A = {a1b1, a2b2, c1d1, c2d2} was taken [81] as one such Θ-class. Since

a1b1 and a2b2 as well as c1d1 and c2d2 are diametrically opposite bonds of benzenes, they are clearly in

Θ-relation. Consider now the graph obtained from CPP[8] by removing the edges x1a2, b1x2, y1c2, and

d1y2. It contains two components, and observe that both of them are convex. Consider the left (in view

of Figure 4) component. Proposition 2 in particular implies that a1b1 is not in relation Θ with any other
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edge of the component. So a1b1 cannot be in relation Θ with c1d1. This argument works in general, while

for the particular case of the edges a1b1 and c1d1 this can be of course checked directly. Indeed, we can

see that dCPP[8](a1, c1) = 13, dCPP[8](b1, d1) = 15, dCPP[8](a1, d1) = 14, dCPP[8](b1, c1) = 14 and resulting

that dCPP[8](a1, c1) + dCPP[8](b1, d1) = dCPP[8](a1, d1) + dCPP[8](b1, c1). We have thus seen that a1b1 is not

Θ related to c1d1. On the other hand, a1b1 is Θ related to c2d2 because these two edges are opposite

edges of a long isometric cycle going all around CPP[8]. Θ is thus not transitive on CPP[8]. The same

arguments work on an arbitrary CPP[n] with the help of Proposition 2 and considering long isometric

cycles going around CPP[n]. Therefore, CPP[n], n even, is not a member of the class of partial cubes.

Again from the same Figure 4, we see that c1d1 is Θ related to x2b2 because of dCPP[8](c1, x2) = 15,

dCPP[8](d1, b2) = 15, dCPP[8](c1, b2) = 16 and dCPP[8](d1, x2) = 16. We now extend the set A by including

the bonds a1x1, b2x2, c1y1 and d2y2 to form a Θ∗-class. As we showed that the acute slanting bond x2b2

and obtuse slanting bond c1d1 are Θ related when n is even, we could easily see that the acute/obtuse

slanting bonds of benzenes at an interval of ⌈ (n−2)
2 ⌉ are Θ related when n is odd and covering all the

slanting bonds to build a single Θ∗-class.

Figure 5: Construction procedure for Θ∗-class in CPPyr[1]

The cycloparaphenylene-2,7-pyrenylene CPPyr[n] has also been dealt with the same sort of tech-

nical flaws [81] as mentioned in CPP[n] in the benzene nanorings. In addition to that, there are is-

sues with the formation of Θ-classes covering the slanting bonds of pyrenes. For example, the set

B = {a1b1, a2b2, a3b3, c1d1, c2d2, c3d3} was considered [81] as one of the Θ-class CPPyr[1] as shown in

11



Figure 5. By the nature of the diametrically opposite edges, the three bonds a1b1, a2b2 and a3b3 together

Θ related and similarly the other bonds c1d1, c2d2 and c3d3 are Θ related. But dCPPyr[1](a1, c2) = 9,

dCPPyr[1](b1, d2) = 11, dCPPyr[1](a1, d2) = 10, dCPPyr[1](b1, c2) = 10 and resulting that a1b1 is not Θ related

to c2d2 whereas a1b1 is Θ related to c1d1. Therefore, CPPyr[n] is not a member of partial cubes. Fur-

thermore, we can notice from the Figure 5 that a2b2 Θ c4d4 and a4b4 Θ c5d5 which in turn implies that

all the slanting bonds of both pyrenes form a single Θ∗-class.

With the same line of above arguments, we can show that the construction of Θ-classes of cyclo[12]-

paraphenylene[2]-2,11-hexabenzocoronenylene CPPhbc[n] in Ref. [81] is wrong and can be corrected

as we did for CPPyr[n] along with a crucial point that slanting bond and horizontal bond of hex-

abenzocoronenylenes are Θ related as shown in Figure 6 that dCPPhbc[5](a, c) = 32, dCPPhbc[5](b, d) =

32, dCPPhbc[5](a, d) = 33, dCPPhbc[5](b, c) = 33 and resulting that dCPPhbc[5](a, c) + dCPPhbc[5](b, d) ̸=

dCPPhbc[5](a, d) + dCPPhbc[5](b, c).

Figure 6: An example of Θ related slanting and horizontal bonds in CPPhbc[5]

Topological descriptors of cycloparaphenylenes CPP[n]: The distance-degree based and bond ad-

ditive topological indices such as W,We,Wev, Szv, Sze, Szev, P I, S,Gut,Mo,Moe,Mot, w
+Mo,w+Moe,

w+Mot, w
∗Mo,w∗Moe and w∗Mot for cycloparaphenylenes are displayed in Table 1.

12



Table 1: Topological indices of cycloparaphenylene CPP[n]

TI
CPP[n]

n even n odd

W 18n3 + 8n 18n3 + 7n

We n(49n2 − 49n+ 29)/2 7n(7n2 − 7n+ 4)/2

Wev n(42n2 − 21n+ 16)/2 3n(14n2 − 7n+ 5)/2

Szv 63n3 − 16n n(63n2 − 4)

Sze n(343n2 − 364n+ 36)/4 n(343n2 − 350n+ 55)/4

Szev n(147n2 − 78n− 32)/2 3n(49n2 − 25n− 4)/2

PI n(49n− 26) n(49n–25)

S 4n(21n2 + 8) 6n(14n2 + 5)

Gut 2n(49n2 + 16) n(98n2 + 31)

Mo 16n 8n

Moe 16n 12n

Mot 32n 20n

w+Mo 80n 40n

w+Moe 80n 60n

w+Mot 160n 100n

w∗Mo 96n 48n

w∗Moe 96n 72n

w∗Mot 192n 120n

M1 34n

M2 41n

SO n(7
√
2 + 4

√
13)

ABC ((2 + 9
√
2)n)/3

GA ((15 + 8
√
6)n)/5

AZ (3801n)/64

SC ((30 + 24
√
5 + 5

√
6)n)/30

ISI 83n/10

F 86n

H 44n/15

SDD 44n/3

Techniques: In the next two cases, we enumerate the Θ∗-classes of CPP[n] depending on n, and topo-

logical indices are computed with respect to strength-weighted quantities arising from Θ∗-classes.

Case 1 (n even): For 1 ≤ i ≤ n/2, let Di be a Θ-class consisting of horizontal bonds of two diametrically

13



opposite benzenes of CPP[n]. The quotient graph CPP[n]/Di is a complete bipartite graph K1,1 with

partite sets {Xd
i } and {Y d

i }, resulting the weighted measures wi
v(X

d
i ) = wi

v(Y
d
i ) = 3n, siv(X

d
i ) = siv(Y

d
i ) =

(7n− 4)/2, w+i
e (Xd

i Y
d
i ) = w∗i

e (Xd
i Y

d
i ) = 16 and sie(X

d
i Y

d
i ) = 4.

For 1 ≤ i ≤ n/2, letBi = {bi1, bi2 : bi1 and bi2 are two diametrically opposite bridging bonds of CPP[n]}.

Then CPP[n]/Bi ≃ K1,1 with partite sets {Xb
i } and {Y b

i }, implying wi
v(X

b
i ) = wi

v(Y
b
i ) = 3n, siv(X

b
i ) =

siv(Y
b
i ) = (7n − 2)/2, w+i

e (Xb
i Y

b
i ) = 12, w∗i

e (Xb
i Y

b
i ) = 18 and sie(X

b
i Y

b
i ) = 2. For 1 ≤ i ≤ n/2, let

Si be a Θ∗-class consisting of slanting bonds of two diametrically opposite benzenes of CPP[n]. The

corresponding graph CPP[n]/Si ≃ K2,4 as depicted in Figure 7 has vertex partition sets {Xs
i1, X

s
i2} and

{Y s
ij : 1 ≤ j ≤ 4} with weighted measures wi

v(X
s
ij) = 3n − 4, wi

v(Y
s
ij) = 2, siv(X

s
ij) = (7n − 12)/2,

siv(Y
s
ij) = 1, w+i

e (Xs
ikY

s
il ) = 5, w∗i

e (Xs
ikY

s
il ) = 6 and sie(X

s
ikY

s
il ) = 1 where j, k and l are taken with suitable

values.

Then,

TI(CPP[n]) =

n/2∑
i=1

TI(CPP[n]/Di) +

n/2∑
i=1

TI(CPP[n]/Bi) +

n/2∑
i=1

TI(CPP[n]/Si).

Figure 7: Quotient graph corresponding to slanting bonds of diametrically opposite benzenes in CPP[n]

Case 2 (n odd): For 1 ≤ i ≤ n, let BHi be a set made up of three bonds bi, hi1 and hi2 such that

the bridging bond bi is diametrically opposite to two horizontal bonds hi1 and hi2 of benzene. The

graph CPP[n]/BHi ≃ K1,1 has vertex partition sets {Xbh
i } and {Y bh

i } with wi
v(X

bh
i ) = wi

v(Y
bh
i ) = 3n,
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siv(X
bh
i ) = siv(Y

bh
i ) = (7n− 3)/2, w+i

e (Xbh
i Y bh

i ) = 14, w∗i
e (Xbh

i Y bh
i ) = 17 and sie(X

bh
i Y bh

i ) = 3.

Let S be a collection of all slanting bonds of CPP[n]. The quotient graph CPP[n]/S forms a circular

arrangement of n squares by binding vertices as given Figure 8 such that for every vertex X and edge

XY result with measures wv(X) = 2, sv(X) = 1, w+
e (XY ) = 5, w∗

e(XY ) = 6 and se(XY ) = 1. Hence,

TI(CPP[n]) =

n∑
i=1

TI(CPP[n]/BHi) + TI(CPP[n]/S).

Figure 8: Quotient graph corresponding to slanting bonds in CPP[n]

Furthermore, the analytical expressions presented in Table 1 reflect that the atom-pair additive indices

such as Wiener, Schultz and Gutman as well as bond additive Szeged indices have degree-3 polynomials

which are matched for infinite graphs with open chains and closed rings in the case of Wiener [84, 85].

But the Mostar-type indices result in linear polynomials and indicate that cycloparaphenylenes have low

peripheral imperfection.

To compute degree based indices, we classify the edge partition of CPP[n] as d22(CPP[n]) = 2n,

d23(CPP[n]) = 4n, d33(CPP[n]) = n, and the following equation is used for computation.

TI(CPP[n]) = d22(CPP[n]) TI(2, 2) + d23(CPP[n]) TI(2, 3) + d33(CPP[n]) TI(3, 3).

Topological descriptors of cycloparaphenylene-2,7-pyrenylenes and cyclo[12]-paraphenylene

[2]-2,11-hexabenzocoronenylenes: The various topological indices of CPPyr[n] and CPPhbc[n] are

shown in Table 2.

Techniques: We first point out the common Θ-classes of CPPyr[n] and CPPhbc[n], and then split into
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two separate parts to discuss the other Θ∗-classes. We use the description of Di, Bi and Si as in the case

of CPP[n], n even, with different ranges of i for constructing the Θ-classes in the benzenes and bridging

bonds of the nanorings.

CPPyr[n]: The weighted measures of the quotient graph due to the Θ-classes Di(1 ≤ i ≤ n), Bi(1 ≤ i ≤

n+ 1) and Si(1 ≤ i ≤ n) are given in the following.

• 1 ≤ i ≤ n, wi
v(X

d
i ) = wi

v(Y
d
i ) = 6n + 16, siv(X

d
i ) = siv(Y

d
i ) = 7n + 18, w+i

e (Xd
i Y

d
i ) = w∗i

e (Xd
i Y

d
i ) = 16

and sie(X
d
i Y

d
i ) = 4,

• 1 ≤ i ≤ n+1, wi
v(X

b
i ) = wi

v(Y
b
i ) = 6n+16, siv(X

b
i ) = siv(Y

b
i ) = 7n+19, w+i

e (Xb
i Y

b
i ) = 12, w∗i

e (Xb
i Y

b
i ) =

18 and sie(X
b
i Y

b
i ) = 2,

• 1 ≤ i ≤ n, wi
v(X

s
ij) = 6n + 12, wi

v(Y
s
ij) = 2, siv(X

s
ij) = 7n + 14, siv(Y

s
ij) = 1, w+i

e (Xs
ikY

s
il ) = 5,

w∗i
e (Xs

ikY
s
il ) = 6 and sie(X

s
ikY

s
il ) = 1 where j, k and l are taken with suitable values.

We now enumerate the Θ-classes to cover the horizontal bonds of two pyrenes. Let MH be a set consisting

of all middle horizontal bonds of both pyrenes. Then CPPyr[n]/MH ≃ K1,1 has partite sets {Xmh
i } and

{Y mh
i } with wi

v(X
mh
i ) = wi

v(Y
mh
i ) = 6n + 16, siv(X

mh
i ) = siv(Y

mh
i ) = 7n + 17, w+i

e (Xmh
i Y mh

i ) = 28,

w∗i
e (Xmh

i Y mh
i ) = 34 and sie(X

mh
i Y mh

i ) = 6. Let LH be a set consisting of all left horizontal bonds of

top pyrene and right horizontal bonds of bottom pyrene. Again, CPPyr[n]/LH ≃ K1,1 has partite sets

{X lh
i } and {Y lh

i } with wi
v(X

lh
i ) = wi

v(Y
lh
i ) = 6n + 16, siv(X

lh
i ) = siv(Y

lh
i ) = 7n + 18, w+i

e (X lh
i Y lh

i ) = 20,

w∗i
e (X lh

i Y lh
i ) = 24 and sie(X

lh
i Y lh

i ) = 4. In an analogous way, the class RH constructed by taking right

horizontal bonds of top pyrene and left horizontal bonds of bottom pyrene.

Let S be a Θ∗-class covering all slanting bonds of both pyrenes. The resulting quotient graph

CPPyr[n]/S formed by binding the diagonal corner vertices of two copies of 4 × 4 grid as shown in

Figure 9 in which binding vertices have strength-weighted values (6n+ 2, 7n+ 1) and other vertices with

(2, 1). Finally, the required topological indices are derived from the following equation.

TI(CPPyr[n]) =

n∑
i=1

TI(CPPyr[n]/Di) +

n+1∑
i=1

TI(CPPyr[n]/Bi) +

n∑
i=1

TI(CPPyr[n]/Si)

+ TI(CPPyr[n]/MH) + 2 TI(CPPyr[n]/LH) + TI(CPPyr[n]/S).

The edge partition of CPPyr[n] is classified as d22(CPPyr[n]) = 4(n + 1), d23(CPPyr[n]) = 4(2n + 6),

d33(CPPyr[n]) = 2(n+ 6), and the degree based topological expressions are deduced using the following

equation.

TI(CPPyr[n]) = d22(CPPyr[n]) TI(2, 2) + d23(CPPyr[n]) TI(2, 3) + d33(CPPyr[n]) TI(3, 3).
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Table 2: Topological indices of cycloparaphenylene-2,7-pyrenylene CPPyr[n] and cyclo[12]-
paraphenylene[2]-2,11-hexabenzocoronenylene CPPhbc[n]

TI CPPyr[n] CPPhbc[n]

W 144n3 + 1056n2 + 2576n+ 2208 144n3 + 2448n2 + 13408n+ 25392

We 196n3 + 1414n2 + 3309n+ 2666 196n3 + 3570n2 + 20165n+ 36741

Wev 168n3 + 1222n2 + 2920n+ 2424 168n3 + 2958n2 + 16432n+ 30570

Szv 504n3 + 4128n2 + 11232n+ 9824 504n3 + 10440n2 + 72616n+ 160816

Sze 686n3 + 5516n2 + 14210n+ 11240 686n3 + 15022n2 + 106036n+ 224952

Szev 588n3 + 4772n2 + 12640n+ 10504 588n3 + 12528n2 + 87700n+ 190300

PI 196n2 + 1068n+ 1376 196n2 + 3028n+ 11168

S 672n3 + 5056n2 + 12608n+ 10976 672n3 + 12000n2 + 68224n+ 131520

Gut 784n3 + 6048n2 + 15424n+ 13640 784n3 + 14672n2 + 86768n+ 170232

Mo 32n+ 160 224n+ 2592

Moe 32n+ 200 256n+ 3432

Mot 64n+ 360 480n+ 6024

w+Mo 160n+ 800 1120n+ 13392

w+Moe 160n+ 1008 1280n+ 17704

w+Mot 320n+ 1808 2400n+ 31096

w∗Mo 192n+ 960 1344n+ 17216

w∗Moe 192n+ 1224 1536n+ 22728

w∗Mot 384n+ 2184 2880n+ 39944

M1 68n+ 208 68n+ 596

M2 82n+ 268 82n+ 814

SO 2(4
√
13n+ 7

√
2n+ 12

√
13 + 22

√
2) 2(4

√
13n+ 7

√
2n+ 16

√
13 + 109

√
2)

ABC 2(9
√
2n+ 2n+ 21

√
2 + 12)/3 2(9

√
2n+ 2n+ 36

√
2 + 62)/3

GA 6n+ (
√
6(16n+ 48))/5 + 16 6n+ (

√
6(16n+ 64))/5 + 78

AZ (3801n+ 11542)/32 (3801n+ 34887)/32

SC 2n+ (
√
6(2n+ 12))/6 + (

√
5(8n+ 24))/5 + 2 2n+ (

√
5(8n+ 32))/5 + (

√
6(2n+ 62))/6 + 8

ISI (83n+ 254)/5 (83n+ 737)/5

F 172n+ 560 172n+ 1660

H 2(44n+ 117)/15 2(44n+ 311)/15

SDD 4(22n+ 63)/3 4(22n+ 169)/3
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Figure 9: Quotient graph CPPyr[n]/S

CPPhbc[n]: We first compute the weighted measures of the quotient graph arising from the Θ-classes

Di(1 ≤ i ≤ n), Bi(1 ≤ i ≤ n+ 1) and Si(1 ≤ i ≤ n) as in the case of CPPyr[n].

• 1 ≤ i ≤ n, wi
v(X

d
i ) = wi

v(Y
d
i ) = 6n + 42, siv(X

d
i ) = siv(Y

d
i ) = 7n + 53, w+i

e (Xd
i Y

d
i ) = w∗i

e (Xd
i Y

d
i ) = 16

and sie(X
d
i Y

d
i ) = 4,

• 1 ≤ i ≤ n+1, wi
v(X

b
i ) = wi

v(Y
b
i ) = 6n+42, siv(X

b
i ) = siv(Y

b
i ) = 7n+54, w+i

e (Xb
i Y

b
i ) = 12, w∗i

e (Xb
i Y

b
i ) =

18 and sie(X
b
i Y

b
i ) = 2,

• 1 ≤ i ≤ n, wi
v(X

s
ij) = 6n + 38, wi

v(Y
s
ij) = 2, siv(X

s
ij) = 7n + 49, siv(Y

s
ij) = 1, w+i

e (Xs
ikY

s
il ) = 5,

w∗i
e (Xs

ikY
s
il ) = 6 and sie(X

s
ikY

s
il ) = 1 where j, k and l are taken with suitable values.

As we have done for horizontal bonds of pyrenes in CPPyr[n], we now consider the Θ-classes MH, LH and

RH to cover the horizontal bonds of hexabenzocoronenylenes in CPPhbc[n], except the vertical second

left and right layers bonds because these bonds are Θ related with slanting bonds as we have pointed

out in Figure 6. Hence, we have wi
v(X

mh
i ) = wi

v(Y
mh
i ) = 6n + 42, siv(X

mh
i ) = siv(Y

mh
i ) = 7n + 51,

w+i
e (Xmh

i Y mh
i ) = 48, w∗i

e (Xmh
i Y mh

i ) = 72, sie(X
mh
i Y mh

i ) = 8, and wi
v(X

lh
i ) = wi

v(Y
lh
i ) = 6n + 42,

siv(X
lh
i ) = siv(Y

lh
i ) = 7n+ 53, w+i

e (X lh
i Y lh

i ) = 20, w∗i
e (X lh

i Y lh
i ) = 24 and sie(X

lh
i Y lh

i ) = 4.

The Θ-classes TCi (1 ≤ i ≤ 4) are constructed by taking two slanting bonds of North-West (obtuse),

North-East (acute), South-East (obtuse), South-West (acute) corner benzenes of top hexabenzocoroneny-

lene. These Θ-classes leave the quotient graph K1,1 with vertex partition {Xtc
i } and {Y tc

i } such that

wi
v(X

tc
i ) = 3, wi

v(Y
tc
i ) = 12n+81, siv(X

tc
i ) = 2, siv(Y

tc
i ) = 14n+106, w+i

e (Xtc
i Y tc

i ) = 10, w∗i
e (Xtc

i Y tc
i ) = 12
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and sie(X
tc
i Y tc

i ) = 2. In the same way, the Θ-classes BCi (1 ≤ i ≤ 4) can be constructed for bottom

hexabenzocoronenylene.

At last, we take all the slanting bonds of both hexabenzocoronenylenes, except {TCi, BCi : 1 ≤ i ≤ 4}

and horizontal bonds of vertical second left and right layers of hexabenzocoronenylenes to form a Θ∗-class,

denoted by SH and the corresponding quotient graph CPPhbc[n]/SH is shown in Figure 10.

Figure 10: Quotient graph CPPhbc[n]/SH

Then, the computation of the topological indices is done from the following equation.

TI(CPPhbc[n]) =
n∑

i=1

TI(CPPhbc[n]/Di) +
n+1∑
i=1

TI(CPPhbc[n]/Bi) +
n∑

i=1

TI(CPPhbc[n]/Si)

+ 2

4∑
i=1

TI(CPPhbc[n]/TCi) + TI(CPPhbc[n]/MH) + 2 TI(CPPhbc[n]/LH)
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+ TI(CPPhbc[n]/SH).

For computing the degree based indices, the edge partition of CPPhbc[n] is classified as d22(CPPhbc[n]) =

4(n + 4), d23(CPPhbc[n]) = 4(2n + 8), d33(CPPhbc[n]) = 2(n + 31), and we use the following equation

for deriving the expressions.

TI(CPPhbc[n]) = d22(CPPhbc[n]) TI(2, 2) + d23(CPPhbc[n]) TI(2, 3) + d33(CPPhbc[n]) TI(3, 3).

When n is large, the leading elements of the Wiener, Szeged, PI, Schultz, and Gutman indices of

CPPyr[n] and CPPhbc[n] are identical, implying asymptotic degeneracy regardless of the presence of

pyrenylene in CPPyr[n] and hexabenzocoronenylene in CPPhbc[n]. It is important to note from Table

2 that Mostar-type indices lead to the topological discrimination between CPPyr[n] and CPPhbc[n]

for infinite nanorings. As we know, asymptotic behaviors between polynomials of the same degree are

obtained by the corresponding leading coefficient, we have

lim
n→∞

Mo(CPPyr[n])

Mo(CPPhbc[n])
=

w+Mo(CPPyr[n])

w+Mo(CPPhbc[n])
=

w∗Mo(CPPyr[n])

w∗Mo(CPPhbc[n])
=

1

7
,

lim
n→∞

Moe(CPPyr[n])

Moe(CPPhbc[n])
=

w+Moe(CPPyr[n])

w+Moe(CPPhbc[n])
=

w∗Moe(CPPyr[n])

w∗Moe(CPPhbc[n])
=

1

8
,

and

lim
n→∞

Mot(CPPyr[n])

Mot(CPPhbc[n])
=

w+Mot(CPPyr[n])

w+Mot(CPPhbc[n])
=

w∗Mot(CPPyr[n])

w∗Mot(CPPhbc[n])
=

2

15
.

A recent study by Tsuchido et al. [52] has considered the exciting possibility of inserting Au2 (diphos-

phine) corners into cycloparaphenylene crowns which result in novel twisted crowns. The insertion of such

heavy dimers as Au2 then offers the possibility of topological studies of such complexes by incorporating

relativistic parameters into the topological indices. Indeed, one such previous study from our group [77]

considers incorporation of relativistic parameters into topological indices. Consequently, the present tech-

niques pave the way for such generalizations of incorporating relativistic parameters. Such topic could

be the stimulating subject matter of future studies. Moreover, in a recent study [71], it has been shown

that the topological indices such as the ones obtained in the present study are extremely valuable in

predicting drug activities, for example, the antiepileptic activities of a series of anticonvulsant drugs. In

these cases structure-activity relations were obtained by correlating the observed ln(ED50) for a series

of anticonvulsant drugs with topological indices, in particular the W and PI indices, with a very high
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statistical correlation and confidence [71]. Consequently, the present study makes a clear and compelling

case for such future QSAR studies on cycloparaphenylene and their derivatives when more experimental

data becomes available on these systems.

4 Chemical Applications

The various topological indices that we have computed here for cycloparaphenylene series are expected

to have a number of chemical applications, especially in the prediction of the physicochemical properties,

toxicity, electronic and spectroscopic properties. For example, it has been recently shown that the vis-

coelasticity of long-chain branched polypropylene (LCB-PP) compounds strongly depended on the degree

of branching of these polymers [86]. As the degree of branching increases, the foam exhibits enhanced

resistance to bubble coalescence, thus causing a more regular bubble structure with a larger expansion

ratio [86]. The degree of molecular branching is well characterized by a number of distance based topo-

logical indices that are computed here, such as the Wiener index, Szeged index, PI index, ABC index,

Sombor index and so forth. Hence we anticipate in future when such viscosity data become available on

cycloparaphenylene series, the computed topological indices in the present study could provide valuable

insights into the structure-activity and structure-property correlations of such physical properties. In a

previous study [87], it has been shown that the dermal penetrations of polycyclic aromatic compounds

were strongly correlated with the octanol partition coefficients, which in turn, correlate with the topolog-

ical distance based indices such as the Wiener, Szeged and PI indices. In yet another study, an inverse

correlation was found between the observed anticonvulsant activity of drugs administered for epilepsy,

several of which contain aromatic rings [71]. This is a consequence of the fact that the efficacy of an-

ticonvulsant drugs strongly depends on their ability to penetrate the blood-brain-barrier (BBB), which

in turn depends on a number of topological parameters and hence these properties correlated extremely

well with the Wiener and PI indices. Statistical and neural network studies have shown that the hepa-

totoxicity of several halocarbons depended approximately 45% on topochemical descriptors [88]. It has

been shown that the protonation constant and lipophilicity of polycyclic aromatics exhibit strong correla-

tion to Szeged and PI indices [89]. Therefore the topological indices computed here exhibit considerable

promise in structure-activity and structure-property relations in predicting a number of physicochemical

properties, toxicity parameters and bioactivities of the compounds considered here.

We demonstrate that the connectivity information contained in the various topological indices could

also provide valuable information on spectroscopic properties as well as thermodynamic and kinetic sta-

bilities of the cycloparaphenylene series considered here. Let us consider the three compounds shown in

Figures 1−3 to demonstrate the utility of the various topological parameters. For this purpose, we have
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made additional computations on the energy spectra of the adjacency matrices of the three structures

shown in Figures 1−3. We have also derived the Kekulé counts of the three structures which are the

constant terms of the matching polynomials in order to shed further light on the relative thermodynamic

stabilities of the three structures through the resonance and delocalization energy parameters. Table 3

shows our computational results for the three structures where we have shown the HOMO-LUMO gaps

in addition to the scaled delocalization energies and scaled resonance energies. The HOMO-LUMO gap

is directly related to the hardness of these compounds and thus a higher HOMO-LUMO gap implies a

greater kinetic stability. As seen from Table 3, the largest HOMO-LUMO gap is exhibited by CPPyr[9]

(Figure 2) suggesting that CPPyr[9] is kinetically the most stable among the three compounds while

CPPhbc[5] (Figure 3) is kinetically the least stable. However, as seen from Table 3, all three compounds

exhibit a large HOMO-LUMO gap. On the other hand, the thermodynamic stability pertains the most

stable compound as measured by the delocalization energies and resonance energies which in turn depend

on the Kekulé counts of the three structures that are shown in Table 3. On the basis of the scaled

delocalization energies shown in Table 3, the CPPhbc[5] structure is thermodynamically the most stable

structure which also has the largest Kekulé count of 63,999,375 among the three structures. We have

computed the scaled resonance energies of the three structures using Herndon’s method [90] of calculating

the resonance energy that uses a formula in direct proportionality to ln(KC). On the basis of the scaled

resonance energy too, the CPPhbc[5] structure is predicted to be the most stable.

We have employed the distance degree sequence vector (DDSV) introduced by Bloom et al. [91] to

obtain the partitions of nuclear equivalence classes. In essence, the DDSV method provides a vector in

a multi-dimensional vector space for each vertex of the graph on the basis of the distance of that vertex

to other vertices as defined by a p-tuple sequence vector [91]. If two vertices carry the same p-tuple

sequence, where p is the eccentricity of the vertex then the vertices are grouped into the same equivalence

class. On the basis of the DDSV method, the vertices are partitioned using the TopoChemie-2020 [92]

computational package. The results thus obtained for the nuclear equivalence classes are shown in Table

3 for both carbon nuclei and the protons. It is evident from Table 3, the three structures exhibit a

contrasting sets of nuclear equivalence classes, thereby suggesting that the NMR and ESR spectroscopic

methods could be employed for their structure elucidations. As can be seen from Table 3, all three

structures exhibit different 13C NMR patterns as well as proton NMR patterns. Furthermore, if a radical

can be generated by the deprotonation from a C−H bond then the computed nuclear equivalence classes

yield powerful combinatorial generating functions based on the operator methods described in extensive

details in previous studies [93, 94]. By the use of combinatorial generating functions, as an illustration,
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we have shown in Figure 11, a typical ESR hyperfine structure arising from the coupling of 13C nuclei

in equivalence classes closest to the unpaired electron for the structures shown in Figures 2 and 3. The

experimental hyperfine pattern would, of course, depend on the location of the unpaired electron; in the

present case we take it near the center of the molecule. Consequently, the graph theoretical techniques

described here have the power to predict energetics, stabilities, reactivity, and spectral properties of these

compounds to first order following which more refined quantum chemical techniques can be employed for

further quantitative predictions. In this context we would like to point out that hybrid methods such as

integration of graph theory and the PPP method [95] can be powerful in obtaining quantum chemical

parameters for hybrid quantum methods where the needed parameters can be computed from high level

computations using machine learning techniques on a library of smaller molecules carried out using high

level ab initio quantum computations.

Figure 11: A typical hyperfine pattern arising from the coupling of equivalence classes of 13C nuclei closest
to the unpaired electron for the structures shown in Figures 2 and 3

5 Concluding Remarks

We have presented the theoretical analysis of the structural characterization of the nanostructures such as

cycloparaphenylene, cycloparaphenylene-2,7-pyrenylene and cyclo[12]-paraphenylene[2]2-2,11- hexabenzo-

coronylene, inspired by their novelty and fascinating properties. The recently revised edition of the cut

method enables the successful computation of analytical expressions of a large number of molecular de-
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scriptors of the significant indices including Wiener index, Szeged index, Mostar index and their variants.

It is believed that the structural invariants of this study illustrate the promising and intriguing attributes

of these newly synthesized compounds and can be utilized as an important tool in the fields of pharma-

ceutical science, supramolecular research and synthetic chemistry, to grasp and deduce the functionalities

of the componds. Being the nanostructures, the results obtained for the CPP-based structures, can also

be employed in accelerating their role in various industries owing to their actual optical, electronic, and

biomedical applications. We have demonstrated that combinatorial and graph theoretical techniques

can be utilized to generate the NMR and ESR spectral patterns of the cycloparaphenylene series. Our

computed energetics and stabilities deduced through delocalization and resonance energies as well as the

HOMO-LUMO gaps reveal that the CPPhbc[5] structure is thermodynamically more stable whereas the

CPPyr[9] is kinetically more stable. These computations reveal that robust hybrid techniques could be

developed in the future by combining machine learning and graph theoretical methods on a combinatorial

library of a set of small related molecules to derive quantum chemical parameters that can be effectively

employed on a larger system of nanomaterials comprising of polycyclic aromatic rings, thus paving a

method to integrate graph theory and quantum chemical methods.
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[25] R. Friederich, M. Nieger, F. Vögtle, Auf dem Weg zu makrocyclischen para-phenylenen, Chem. Ber.

126(7) (1993) 1723–1732.

[26] R. Jasti, J. Bhattacharjee, J.B. Neaton, C.R. Bertozzi, Synthesis, characterization, and theory of [9]-,

[12]-, and [18]cycloparaphenylene: Carbon nanohoop structures, J. Am. Chem. Soc. 130(52) (2008)

17646-17647.

[27] H. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, K. Itami, Selective synthesis of [12]cyclopara-

phenylene, Angew. Chem. Int. Ed. 48(33) (2009) 6112–6116.

[28] S. Yamago, Y. Watanabe, T. Iwamoto, Synthesis of [8]cycloparaphenylene from a square-shaped

tetranuclear platinum complex, Angew. Chem. Int. Ed. 49(4) (2010) 757–759.

[29] E.R. Darzi, T.J. Sisto, R. Jasti, Selective syntheses of [7]– [12]cycloparaphenylenes using orthogonal

suzuki-miyaura cross-coupling reactions, J. Org. Chem. 77(15) (2012) 6624–6628.

[30] Y. Ishii, Y. Nakanishi, H. Omachi, S. Matsuura, K. Matsui, H. Shinohara, Y. Segawa, K. Itami,

Size-selective synthesis of [9]–[11] and [13] cycloparaphenylenes, Chem. Sci. 3(7) (2012) 2340–2345.

[31] T.J. Sisto, X. Tian, R. Jasti, Synthesis of tetraphenyl-substituted [12] cycloparaphenylene: Toward

a rationally designed ultrashort carbon nanotube, J. Org. Chem. 77(14) (2012) 5857–5860.

[32] Y. Xu, R. Kaur, B. Wang, M.B. Minameyer, S. Gsänger, B. Meyer, T. Drewello, D.M. Guldi, M.

V. Delius, Concave–convex π–π template approach enables the synthesis of [10] cycloparapheny-

lene–fullerene [2] rotaxanes. J. Am. Chem. Soc. 140(41) (2018) 13413–13420.

27



[33] D. Lu, G. Zhuang, H. Jia, J. Wang, Q. Huang, S. Cui, P. Du, A novel symmetrically multifunction-

alized dodecamethoxy-cycloparaphenylene: synthesis, photophysical, and supramolecular properties.

Org. Chem. Front. 5(9) (2018) 1446–1451.

[34] D. Lu, H. Wu, Y. Dai, H. Shi, X. Shao, S. Yang, J. Yang, P. Du, A cycloparaphenylene nanoring

with graphenic hexabenzocoronene sidewalls, Chem. Commun. 52(44) (2016) 7164–7167.

[35] A. Yagi, G. Venkataramana, Y. Segawa, K. Itami, Synthesis and properties of cycloparaphenylene-

2,7- pyrenylene: A pyrene-containing carbon nanoring, ChemComm 50(8) (2014) 957–959.

[36] M. Chen, K.S. Unikela, R. Ramalakshmi, B. Li, C. Darrigan, A. Chrostowska, S.-Y. Liu, A BN-doped

cycloparaphenylene debuts, Angew. Chem. 60(3) (2021) 1556-1560.

[37] T. Kawase, H. Kurata, Ball-, Bowl-, and Belt-Shaped conjugated systems and their complexing

abilities: Exploration of the concave-convex π-π interaction. Chem. Rev. 106(12) (2006) 5250–5273.

[38] K. Tahara, Y. Tobe, Molecular loops and belts, Chem. Rev. 106(12) (2006) 5274–5290.

[39] Y. Noguchi, O. Sugino, Molecular size insensitivity of optical gap of [n]cycloparaphenylenes (n =

3-16) J. Chem. Phys. 146(14) (2017) 144304.

[40] M. Ball, C. Nuckolls, Stepping into the light: Conjugated macrocycles with donor–acceptor motifs,

ACS Cent. Sci. 1(8) (2015) 416–417.

[41] E.J. Leonhardt , R. Jasti, Emerging applications of carbon nanohoops, Nat. Rev. Chem. 3 (2019)

672–686.

[42] T. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino, S. Yamago, Size-selective encapsulation of C60 by

[10]cycloparaphenylene: Formation of the shortest fullerene-peapod, Angew. Chem., Int. Ed. 50(36)

(2011) 8342–8344.

[43] J. Xia, J.W. Bacon, R. Jasti, Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and

the solid-state structure of C60@[10]CPP, Chem. Sci. 3(10) (2012) 3018–3021.

[44] H. Ueno, T. Nishihara, Y. Segawa, K. Itami, Cycloparaphenylene-Based ionic donor–acceptor

supramolecule: Isolation and characterization of Li+@C60 ⊂ [10]CPP, Angew. Chem. Int. Ed.

127(12) (2015) 3778–3782.

[45] A. Florence, T. Van, E. Huxol, J.M. Basler, M. Neuburger, J. J. Adjizian, C. P. Ewels, H. A. Wegner,

Synthesis of substituted [8]cycloparaphenylenes by [2 + 2+ 2] cycloaddition, Org. Lett. 16(6) (2014)

1594–1597.

28



[46] Y. Kuroda, Y. Sakamoto, T. Suzuki, E. Kayahara, S. Yamago, Tetracyclo(2,7-carbazole)s: Diatrop-

icity and paratropicity of inner regions of nanohoops, J. Org. Chem. 81(8) (2016) 3356–3363.

[47] E. Kayahara, X. Zhai, S. Yamago, Synthesis and physical properties of [4]Cyclo-3,7-

Dibenzo[b,d]thiophene and its S,S-Dioxide, Can. J. Chem. 95(4) (2016) 351–6.

[48] H. Omachi,Y. Segawa, K. Itami, Synthesis and racemization process of chiral carbon nanorings: A

step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 13(9)(2011) 2480–2483.

[49] B.M. Wongan, J.W. Lee, Anomalous optoelectronic properties of chiral carbon nanorings and one

ring to rule them all, J. Phys. Chem. Lett. 2 (2011) 2702–2706.

[50] N.K. Mirta, H.H. Corzo, B.L. Merner, A macrocyclic 1,4-diketone enables the synthesis of a p-

phenylene ring that is more strained than a monomer unit of [4]cycloparaphenylene, Org. Lett.

18(13) (2016) 3278–3281.

[51] Y. Segawa, A.Yagi, K. Itami, Chemical synthesis of cycloparaphenylenes, Phys. Sci. Rev. 2(1) (2017)

20160102.

[52] Y. Tsuchido, R. Abe, T. Ide, K. Osakada, A macrocyclic gold(I)–biphenylene complex: Triangular

molecular structure with twisted Au2(diphosphine) corners and reductive elimination of [6]cyclopara-

phenylene, Angew. Chem. Int. Ed. 59(51) (2020) 22928–22932.

[53] S.S. Lehrer, Pyrene excimer fluorescence as a probe of protein conformational change, Subcell.

Biochem. 24 (1995) 115–132.

[54] G. Bains, A.B. Patel, V. Narayanaswami, Pyrene: A probe to study protein conformation and

conformational changes, Molecules 16(9) (2011) 7909–7935.

[55] M. Baba, M. Saitoh, Y. Kowaka, K. Taguma, K. Yoshida, Y. Semba, S. Kasahara, T. Yamanaka, Y.

Ohshima, Y. C. Hsu, S. H. Lin, Vibrational and rotational structure and excited-state dynamics of

pyrene, J. Chem. Phys. 131(22)(2009) 224318.

[56] J.B. Birks, Excimers, Rep. Prog. Phys. 38(8) (1975) 903–74.

[57] X. Yana, L.S. Li, Solution-chemistry approach to graphene nanostructures, J. Mater. Chem. 21(10)

(2011) 3295–3300.
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(2018) 2995–3013.

[74] M. Arockiaraj, J. Clement, N. Tratnik, Mostar indices of carbon nanostructures and circumscribed

donut benzenoid systems, Int. J. Quantum Chem. 119(24) (2019) e26043.
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