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Abstract
A remarkably simple method is put forward for determining the Clar number

CL (= number of aromatic sextets in any of the Clar formulae) of a catacondensed
benzenoid hydrocarbon: CL is equal to the minimum number of straight lines required
to intersect all hexagons. The connection of this result with the concept of resonance
graph is outlined.
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1. Introduction

Within the theory that was formulated [1, 2] and elaborated [3] by Erich Clar,

the modes of cyclic conjugation of the π-electrons in benzenoid hydrocarbons are

described by means of diagrams called Clar aromatic sextet formulae or, shorter, Clar

formulae. These are obtained by drawing circles in some hexagons of the respective

benzenoid system, so that the following rules are obeyed [4, 5]:
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(a) circles are never drawn in adjacent hexagons;

(b) the benzenoid system must have a Kekulé structure with three double bonds in
each hexagon in which the circles are drawn;

(c) as many circles as possible are drawn, taking into account the restrictions (a)
and (b).

Each circle represents an “aromatic sextet” i. e., six π-electrons interacting in a

similar manner as in benzene. The number CL of aromatic sextets in a Clar formula

is called the Clar number . A benzenoid molecule may have several Clar formulae,

but each of them has the same CL-value.

The main chemical implication of the Clar number is the following empirically

established regularity: If Ba and Bb are two isomeric benzenoid hydrocarbons, and if

CL(Ba) > CL(Bb) , then the compound Ba is both chemically and thermodynamically

more stable; the positions of the maxima in the electron absorption spectrum of Bb

are shifted towards longer wavelengths relative to Ba . Examples supporting this rule

are found in the books [3, 5].

In Fig. 1 are shown three benzenoid systems and some of their Clar formulas;

more details on Clar formulas are found elsewhere [5].

Fig. 1 comes about here

The Clar aromatic sextet theory has numerous experimental confirmations (for

details see [3, 5, 6]). Several quantum–chemical approaches were proposed, aimed at

its theoretical justification [7–11]. It is commonly accepted that the Clar formulae

represent some, but not all, Kekulé structures [5, 12, 13]. An illustration is provided

in Fig. 2.

Fig. 2 comes about here

Whereas the drawing of Clar formulae (and thus the determination of the Clar

number CL) of smaller benzenoids is easy, this task becomes prohibitively difficult as

the size of the system considered increases. Much work has been devoted to learning

the properties of Clar formulae of large benzenoid systems and designing procedures
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for their construction [14–19]; see also the related papers [20, 21]. Some time ago

Hansen and Zheng [22] reported an upper bound for CL and somewhat later an

algorithm for computing CL of an arbitrary benzenoid hydrocarbon, based on linear

programming [23]. This algorithm is suitable for computer–aided studies, but can

hardly be employed for paper–and–pencil determination of CL .

We now put forward a significantly simpler method for determining the Clar num-

ber, applicable to catacondensed benzenoid systems.

Recall that a benzenoid system is said to be catacondensed if no three of its

hexagons share a common vertex; otherwise it is pericondensed [5]. All the benzenoids

occurring in Figs. 1–4 and 6 are catacondensed, whereas the species depicted in Fig.

6 are pericondensed.

2. The method

An elementary cut or simply a cut C of a benzenoid system is a straight line

segment intersecting the centres of some edges and being at right angles to to these

edges. This line goes through the centres of some hexagons, in which case it always

intersects two edges of each of these hexagons. We say that these hexagons are

intersected by C .

Elementary cuts are often used in the theory of benzenoid hydrocarbons and have

found numerous applications, especially in connection with Kekulé structures [24],

as well as the Wiener [25], Szeged [26], and hyper–Wiener [27] topological indices

[28–36].

A few illustrative examples of elementary cuts are found in Fig. 3. Of the 17

possible elementary cuts of the system B1 only 8 are shown, which is more than the

minimal number (= 3) required to intersect all hexagons. For additional explanations

see the caption of Fig. 3.

Fig. 3 comes about here

We are now prepared to state the following simple rules:

Rule 1. The Clar number of a catacondensed benzenoid system B is equal to the

minimum number of elementary cuts by which all hexagons of B are intersected.
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Even for very large benzenoid systems the application of Rule 1, i. e., the finding

of as few as possible cuts that intersect all hexagons, is immediate (cf. Fig. 3). In

doubtful cases or for enormously large benzenoids one may employ:

Rule 2. Let H be a terminal hexagon of a catacondensed benzenoid system B .

Let B′ be obtained by deleting from B the hexagon H and all hexagons that are in

linear constellation with regard to H . Then CL(B) = CL(B′) + 1 . (We say that a

sequence of hexagons is in a “linear constellation” if, when their centers are joined by

a line, a single straight line is obtained. Recall also that the system B′ needs not be

connected.)

By a successive decomposition based on Rule 2 we ultimately arrive at a linear

polyacene, whose Clar number is unity. An example for such a calculation is given in

Fig. 4.

Fig. 4 comes about here

In the general case Rule 1 is not applicable to pericondensed benzenoid systems.

This is seen from the counterexamples shown in Fig. 5.

Fig. 5 comes about here

In what follows we will briefly outline the theoretical basis of Rules 1 and 2. For

this we first need to repeat some basic notions on resonance graphs.

3. The resonance graph

The resonance graph is a diagrammatic representation of a model Hamiltonian in

a Kekulé–structure basis, providing a rough description of the interactions between

the Kekulé structures of a benzenoid molecule. The idea is that the most intense such

interactions exist between Kekulé structures which differ in the positions of as small

as possible (= three) double bonds whereas all other interactions are neglected. In

view of this, the resonance graph is defined as follows.

Let k1, k2, . . . , kK be the Kekulé structures of a benzenoid molecule B . The res-

onance graph of B , denoted by R(B) , is a graph on K vertices, each vertex of
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which is associated with a particular Kekulé structure. The vertices i and j of R(B)

are adjacent if and only if the Kekulé structure kj is obtained from ki by cyclically

interchanging exactly three double bonds (within one hexagon). Thus, the degree

(valency) of a vertex corresponding to the Kekulé structure ki is equal to the number

of Kekulé structures which differ from ki in the position of exactly three double bonds.

Using the terminology of the theory of conjugated circuits [5, 37, 38] we may say that

the degree of this vertex is equal to the number of R1-type conjugated circuits in the

respective Kekulé structure.

That resonance graphs are a very natural concept is seen from the fact that in the

chemical and mathematical literature they were independently conceived four times.

The idea can be traced back to the work of Herndon on resonance theory [39–41].

He considered two types of interaction terms between Kekulé structures: γ1 and γ2 ,

pertaining to interactions between pairs of Kekulé structures differing in the positions

of exactly 3 and 5 double bonds, respectively. Herndon found that |γ1| > |γ2| , but

he never neglected the γ2-terms. By setting γ2 = 0 and representing the interaction

scheme by means of a diagram, one would arrive at resonance graphs.

The first who actually did this was Gründler in the early 1980s [42, 43]. Ten years

later resonance graphs were re-invented by El–Basil [44, 45] and a few more years

later by Randić [46, 47]. To be more precise: in the papers [44, 45] not all Kekulé

structures were considered, but only certain restricted subsets thereof; thus El–Basil

encountered only subgraphs of resonance graphs. Also in the 1980s, mathematicians

Zhang, Guo and Chen [48, 49] considered precisely the same graph and established its

basic properties; for the recent mathematical research along these lines see [50–52].

The name “resonance graph” for R(B) was proposed by Randić [46, 47].

All authors who studied resonance graphs were fascinated by the fact that these

contain many squares, often arranged into 3– or higher–dimensional cubes. A self–

explanatory example is shown in Fig. 6.

Fig. 6 comes about here
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4. Proof of Rules 1 and 2

The k-dimensional hypercube, denoted by Qk , is a graph defined in the following

manner. Qk has 2k vertices. Each vertex of Qk corresponds to an ordered k-tuple of

two symbols, say 0 and 1. Two vertices of Qk are adjacent if the respective k-tuples

differ by exactly one term.

For instance, the vertices of the 3-cube (Fig. 7) are:

v1 corresponding to (0, 0, 0)

v2 (0, 0, 1)

v3 (0, 1, 0)

v4 (0, 1, 1)

v5 (1, 0, 0)

v6 (1, 0, 1)

v7 (1, 1, 0)

v8 (1, 1, 1)

and then v1 is adjacent to v2 , v3 and v5 , v2 is adjacent to v1 , v4 and v6 , etc, see Fig.

7

Fig. 7 comes about here

Theorem 1. Let B be a benzenoid system and R(B) its resonance graph. The

largest value of k , such that Qk is a subgraph of R(B) is equal to CL(B) .

Proof. Consider any Clar formula f(B) of B and the 2CL(B) Kekulé structures cor-

responding to f(B) , cf. Fig. 2. Let H1, H2 . . . , HCL(B) be the hexagons of B which

in the Clar formula f(B) contain circles. To any Kekulé structure ki of B (corre-

sponding to f(B) ) we associate a CL(B)-tuple (a1, a2, . . . , aCL(B)) in the following

manner: For i = 1, 2, . . . , CL(B) , we set ai = 0 if the vertical double bond in Hi is

on the left–hand side, and ai = 1 if this double bond is on the right–hand side of Hi .

Then from the definitions of the resonance graph and the hypercube it immediately

follows that the Kekulé structures considered induce a CL(B)-dimensional hypercube

in R(B) . Hence, the largest value of k , such that Qk is a subgraph of R(B) is greater

than or equal to CL(B) .
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On the other hand, k must not be greater than CL(B) , because, otherwise, CL(B)

would not be the maximum number of circles drawn in a Clar formula of B . Therefore,

k = CL(B) .

Theorem 2. The smallest number of elementary cuts intersecting all hexagons of a

catacondensed benzenoid system B is equal to the dimension of the largest hypercube

that is a subgraph of the resonance graph of B .

The proof of Theorem 2 is difficult, and is based on the fact [51] that the resonance

graphs of catacondensed benzenoids are median graphs. Its details were communi-

cated elsewhere [52]. (For more information on median graphs see, for instance, [53].)

Combining Theorems 1 and 2 we arrive at Rule 1.

Rule 2 provides, in fact, an algorithm for the construction of a minimal set of

elementary cuts that intersect all hexagons. The transformation B → B′ is tanta-

mount to drawing a cut through the chosen terminal hexagon H and the hexagons

in linear constellation to H . This certainly is an optimal choice if we intend to in-

tersect all hexagons of B with as few cuts as possible. In a catacondensed benzenoid

a terminal hexagon does always exist. Furthermore, by eliminating the intersected

hexagons from B , another catacondensed benzenoid system B′ is obtained, and so

the construction can be continued.
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[14] S. El–Basil and M. Randić, J. Chem. Soc. Faraday Trans. 2, 84 (1988) 1875.

[15] F. Zhang and X. Li, Commun. Math. Chem. (MATCH), 24 (1989) 333.

[16] X. Guo and F. Zhang, J. Math. Chem., 9 (1992) 279.

[17] P. E. John, H. Sachs and M. Zheng, J. Chem. Inf. Comput. Sci., 35 (1995) 1019.
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[35] S. Klavžar, P. Žigert and I. Gutman, Comput. Chem. 24 (2000) 229.
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[46] M. Randić, D. J. Klein, S. El–Basil and P. Calkins, Croat. Chem. Acta, 69 (1996)

1639.
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Figure Captions

Fig. 1. The benzenoid systems B1, B2, B3 and some of their Clar formulas. Conjuga-

tion in B1 is represented by a total of 12 Clar formulas, of which only two are shown

(f11, f12); B2 has 24 Clar formulas, two of which are f21 and f22 ; B3 has a single Clar

formula f31 . The Clar numbers of B1 , B2 and B3 are 3, 5 and 8, respectively.

Fig. 2. The eight (= 2CL(B4) ) Kekulé structures of the benzenoid system B4 ,

corresponding to the Clar formula f41 . Note that the Kekulé structures k5, k6, k7, k8

are contained also in the Clar formula f42 . B4 has a total of 13 Kekulé structures,

see Fig. 6.

Fig. 3. Elementary cuts of the benzenoid systems B1, B2, B3, B4 ; the cut C1 inter-

sects the hexagons 3, 4, 5 and 6 of B1 , the cut C2 intersects only the hexagon 4, etc.

Three cuts (C1 , C4 and C8) suffice to intersect all hexagons of B1 , in harmony with

CL(B1) = 3 . The five cuts of B2 , the eight cuts of B3 and the three cuts of B4 are

minimal sets of cuts intersecting all hexagons, implying CL(B2) = 5 , CL(B3) = 8

and CL(B4) = 3 . The choice of such minimum number of cuts needs not be unique,

as in the case of B3 and B4 .

Fig. 4. Application of Rule 2: Asterisk indicates the terminal hexagon from which

the decomposition of the respective benzenoid system starts. B′′′′
5 is a linear polyacene

and therefore CL(B′′′′
5 ) = 1 , implying CL(B′′′

5 ) = 2 , CL(B′′
5 ) = 3 , CL(B′

5) = 4 and

CL(B5) = 5 .

Fig. 5. Inapplicability of Rule 1 to pericondensed benzenoid systems: All hexagons of

B6 and B7 can be intersected by three elementary cuts. Nevertheless, CL(B6) = 2 < 3

and CL(B7) = 4 > 3 .

Fig. 6. The resonance graph of the benzenoid system B4 and the Kekulé structures

of B4 which are not depicted in Fig. 2.

Fig. 7. The 3-cube and the labeling of its vertices; for details see text.
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