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Abstract

In [13] co graphs are introduced and a formula is given for the PI index of these graphs.

Based on this formula a new topological CI index is proposed. In this note it is observed

that co graphs are precisely isometric subgraphs of hypercubes alias partial cubes. Some

fact about partial cubes and their uses in chemical graph theory are listed. A couple of

comments on the CI index are also given.
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1 Introduction

PI index is a topological index introduced in [14] that has received considerable attention

in the last several years. In particular, its applications to QSRP/QSAR were studied

and compared with the Wiener and the Szeged index [15, 16]. The PI index has similar

discriminating power as the compared indices and in several cases it gives better result.

Moreover, PI index is in principle easier to compute than the Wiener and the Szeged

index.

The PI index has been computed for many classes of important molecular graphs,

see [1, 2, 5, 6, 7, 17]. Very recently, John, Vizitiu, Cigher and Diudea obtained a formula

for the computation of the PI index for the so-called co-graphs. In addition, motivated by

the formula a new topological CI index was proposed and computed for armchair tubes,

tori H[q, 2p] and V[q, 2p], and zig-zag tubes.

As it turns out, the co-graphs are precisely partial cubes, a class of graphs well-known

and extensively studied in metric graph theory. These graphs were successfully applied in

many areas of mathematics and elsewhere and were (independently) rediscovered several

times. Since the paper [13] is another such case it seems appropriate to bring some funda-

mental facts about partial cubes to chemical graph theory. We do this in the subsequent

section where it is in particular clarified that co-graphs are partial cubes. In the last

section we give some comments on the CI index are suggest a possible extension of this

index to non-bipartite graphs.

2 Co-graphs as partial cubes

Let us restate the definition of the co-graphs from [13]. Edges e = uv and f = xy of a

bipartite graph are defined to be codistant, e cof , if for some k, d(u, x) = d(v, y) = k and

d(u, y) = d(v, x) = k + 1 or vice. The relation co is reflexive and transitive yet need not

be transitive. The latter is demonstrate in [13] with a graph on 10 vertices. Note that

a smaller example demonstrating this fact is provided with the complete bipartite graph

K2,3. Now, a bipartite graph G is a co-graph if the relation co is transitive (equivalently,

if co is an equivalence relation).



Let us now turn to partial cubes—isometric subgraphs of hypercubes. (A graph H is

an isometric subgraph of a graph G if dH(u, v) = dG(u, v) for any vertices u, v ∈ H). The

Djoković-Winkler relation Θ is defined on the edge set of a graph G in the following way.

Let uv, xy ∈ E(G), then uvΘxy if

d(u, x) + d(v, y) 6= d(u, y) + d(v, x) .

In 1984 Winkler proved the following beautiful result [22]:

Theorem 2.1 A connected graph is a partial cube if and only if it is bipartite and the

relation Θ is transitive.

Hence in a partial cube G the relation Θ partitions the edge set of G into equivalence

classes that are called the Θ-classes of G.

It is clear that if two edges are in relation co then they are in relation Θ. On the other

hand, the following observation is straightforward, see, for instance, [12, Lemma 2.3]:

Lemma 2.2 Let G be a bipartite graph and uvΘxy. Then the notation can be chosen

such that d(u, x) = d(v, y) = d(u, y)− 1 = d(v, x) − 1.

Putting the above considerations together we have the following key observation:

Proposition 2.3 A graph G is a co-graph if and only if G is a partial cube.

We conclude the section by some relevant remarks about partial cubes.

• This is not the first time that partial cubes are applied in chemical graph theory.

Probably the first such application goes back to [20] where it was observed that any

benzenoid graph belongs to the class of partial cubes and consequently, the Wiener

index of a benzenoid graph can be computed by a simple approach.

• The observation that benzenoid graphs are partial cubes let to the so-called “cut-

method” that gave several successfully applications, see [3, 8, 9, 11, 21].

• The graph of an arbitrary phenylene (a chemical compounds in which the carbon

atoms form 6- and 4-membered cycles) is also a partial cube [19, 10].



3 On the CI index

Let G be a partial cube and E1, . . . , Ek its Θ-classes. Then the PI index of G, PI(G),

can be expressed as

PI(G) = ‖G‖2 −
k∑

i=1

|Ei|
2 , (1)

where ‖G‖ denoted the number of edges of G [13]. We note that (1) is a special case of

the formula that gives the PI index for any graph that admits the so-called PI-partition,

see [18] for details.

Suppose G is a plane bipartite graph with isometric faces. An edge f of a face F is in re-

lation Θ to its antipodal edge f ′ on F . Then a quasi-orthogonal cut with respect to a given

edge is the smallest subset of edges closed under this operation. (Note that in a partial

cube, quasi-orthogonal cuts are precisely the Θ-classes of G.) Motivated by formula (1),

the CI index was introduced in [13] for plane bipartite graphs with isometric faces using

the same formula, expect that the edge sets E1, . . . , Ek are now quasi-orthogonal cuts.

Note that CI(G) = 0 provided that G contains a single quasi-orthogonal cut. A

sporadic example of such a graph is shown in Fig. 1.

Figure 1: Graph G with CI(G) = 0

An infinite series of such examples is provided by complete bipartite graphs K2,2k+1,

k ≥ 1, that is, CI(K2,2k+1) = 0 for any k ≥ 1. On the other hand, CI(K2,2k) =

(4k)2 − 2 · (2k)2 = 8k2. This shows that similar graphs can have arbitrarily different

CI indices. Of course, the complete bipartite graphs K2,n are not chemical graphs and

it could be that such situations do not happen (or are rare) for chemical graphs. The

examples computed in [13] indicate that this might indeed be the case. In any case,

possible applications of the CI index to QSRP/QSAR still need to be explored.



Finally, it would certainly be desirable to expend the CI index to (plane) graphs that

are not bipartite. In this respect the approach from [4] using the so-called alternating

cuts seems to be a natural option.
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