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1 Introduction

Graphs of “Sierpiński type” appear naturally in many different areas of mathematics
as well as in several other scientific fields. One of the most important families of
such graphs is formed by the Sierpiński gasket graphs—the graphs obtained after
a finite number of iterations that in the limit give the Sierpiński gasket, see, for
instance, [8]. These graphs were introduced already in 1944 by Scorer, Grundy and
Smith [20]. Among others, the Sierpiński gasket graphs play an important role in
dynamic systems and probability, cf. [7, 9], as well as in psychology, cf. [14].

Sierpiński gasket graphs are just a step from the Sierpiński graphs S(n, 3). The
graph Sn is obtained from S(n, 3) by subdividing every edge of S(n, 3) that lies in no
triangle. This connection was already observed in psychological literature by Sydow
back in 1970 [21]. One of the main features of the graphs S(n, 3) is that they are
precisely the graphs of the Tower of Hanoi puzzle with n discs. These graphs were
quite extensively studied by now, see, for instance, [1, 4, 5, 12, 19].

In [11], the graphs S(n, 3) were generalized to the Sierpiński graphs S(n, k) for
k ≥ 3. The motivation for this generalization came from topological studies of
the Lipscomb’s space [15, 16]. (We note that the Sierpiński graphs independently
appeared in [18].) As it turned out, the graphs S(n, k) possess many appealing
properties, as for instance several coding [3] and several metric properties [17]. The
generalization of S(n, 3) to S(n, k) is done via a certain labeling technique (see
Section 2) that in turn gives a new powerful tool for studying the classical Tower of
Hanoi graphs S(n, 3). The labeling technique has been fruitfully applied in [4, 19].

The graphs S(n, k) are almost regular and there are at least two natural ways to
extend them to regular graphs. In this spirit regularizations S+(n, k) and S++(n, k)
were proposed in [13]. For these two families of graphs the exact crossing number
can be determined (modulo the crossing number of complete graphs), thus they
present the first known examples of graphs of “fractal” type for which this can be
done [13].

Besides the mentioned properties, vertex and edge colorings of the graphs Sn and
S(n, k) were previously studied. Teguia and Godbole [22] showed that χ(Sn) = 3.
In fact, these colorings are unique [10]. In the latter paper it is also proved that for
any n ≥ 2, χ′(Sn) = 4. Teguia and Godbole [22] asked what is the total chromatic
number of Sierpiński gasket graphs. We answer their question in Section 3.

Parisse noticed that χ(S(n, k)) = k [17]. In Section 4 we determine the chromatic
index of these graphs and the total chromatic number when k is odd. We also show
that the famous Behzad-Vizing conjecture also holds when k is even.

In the last section we consider vertex-, edge-, and total-colorings of the graphs
S+(n, k) and S++(n, k), and in particular determine their chromatic number and
edge-chromatic number.

The results obtained in this paper together with the previously known results
are collected in Table 1.
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χ χ′ χ′′

Sn 3 (uniquely) 4 5

n ≥ 2 n ≥ 2 n ≥ 2

S(n, k) k k k + 1

n ≥ 1, k ≥ 1 n ≥ 2, k ≥ 2 n ≥ 2, k ≥ 3, k odd

3 (uniquely) 3, n ≥ 2, k = 2

n ≥ 1, k = 3 4, n ≥ 2, k = 4

k + 1 ≤ · ≤ k + 2

n ≥ 2, k ≥ 6, k even

S+(n, k) k k k + 1 ≤ · ≤ k + 2

n ≥ 2, k ≥ 3 n ≥ 2, k ≥ 2, k odd n ≥ 2, k ≥ 2

k + 1

n ≥ 2, k ≥ 2, k even

S++(n, k) k k k + 1

n ≥ 2, k ≥ 2 n ≥ 2, k ≥ 2 n ≥ 2, k ≥ 3, k odd

k + 1 ≤ · ≤ k + 2

n ≥ 2, k ≥ 2, k even

Table 1: Summary of the results

2 Preliminaries

Let G be a graph. Recall that the chromatic number χ(G) (edge-chromatic number
χ′(G)) is the smallest number of colors needed for a proper vertex-coloring (edge-
coloring) of G. Clearly, χ′(G) ≥ ∆(G), where ∆(G) denotes the largest degree of G.
Vizing’s theorem asserts that in addition χ′(G) ≤ ∆(G) + 1. G is called a graph of
Type II if χ′(G) = ∆(G) + 1 holds, otherwise it is of Type I. It is well-known that
the complete graph Kn is of Type I if and only if n is even. We will show that the
graphs S+(n, k), n ≥ 2, k ≥ 2, k even, are of Type II.

The total chromatic number χ′′(G) is the smallest number of colors needed for a
proper coloring of both vertices and edges of G. Clearly, χ′′(G) ≥ ∆(G) + 1. Recall
that χ′′(Kn) = ∆(Kn)+1 if n is odd and χ′′(Kn) = ∆(Kn)+2 if n is even, see [23].
Behzad-Vizing conjecture claims that χ′′(G) ≤ ∆(G) + 2. This conjecture has been
verified for several classes of graphs, see [2, 23, 25] and references therein. All the
graphs studied in this paper support the conjecture.

In the rest of this section we define the families of Sierpiński-like graphs consid-
ered in this paper.
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We begin with the Sierpiński graphs S(n, k) that are defined for n ≥ 1 and k ≥ 1
as follows. The vertex set of S(n, k) consists of all n-tuples of integers 1, 2, . . . , k,
that is, V (S(n, k)) = {1, 2, . . . , k}n. Two different vertices u = (u1, . . . , un) and
v = (v1, . . . , vn) are adjacent if and only if there exists an h ∈ {1, . . . , n} such that

(a) ut = vt, for t = 1, . . . , h − 1;
(b) uh 6= vh; and
(c) ut = vh and vt = uh for t = h + 1, . . . , n.

We will write 〈u1u2 . . . un〉 for (u1, u2, . . . , un) or even shorter u1u2 . . . un. See Fig. 1
for S(3, 4).
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Figure 1: The Sierpiński graph S(3, 4)

The vertices 〈i . . . i〉, i ∈ {1, . . . , k}, are called the extreme vertices of S(n, k). For
i = 1, 2, . . . , k let Si(n + 1, k) be the subgraph of S(n + 1, k) induced by the vertices
of the form 〈i . . .〉. Clearly, Si(n + 1, k) is isomorphic to S(n, k). Consequently,
S(n + 1, k) contains kn copies of the graph S(1, k) = Kk. The edges of S(n, k) that
lie in no induced Kk will be called bridge edges.

The Sierpiński gasket graph Sn, n ≥ 1, is obtained from S(n, 3) by contracting
all the edges of S(n, 3) that lie in no triangle, see Fig. 2 for S4.

Following [10] we label the vertices of Sn as follows. Let 〈u1 . . . urij . . . j〉 and
〈u1 . . . urji . . . i〉 be endvertices of an edge of S(n, 3) that is contracted to a vertex

4



1111

11{1,2}

1{1,2}

12{1,2}

12{1,3} 13
{1

,2
}

13{1,3}

1{2,3} 13{2,3}
{1,2}

33332222

23{1,3}

22{1,3}

23
{1

,2
}

11{1,3}

1{1,3}
11{2,3}

12{2,3}
{1,3}

21{1,2} 21{1,3}

21{2,3}
2{1,2}

22{1,2}

22{2,3} 2{2,3} 23{2,3}

2{1,2}

{2,3}

33
{1

,2
}32{1,3}32

{1
,2

}
31{1,2} 31{1,3}

3{1,2}3{1,2}

32{2,3} 3{2,3} 33{2,3}

33{1,3}

31{2,3}

Figure 2: The Sierpiński gasket graph S4

x of Sn. Then label x with 〈u1 . . . ur〉{i, j}, where r ≤ n − 2. In this way Sn has
three special vertices 〈1 . . . 1〉, 〈2 . . . 2〉, and 〈3 . . . 3〉, called extreme vertices of Sn,
together with the vertices of the form

〈u1 . . . ur〉 {i, j} ,

where 0 ≤ r ≤ n − 2, and all the uk’s, i and j are from {1, 2, 3}. Note that Sn+1

contains three isomorphic copies of Sn, a fact utmost useful for inductive arguments.
We will denote these copies with Sn,i, 1 ≤ i ≤ 3, where Sn,i is the subgraph Sn of
Sn+1 containing 〈i . . . i〉.

The extended Sierpiński graphs S+(n, k) and S++(n, k) were introduced in [13]
in the following way. The graph S+(n, k), n ≥ 1, k ≥ 1, is obtained from S(n, k)
by adding a new vertex w, called the special vertex of S+(n, k), and edges joining w
with all extreme vertices of S(n, k). These edges will be called the additional edges
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of S+(n, k). See Fig. 3 for S+(3, 3).
The graphs S++(n, k), n ≥ 1, k ≥ 1, are defined as follows. For n = 1 we set

S++(1, k) = Kk+1. Suppose now that n ≥ 2. Then S++(n, k) is the graph obtained
from the disjoint union of k+1 copies of S(n−1, k) in which the extreme vertices in
distinct copies of S(n − 1, k) are connected as the complete graph Kk+1. With this
the graphs S++(n, k) are well defined, see [13, Lemma 2.2]. See Fig. 3 for S++(3, 3).

Figure 3: Graphs S+(3, 3) and S++(3, 3)

3 Total colorings of Sn

In this section we answer a question from [22] with the following result.

Theorem 3.1 For any n ≥ 2, χ′′(Sn) = 5.

Proof. As χ(Sn) ≥ ∆(Sn) + 1 = 5, we only need to construct a total coloring
with five colors. For a total coloring c of Sn we will use the following notation.
Let {i, j, k} = {1, 2, 3}. Then if c(〈i . . . i〉) = x, c(〈i . . . i〉 〈i . . . i{i, j}〉) = y, and
c(〈i . . . i〉 〈i . . . i{i, k}〉) = z, we will write Ci = {x, {y, z}}.

First we construct a coloring of S2 with C1 = {3, {1, 2}}, C2 = {4, {1, 5}} and
C3 = {5, {1, 2}} as shown in Fig. 4. Then color S3 as follows. Let c′ be a coloring
of S3,1 such that C ′

1 = {3, {1, 2}}, C ′

2 = {4, {1, 5}}, and C ′

3 = {5, {1, 2}}. Let c′′ be
a coloring of S3,2 such that C ′′

1 = {4, {2, 3}}, C ′′

2 = {1, {3, 5}}, and C ′′

3 = {2, {3, 5}}.
Finally, let c′′′ be a coloring of S3,3 with C ′′′

1 = {5, {3, 4}}, C ′′′

2 = {2, {1, 4}}, and
C ′′′

3 = {3, {1, 4}}. Note that c′ = c, and that c′′ and c′′′ are obtained from c′ by
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applying permutations (1 3)(2 5)(4) and (1 4 5 3 2), respectively. The coloring of S3

is schematically shown on the right-hand side of Fig. 4.
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Figure 4: Colorings of S2 and S3

Let c be the constructed coloring of S3, then C1 = {3, {1, 2}}, C2 = {1, {3, 5}},
and C3 = {3, {1, 4}}. Next color S4 as follows. Let c′ = c be a coloring of S4,1,
let c′′ be a coloring of S4,2 such that C ′′

1 = {3, {4, 5}}, C ′′

2 = {4, {3, 1}}, and C ′′

3 =
{3, {4, 2}}, and let c′′′ be a coloring of S4,3 with C ′′′

1 = {3, {2, 5}}, C ′′′

2 = {3, {1, 5}},
and C ′′′

3 = {5, {3, 4}}. In this case, c′′ and c′′′ are obtained from c′ using permutations
of colors (1 4 2 5)(3) and (1 5 4)(2)(3), respectively. See the left coloring of Fig. 5.

For n ≥ 4 we proceed by induction. Suppose that c is a total coloring of Sn with
C1 = {1, {3, 5}}, C2 = {4, {1, 3}}, and C3 = {5, {3, 4}}. Then let c′ = c be a coloring
of Sn+1,1, let c′′ be a coloring of Sn+1,2 with C ′′

1 = {4, {2, 5}}, C ′′

2 = {5, {2, 3}}, and
C ′′

3 = {3, {2, 4}}. Finally, let c′′′ be a coloring of Sn+1,3 with C ′′′

1 = {5, {1, 2}},
C ′′′

2 = {3, {1, 5}}, and C ′′′

3 = {2, {1, 3}}. Colorings c′, c′′, and c′′′ exist by induction.
(Note that c′′ and c′′′ are obtained from c′ using permutations of colors (1 4 3 2)(5)
and (1 3)(2 4)(5), respectively.) See the right-hand side of Fig. 5.

Now, Sn+1 is colored with a coloring c where C1 = {1, {3, 5}}, C2 = {5, {2, 3}},
and C3 = {2, {1, 3}}. Finally, exchange the role of colors 2 and 4 in c and apply the
induction. �

4 Edge- and total-colorings of S(n, k)

In [10] it is shown that S(n, 3) is uniquely 3-edge colorable. In this section we first
extend this result by proving that for any k, χ′(S(n, k)) = k.

Theorem 4.1 For any n ≥ 2 and any k ≥ 2, χ′(S(n, k)) = k.
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Figure 5: Colorings of S4 and Sn+1

Proof. If k is even the conclusion is easy. Each subgraph Kk of S(n, k) can be
edge-colored with k − 1 colors. Color the remaining edges, that is, the bridge edges
of S(n, k), with color k to obtain a desired coloring of S(n, k).

Let now k be odd. For a vertex u of S(n, k) and an edge-coloring c of it we will
write Cu to denote the set of colors assigned to the edges incident with u. We will
prove the following stronger claim.

Claim: For any n ≥ 1 and any k ≥ 2, χ′(S(n, k)) = k. Moreover, for any i, j ∈
{1, . . . , k}, i 6= j, Ci...i 6= Cj...j .

For n = 1, S(1, k) = Kk. It is well-known that Kk can be edge-colored with k
colors such that Ci 6= Cj for i 6= j. Assume the claim holds for n ≥ 1. We wish
to find an edge-coloring of S(n + 1, k). By the induction assumption, Sh(n + 1, k),
h ∈ {1, . . . , k}, can be colored with k colors where Chi...i 6= Chj...j , i, j ∈ {1, . . . , k},
i 6= j. Let M be a mapping

M : {ij . . . j ∈ V (S(n, k)) | i, j ∈ {1, . . . , k}} → {0, 1, . . . , k − 1}

defined as
M(ij . . . j) = i + j − 2 (mod k).

Let u = ij . . . j and v = il . . . l be two different extreme vertices of Si(n, k). Then
M(ij . . . j) = i + j − 2 (mod k) 6= i + l − 2 (mod k) = M(il . . . l), because i
is fixed and j 6= l. Since Si(n, k) is isomorphic to S(n − 1, k), by the induction
assumption χ′(Si(n, k)) = k and for any two different extreme vertices ij . . . j and
il . . . l, Cij...j 6= Cil...l. The mapping M also assigns pairwise different numbers of
the set {0, . . . , k− 1} to the extreme vertices. Permute the colors of the proper edge
coloring of the graph Si(n, k) in such a way that Cij...j = {0, . . . , k−1}\{M(ij . . . j)}.
Consider the edges that connect subgraphs Si(n, k) and Sj(n, k), for any i, j ∈
{1, . . . , k}, i 6= j. Since M(ij . . . j) = M(ji . . . i), the same color is missing at
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ij . . . j and ji . . . i. Hence the edge between these two vertices can be colored with
M(ij . . . j) and we have constructed a proper k-edge-coloring of S(n, k).

To complete the proof we need to prove that the extreme vertices receive pairwise
different colors. For an extreme vertex ii . . . i we have

M(ii . . . i) = i + i − 2 (mod k) = 2(i − 1) (mod k) .

Recall that k is odd. Hence, if 2(i − 1) < k, the extreme vertices receive pairwise
different even numbers, while if 2(i − 1) > k, they receive pairwise different odd
numbers. Finally, replace color 0 with k. �

In the rest of this section we consider total colorings of Sierpiński graphs. We
first observe:

Proposition 4.2 For any n ≥ 1 and any k ≥ 1, χ′′(S(n, k)) ≤ k + 2.

Proof. Totally color every induced Kk of S(n, k) with at most k+1 colors and color
the remaining bridge edges with k + 2. �

If k is odd, it is not difficult to give the exact value of the total chromatic number.

Proposition 4.3 For any n ≥ 2 and any odd k ≥ 3, χ′′(S(n, k)) = k + 1.

Proof. Totally color every induced Kk of S(n, k)) with k colors and color the re-
maining edges with k + 1. �

When k is even, the situation is more involved. Note first that S(n, 2) is the
path on 2n vertices, hence χ′′(S(n, 2)) = 3. Next, for k = 4 we have:

Proposition 4.4 For any n ≥ 1, χ′′(S(n, 4)) = 5.

Proof. Let n ≥ 2 and let c be a total coloring of S(n, 4). For any i, j ∈ {1, 2, 3, 4}
set Cij...j = (a, b), where c(ij . . . j) = a and b is a color that is neither assigned to
ij . . . j nor any of its incident edges. Note that b is uniquely determined since k = 4.
For n = 1 set C1 = (4, 1), C2 = (1, 2), C3 = (2, 3), and C4 = (3, 4), see Fig. 6.
The result will follow from the following stronger claim.

Claim: If n is odd, then we can color S(n, 4) such that Ci1...1 = (4, 1), Ci2...2 = (1, 2),
Ci3...3 = (2, 3), and Ci4...4 = (3, 4). If n is even, we can color S(n, 4) such that
Ci1...1 = (4, 1), Ci2...2 = (4, 3), Ci3...3 = (4, 5), and Ci4...4 = (4, 2).

Note that we can exchange the values of Ci2...2 and Ci4...4, if we mirror the
coloring with respect to the diagonal between vertices i1 . . . 1 and i4 . . . 4. Let us
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Figure 6: Cases n = 1 and n = 2

call the coloring from the claim the standard coloring and the derived one the mirror

coloring of S(n, 4).
For n = 1 and n = 2 the claim holds by Fig. 6.
Let n ≥ 2 be even. We will construct four different total colorings ci, 1 ≤ i ≤ 4,

of S(n, 4) and combine them to a total coloring of S(n + 1, 4).
Let c1 be the standard coloring of S(n, 4) such that C11...1 = (4, 1), C12...2 =

(4, 3), C13...3 = (4, 5) and C14...4 = (4, 2). Let c2 be the standard coloring such that
C21...1 = (2, 3), C22...2 = (2, 4), C23...3 = (2, 1) and C24...4 = (2, 5). Note that c2 is
obtained from c1 by the permutation (1 3 4 2 5). Applying the permutation (1 5 2 4 3)
to c1 we obtain the standard coloring c3 for which C31...1 = (3, 5), C32...2 = (3, 1),
C33...3 = (3, 2) and C34...4 = (3, 4). Finally, using (1 2 3 5 4) the standard coloring c4

is obtained for which C41...1 = (1, 2), C42...2 = (1, 5), C43...3 = (1, 4), and C44...4 =
(1, 3). Now color S(n + 1, 4) in such a way that C11...1 = (4, 1), C22...2 = (2, 4),
C33...3 = (3, 2), and C44...4 = (1, 3).

Combine the colorings ci to a coloring of S(n+1, 4) as shown in the left-hand side
of Fig. 7. ¿From this it is clear that the bridge edges of S(n + 1, k) can be properly
colored (with the missing colors between the corresponding vertices). To complete
the even to odd case apply the mirror coloring to get C11...1 = (4, 1), C22...2 = (1, 3),
C33...3 = (3, 2), and C44...4 = (2, 4). Finally, the exchange of colors 2 and 3 yields
the desired coloring of S(n + 1, 4), where n + 1 is odd.

Let n ≥ 3 be odd. As in the previous case we first construct four different
total colorings ci, 1 ≤ i ≤ 4, of S(n, 4). Let c1 be the standard coloring such
that C11...1 = (4, 1), C12...2 = (1, 2), C13...3 = (2, 3), and C14...4 = (3, 4). Let c2

be the mirror coloring of the coloring obtained from c1 by permuting the colors
as (1 2 5)(3 4). In this case, C21...1 = (3, 2), C22...2 = (4, 3), C23...3 = (5, 4), and
C24...4 = (2, 5). Let c3 be the standard coloring obtained from c1 by means of
(1 3 5 2 4). Then C31...1 = (1, 3), C32...2 = (3, 4), C33...3 = (4, 5), and C34...4 = (5, 1).
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Figure 7: Even to odd and odd to even cases

The last coloring, c4, is the mirror coloring of the coloring obtained from c1 using
(1 4 5 3)(2). Then C41...1 = (5, 4), C42...2 = (1, 5), C43...3 = (2, 1) and C44...4 = (4, 2).
Now combine c1, c2, c3, and c4 into S(n + 1, 4) as shown in the right-hand side of
Fig. 7. Color every bridge edge with the missing color to obtain the desired total
coloring. �

For even k ≥ 6 we were not able to decide whether χ′′(S(n, k)) = k + 1 or
χ′′(S(n, k)) = k + 2. We do, however, suspect the following.

Conjecture 4.5 For an even k ≥ 6, χ′′(S(n, k)) = k + 2.

5 Colorings of S+(n, k) and S++(n, k)

In this final section we consider the three types of colorings on the extended Sierpiński
graphs S+(n, k) and S++(n, k).

We begin with the chromatic number for which the following natural coloring of
S(n, k) will be useful. Set c(〈u1 . . . un〉) = un for any vertex 〈u1 . . . un〉 of S(n, k) to
obtain a k-coloring of S(n, k) [17]. We call this coloring the canonical vertex-coloring

of S(n, k).
Note that S+(n, 2) is an odd cycle while S++(n, 2) is an even cycle. For k ≥ 3

we have:

Proposition 5.1 For any n ≥ 2 and any k ≥ 3,

χ(S+(n, k)) = χ(S++(n, k)) = k .

11



Proof. Let c be the canonical vertex-coloring of S(n, k). Recall that V (S+(n, k)) =
V (S(n, k)) ∪ {w} and color the vertices of S+(n, k) as follows:

c′(u) =























1; u = k . . . kkk,

2; u = k . . . k1k;

k; u ∈ {w, k . . . kk1, k . . . k12};

c(u); otherwise .

Since k ≥ 3 it is straightforward to verify that c′ is a proper coloring of V (S+(n, k)).
Recall that S++(n, k) consists of k + 1 copies of S(n − 1, k). Color S(n, k)

using the canonical vertex-coloring c. Let c′′ be a coloring of the additional copy of
S(n − 1, k) defined with

c′′(u1 . . . un−1) =

{

1; un−1 = k,

un−1 + 1; otherwise .

Clearly, c′′ is a proper k-coloring of S(n − 1, k). Since the corresponding extreme
vertices of S(n, k) and S(n − 1, k) are assigned different colors, c and c′′ can be
combined to a proper k-coloring of S++(n, k). �

We continue with edge-colorings.

Proposition 5.2 For any n ≥ 2 and any k ≥ 2,

χ′(S+(n, k)) =

{

k; k is odd,

k + 1; k is even .

Proof. Recall from the proof of Theorem 4.1 that when k is odd, there exists a
k-edge-coloring of S(n, k) such that Cii...i 6= Cjj...j , i, j ∈ {1, . . . , k}, i 6= j, where
Cii...i is the set of colors assigned to the edges incident to the vertex ii . . . i. Color
each edge connecting the special vertex w with the vertex i . . . i, i ∈ {1, . . . , k}, with
the color of the set {1, . . . , k}\Ci...i. Hence χ′(S+(n, k)) = k for odd k.

Let k be even. Graph S+(n, k) has kn + 1 vertices. Clearly, a given color can
be used at most (kn + 1)/2 times. Since k is even, (kn + 1)/2 is not an integer,
which implies that a given color can be used at most kn/2 times. As S+(n, k) has
k(kn + 1)/2 edges it follows that more than k colors are needed for a proper edge-
coloring. By Vizing’s theorem we conclude that χ′(S(n, k)) = k + 1. �

Proposition 5.3 For any n ≥ 2 and any k ≥ 2, χ′(S++(n, k)) = k.
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Proof. If k is even, color each induced Kk of S++(n, k) with k − 1 colors and use
color k on the remaining edges.

Recall again from the proof of Theorem 4.1 that for k odd, there exists a k-edge-
coloring of S(n, k) such that Cii...i 6= Cjj...j , i, j ∈ {1, . . . , k}, i 6= j. Apply the same
theorem to color S(n − 1, k). Using the theorem twice, the corresponding extreme
vertices miss the same color. Color the edges connecting S(n, k) and S(n − 1, k)
with the missing color to acquire a proper edge-coloring of S++(n, k). �

It remains to consider the total-colorings.

Proposition 5.4 For any n ≥ 2 and k ≥ 2, χ′′(S+(n, k)) ≤ k + 2.

Proof. Let k be odd. First totally color each induced Kk of S+(n, k) with k colors
such that each extreme vertex receives a different color. Color the bridge edges with
k + 1. Next color the additional edges in S+(n, k) with the color of the extreme
vertex to which the additional edge is adjacent and replace the extreme vertex’s
color with the color k + 1. Finally, color the special vertex of S+(n, k) with k + 2.

When k is even, we can totally color each complete graph in S(n, k) with k + 1
colors in such a way that Cii...i 6= Cjj...j , i, j ∈ {1, . . . , k}, i 6= j. Color the additional
edges incident with i . . . i, i ∈ {1, . . . , k}, with this missing color. Finally, color the
bridge edges and the remaining special vertex with k + 2. �

Proposition 5.5 For any n ≥ 2 and k ≥ 2, χ′′(S++(n, k)) ≤ k + 2.

Proof. Totally color each complete subgraph Kk of S++(n, k) with at most k + 1
colors and use color k + 2 on the remaining edges. �

Proposition 5.6 For any n ≥ 2 and any odd k ≥ 3, χ′′(S++(n, k)) = k + 1.

Proof. Totally color complete subgraphs Kk of S++(n, k) with k colors and color
the bridge edges and the additional edges with k + 1. �

6 Concluding remarks

Theorem 4.1 has been independently obtained by Hinz and Parisse [6]. In the same
paper they also determine the edge-chromatic number of the general Tower of Hanoi
graphs, that is, the graphs of the Tower of Hanoi puzzle where more than 3 pegs are
allowed. Surprisingly, it turned out that the difficult case to treat was when there
are fewer discs than pegs in the corresponding Tower of Hanoi problem.
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