
Fibonacci (p, r)-cubes as Cartesian products
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Abstract

The Fibonacci (p, r)-cube Γ
(p,r)
n is the subgraph of Qn induced on binary

words of length n in which there are at most r consecutive ones and there are at
least p zeros between two substrings of ones. These cubes simultaneously gen-
eralize several interconnection networks, notably hypercubes, Fibonacci cubes,

and postal networks. In this note it is proved that Γ
(p,r)
n is a non-trivial Carte-

sian product if and only if p = 1 and r = n ≥ 2, or p = r = 2 and n ≥ 2, or n = p = 3
and r = 2. This rounds a result from [Ou, Zhang, Yao, Discrete Math. 311

(2011) 1681–1692] asserting that Γ
(2,2)
n are non-trivial Cartesian products.
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1 Introduction

The Fibonacci (p, r)-cubes Γ
(p,r)
n were introduced in [2] and unify several models of

interconnection networks including hypercubes, Fibonacci cubes [8, 11], generalized

Fibonacci cubes in the sense of [12, 17], and postal networks [16]. Due to the

general nature of Fibonacci (p, r)-cubes, not many universal results are known about

them, but recently two such results appeared. In [14] it was determined when a

Fibonacci (p, r)-cube is a Z-transformation graph of a planar graph, while in [13]

Ou and Zhang characterized median graphs among the Fibonacci (p, r)-cubes. (The

Z transformation graph is a graph whose construction is based on perfect matchings

of a given graph and play an important role in mathematical chemistry.) Along the
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way of characterizing median graphs among Fibonacci (p, r)-cubes it was proved

in [13] that as soon as r ≤ p, the corresponding Fibonacci (p, r)-cube isometrically

embeds into a corresponding hypercube.

We were primarily motivated with a result from [14] which asserts that the

Fibonacci (2,2)-cubes can be factored with respect to the Cartesian product. In

this note we give a complete characterization of the Fibonacci (p, r)-cubes that are

Cartesian products:

Theorem 1 Let 1 ≤ p, r ≤ n. Then Γ
(p,r)
n is a non-trivial Cartesian product graph

if and only if p = 1 and r = n ≥ 2, or p = r = 2 and n ≥ 2, or n = p = 3 and r = 2. In

these cases,

• Γ
(1,n)
n ≅ Qn (n ≥ 2),

• Γ
(2,2)
n ≅ Γ

(1,1)
⌈
n
2
⌉
◻ Γ

(1,1)
⌊
n
2
⌋

(n ≥ 2), and

• Γ
(3,2)
3 ≅ P3 ◻ K2.

We proceed as follows. In the rest of this section key definitions are given. In

the subsequent section we prove Theorem 1, while the last section contains a couple

of suggestions for future research.

The Cartesian product G ◻H of graphs G and H is the graph with the vertex set

V (G)×V (H) in which vertices (g, h) and (g′, h′) are adjacent whenever either gg′ ∈

E(G) and h = h′, or g = g′ and hh′ ∈ E(H). This graph operation is commutative and

associative. The Cartesian product of n copies of K2 is known as the n-dimensional

hypercube Qn, called n-cube for short. Equivalently, the n-cube Qn is the graph

whose vertices are all the binary words of length n, two vertices being adjacent if

they differ in exactly one coordinate. A graph G is called prime with respect to

the Cartesian product if it has no representation as the Cartesian product of at

least two non-trivial graphs. Since the only product of graphs considered here is

the Cartesian product, we will simply say prime graph instead of prime graph with

respect to the Cartesian product. For more information on the Cartesian product

of graphs see [5, 10].

Let p and r be positive integers and p, r ≤ n. A Fibonacci (p, r)-string of length

n is a binary word of length n in which there are at most r consecutive ones, and

at least p zeros between two substrings of ones (of course each composed of at most

r ones). The Fibonacci (p, r)-cube Γ
(p,r)
n is the subgraph of Qn induced on the
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Fibonacci (p, r)-strings of length n. See Fig. 1 for Γ
(2,3)
5 and Γ

(4,2)
6 . Note that Γ

(4,2)
6

is isomorphic to the bipartite wheel BW6. In fact, it is not difficult to observe that

for any n ≥ 3 we have Γ
(n−2,2)
n ≅ BWn. In particular, Γ

(2,2)
4 ≅ BW4 ≅ P3 ◻ P3.
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Figure 1: Fibonacci (p, r)-cubes Γ
(2,3)
5 and Γ

(4,2)
6

The Hamming distance H(u, v) between binary words u and v (of equal length)

is the number of coordinates in which they differ. It is well-known that dQn(u, v) =

H(u, v) holds for any u, v ∈ V (Qn).

If u and v are binary words, then uv denotes its concatenation. With un we

mean the concatenation of n copies of u. In particular, 1n is the binary word of

length n, all of its bits equal to 1, and u0 is the empty word λ.

Finally, the set {1, . . . , n} will be denoted with [n], the disjoint union of sets

with ⊎, and the subgraph of G induced on X ⊆ V (G) with G[X].

2 Proof of Theorem 1

To begin the proof we first recall that for a graph G, the Djoković-Winkler’s relation

ΘG [1, 15] is defined on E(G) as follows: if e = xy ∈ E(G) and f = uv ∈ E(G), then

eΘf if d(x,u) + d(y, v) /= d(x, v) + d(y, u). Another relevant relation defined on the

edge set of a graph G is τG, where edges uv and uw are in relation τG if u is the

unique common neighbor of v and w. We will often omit the subscript G in ΘG

and τG, if the underlying graph will be clear from the context. For a relation R, let
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R∗ be the transitive closure of R. Let G = G1 ◻ ⋯ ◻ Gk be a connected Cartesian

product. For an edge uv of G let c(uv) be the coordinate in which u and v differ.

Edges e and f of G are, by definition, in product relation if c(e) = c(f). With these

definitions in hand we can state the following theorem due to Feder [3]. (See also [5,

Theorem 23.2] for two different proofs of the result.)

Theorem 2 If G is a connected graph, then (ΘG ∪ τG)
∗ is a product relation.

For our purposes the most important conclusion of this fundamental result is

that a graph is prime if and only if the relation (Θ ∪ τ)∗ has a single equivalence

class.

Let E
(p,r)
i be the set of edges of the Fibonacci (p, r)-cube Γ

(p,r)
n whose endpoints

differ in coordinate i, and set

V 0
i = {u ∶ u is an endvertex of an edge from E

(p,r)
i with ui = 0} ,

V 1
i = {u ∶ u is an endvertex of an edge from E

(p,r)
i with ui = 1} .

Ou, Zhang, and Yao proved:

Lemma 3 [14, Lemmas 7 and 8] For any 1 ≤ i ≤ n,

Γ(p,r)
n [V 0

i ⊎ V 1
i ] ≅ Γ(p,r)

n [V 0
i ] ◻ K2 .

Moreover, Γ
(p,r)
n [V 0

i ] and Γ
(p,r)
n [V 1

i ] are connected subgraphs of Γ
(p,r)
n .

Corollary 4 If e, f ∈ E
(p,r)
i , then eΘf .

Proof. Follows from Lemma 3 and [5, Lemma 13.5(i)]. The latter lemma asserts

that if e and f are edges of a Cartesian product G such that (i) endpoints of e and

f differ in the same coordinate i and (ii) e and f project onto the same edge of the

ith factor of G, then e and f are in relation Θ. ◻

If n = 1, then the only graph to be considered is Γ
(1,1)
1 . It is isomorphic to K2 and

hence prime. When n = 2, we have Γ
(1,1)
2 ≅ Γ

(2,1)
2 ≅ P3, and Γ

(1,2)
2 ≅ Γ

(2,2)
2 ≅ C4 ≅ Q2.

Hence we can assume in the rest that n ≥ 3.

According to Theorem 2, to prove that Γ
(p,r)
n is prime it suffices to show that the

relation (Θ
Γ
(p,r)
n

∪τ
Γ
(p,r)
n

)
∗ consists of a single equivalence class. By Corollary 4 all the

edges of E
(p,r)
i (1 ≤ i ≤ n) are in the same Θ∗-class. We now define a binary relation
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∼ on the set [n] by saying that i ∼ j if there exist edges e ∈ E
(p,r)
i and f ∈ E

(p,r)
j such

that e τf . Then it follows that G is a prime graph as soon as ∼∗= [n] × [n].

Case 1: p = 1.

If r = n then Γ
(1,n)
n ≅ Qn. Hence suppose that r < n. Let i ∈ [n − 1] and consider the

following words:

u = 0k1j011r−j−10n−r−1−k

v = 0k1j001r−j−10n−r−1−k

w = 0k1j101r−j−10n−r−1−k ,

where j = min{r − 1, i − 1} and k = i − 1 − j. Here we make the subword 1j as

long as possible under the constraint that the constructed words lie in Γ
(1,r)
n . Note

that in this way the words u, v,w indeed belong to V (Γ
(1,r)
n ). The only possible

common neighbor of u and w that differs from v is the vertex 0k1j111r−j−10n−r−1−k
=

0k1r+10n−r−1−k, which does not not lie in Γ
(1,r)
n . Therefore, u is in relation τ with

w and hence i ∼ (i + 1) holds for any i ∈ [n − 1]. It follows that ∼
∗
= [n] × [n] and

therefore Γ
(1,r)
n is prime.

Case 2: p ≥ 2 and r ≥ 3.

Consider the following words:

u = 1110n−3 ,

v = 0110n−3 ,

w = 0010n−3 .

Since n ≥ r ≥ 3, the vertices u, v, and w are of length n. Note also that u, v,w ∈

V (Γ
(p,r)
n ). The only possible common neighbor of u and w that differs from v is the

vertex 1010n−3. Since this vertex of Qn does not lie in Γ
(p,r)
n , it follows that u is in

relation τ with w. Therefore, 1 ∼ 2. Let u′, v′,w′ be the words obtained from u, v,w

by attaching 0s, 1 ≤ s ≤ n−3, in the front, and removing the same word on the right.

More precisely, u′ = 0s1110n−3−s, v′ = 0s0110n−3−s, and w′
= 0s0010n−3−s. Then by an

analogous argument as above we get (s+1) ∼ (s+2). Hence 1 ∼ 2, . . . , (n−2) ∼ (n−1).

Finally, to infer that (n−1) ∼ n, consider the words u′′ = 0n−3111, v′′ = 0n−3110, and

w′′
= 0n−3100. We conclude that for any p ≥ 2 and r ≥ 3, the cube Γ

(p,r)
n is prime.

Case 3: r = 2 and p ≥ 3.

Considering the words 1000n−3, 0000n−3, and 0010n−3, we get 1 ∼ 3. Suppose first
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that n ≥ 4. Attaching a fixed number of zeros in front of these three words and

removing the same number of zeros at their ends, we also get 2 ∼ 4, . . ., (n − 2) ∼ n.

To see that also 1 ∼ 4, consider the words 00010n−4, 00000n−4, and 10000n−4. Suppose

n = 3. Then the only graph to be considered is Γ
(3,2)
3 . This graph is obtained from

Q3 by removing vertices 111 and 101, and is isomorphic to P3 ◻ K2.

Case 4: r = 1.

From the words 100n−2, 000n−2, and 010n−2 we find out that 1 ∼ 2. Attaching zeros

in front of these words and removing the same number of zeros at their ends, we

also get 2 ∼ 3, . . . , (n − 1) ∼ n. As before we can conclude that ∼∗= [n] × [n].

Case 5: r = 2 and p = 2.

That Γ
(2,2)
n is isomorphic to Γ

(1,1)
⌈
n
2
⌉
◻ Γ

(1,1)
⌊
n
2
⌋

was proved in [14]. To make the proof of

Theorem 1 self-contained, we give an argument shorter than the original one.

Let n ≥ 2 and let X = Γ⌈
n
2
⌉ and Y = Γ⌊

n
2
⌋. Then the vertices of X and Y are

Fibonacci strings of lengths ⌈
n
2 ⌉ and ⌊

n
2 ⌋, respectively. Assign to any pair (x, y) =

(x1 . . . x⌈n
2
⌉, y1 . . . y⌊n

2
⌋) of such strings the interlacing string x ∗ y = x1y1x2y2 . . .,

where this new string ends with either x
⌈
n
2
⌉

or y
⌊
n
2
⌋

depending on the parity of n. It

is straightforward to verify that x ∗ y ∈ V (Γ
(2,2)
n ). Moreover, any vertex of Γ

(2,2)
n is

obtained in this way. We claim that Γ
(2,2)
n ≅X ◻ Y . By the above we can bijectively

associate the strings x ∗ y with the vertices (x, y) of X ◻ Y . Since the distance in

Γ
(2,2)
n is equal to the the Hamming distance, see [13, Lemma 2], (x, y) is adjacent

to (x′, y′) in Γ
(2,2)
n if and only if H(x ∗ y, x′ ∗ y′) = 1. This holds if and only if

either x = x′ and H(y, y′) = 1, or H(x,x′) = 1 and y = y′ which in turn holds if

and only if either x = x′ and yy′ ∈ E(Y ), or xx′ ∈ E(X) and y = y′. It follows that

Γ
(2,2)
n ≅X ◻ Y .

3 Concluding remarks

In this note we have characterized Fibonacci (p, r)-cubes that admit representations

as non-trivial Cartesian products. As it turned out, not many of the cubes are

such. (This is in accordance with Graham’s result from [4] that almost all graphs

have a single Θ∗-class, which by Theorem 2 in turn implies that almost all graphs

are prime.) Hence it would be interesting to investigate how close to the Cartesian

product are the Fibonacci (p, r)-cubes in the sense of the theory of approximate

Cartesian graph products [6, 7]. A look to Fig. 1 supports this idea.

Another simultaneous generalization of hypercubes and Fibonacci cubes was
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recently proposed in [9] under the name of generalized Fibonacci cubes. If f is a

given binary word, then the generalized Fibonacci cube Qn(f) is defined as the

subgraph of Qn induced on the words that do not contain f as a subword. For

instance, Γn ≅ Qn(11). In view of the present note we also pose the question which

of generalized Fibonacci cubes are Cartesian product of graphs.
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[5] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second

Edition, CRC Press, Boca Raton, FL, 2011.
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