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Abstract: Crossing numbers of Sierpiński graphs S(n,k ) and their re-
gularizations Sþ(n,k ) and Sþþ(n,k ) are studied. Drawings of these graphs
are presented and proved to be optimal for Sþ(n,k ) and Sþþ(n,k ) for every
n � 1 and k � 1. The crossing numbers of these graphs are expressed in
terms of the crossing number of Kkþ1. These are the first nontrivial families
of graphs of ‘‘fractal’’ type whose crossing number is known. � 2005 Wiley

Periodicals, Inc. J Graph Theory 50: 186–198, 2005
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1. INTRODUCTION

A drawing of a graph G is a pair of mappings ’ : VðGÞ ! R2 and

 : EðGÞ � ½0; 1� ! R2 where ’ is 1-1 and for each e ¼ uv 2 EðGÞ, the induced
——————————————————
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map  e : feg � ½0; 1� ! R2 is a simple polygonal arc joining ’ðuÞ and ’ðvÞ. It is

required that the arc  e is internally disjoint from ’ðVðGÞÞ.
The pair-crossing number, pair-cr(D), of a drawing D ¼ ð’;  Þ is the number

of crossing pairs of D, where a crossing pair is an unordered pair fe; fg of distinct

edges for which there exist s; t 2 ð0; 1Þ such that  ðe; sÞ ¼  ðf ; tÞ. The common

point  ðe; sÞ ¼  ðf ; tÞ in R2 is said to be a crossing point of e and f , and the pair

fðe; sÞ; ðf ; tÞg is referred to as a crossing. The total number of crossings of D is

called the crossing number cr(D) of D.

The pair-crossing number, pair-cr(G), of the graph G is the minimum pair-

crossing number of all drawings of G, and the crossing number, cr(G), of G is the

minimum crossing number of all drawings of G. It is an open question (see, e.g.,

[13]) if pair-cr(G) = cr(G) for every graph G. In this paper, we shall restrict

ourselves to cr(G) but all arguments work also for the pair-crossing number.

The exact value of the crossing number is known only for a few specific

families of graphs. Such families include generalized Petersen graphs PðN; 3Þ
[15], Cartesian products of all 5-vertex graphs with paths [7], and Cartesian

products of two specific 5-vertex graphs with the star K1;n [8]. For the Cartesian

products of cycles, it is conjectured that crðCm & CnÞ ¼ ðm� 2Þn for 3 � m � n

and has recently been proved in [2] that for any fixed m, the conjecture holds for

all n � mðmþ 1Þ. The conjecture has also been verified for m � 7 [1,14]. Also,

the crossing numbers of the complete bipartite graphs Kk;n are known for every

k � 6 and arbitrary n. We refer to recent surveys [9,12] for more details.

In this paper, we study the crossing number of Sierpiński graphs Sðn; kÞ and

their regularizations Sþðn; kÞ and Sþþðn; kÞ. They are defined in Section 2. In

contrast to all families mentioned above, whose crossing number has been

considered in the literature, graphs Sðn; kÞ do not have linear growth. Their

number of vertices grows exponentially fast in terms of n, and they exhibit certain

‘‘fractal" behavior. Therefore, it seems rather interesting that their crossing

number can be determined precisely, see Theorem 4.1.

Let us observe that crossing numbers of extended Sierpiński graphs Sþðn; kÞ
and Sþþðn; kÞ in Theorem 4.1 are expressed in terms of the crossing number of

the complete graph Kkþ1. It is known that crðKrÞ ¼ 0 for r � 4, crðK5Þ ¼ 1,

crðK6Þ ¼ 3, crðK7Þ ¼ 9, crðK8Þ ¼ 18, crðK9Þ ¼ 36, and crðK10Þ ¼ 60. Values of

crðKrÞ for r � 11 are not known.

2. SIERPIŃSKI GRAPHS AND THEIR REGULARIZATIONS

Sierpiński graphs Sðn; kÞ were introduced in [5], where it is, in particular,

shown that the graph Sðn; 3Þ, n � 1, is isomorphic to the graph of the Tower

of Hanoi with n disks. For more results on these graphs see [3,6]. The definition

of the graphs Sðn; kÞ was motivated by topological studies of the Lipscomb’s

space, which generalizes the Sierpiński triangular curve (Sierpiński gasket),

cf. [10,11].
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The Sierpiński graph Sðn; kÞ (n; k � 1) is defined on the vertex set f1; . . . ; kgn,
two different vertices u ¼ ðu1; . . . ; unÞ and v ¼ ðv1; . . . ; vnÞ; being adjacent if and

only if there exists an h 2 f1; . . . ; ng such that

(i) ut ¼ vt, for t ¼ 1; . . . ; h� 1;

(ii) uh 6¼ vh; and

(iii) ut ¼ vh and vt ¼ uh for t ¼ hþ 1; . . . ; n.

In the rest, we will shortly write hu1u2 . . . uni for ðu1; u2; . . . ; unÞ.
A vertex of the form hii . . . ii of Sðn; kÞ is called an extreme vertex. The extreme

vertices of Sðn; kÞ are of degree k � 1 while the degree of any other vertex is k.

Note also that in Sðn; kÞ, there are k extreme vertices and that jSðn; kÞj ¼ kn.

Let n � 2, then for i ¼ 1; . . . ; k, let Siðn� 1; kÞ be the subgraph of Sðn; kÞ
induced by the vertices of the form hiv2v3 . . . vni. Note that Siðn� 1; kÞ is

isomorphic to Sðn� 1; kÞ.
Let

�i; j ¼
1 i 6¼ j;
0 i ¼ j;

�

and set in addition

P i
j1 j2 ... jm

¼ �i; j1�i; j2 . . . �i; jm ð2Þ;

where the right-hand side term is a binary number, rhos � representing its digits.

Then we have [5]:

Proposition 2.1. Let hu1u2 . . . uni be a vertex of Sðn; kÞ. Then its distance from

the extreme vertex hii . . . ii is

dSðn;kÞðhu1u2 . . . uni; hii . . . iiÞ ¼ P i
u1u2 ... un

:

In the rest, in particular, when introducing regularizations of the Sierpiński

graphs, the following lemma will be useful.

Lemma 2.2. For n � 1 and k � 1, AutðSðn; kÞÞ is isomorphic to SymðkÞ, where
AutðSðn; kÞÞ acts as SymðkÞ on the extreme vertices of Sðn; kÞ.

Proof. Let ’ 2 AutðSðn; kÞÞ. Then the degree condition implies that ’
permutes the k extreme vertices of Sðn; kÞ. Let f ð’Þ 2 SymðkÞ be the

corresponding permutation. We claim that f : AutðSðn; kÞÞ ! SymðkÞ is a

bijection.

We first show that f is surjective. So let � 2 SymðkÞ and define

’ : VðSðn; kÞÞ ! VðSðn; kÞÞ with ’ðhi1i2 . . . iniÞ ¼ h�ði1Þ�ði2Þ . . .�ðinÞi. Clearly,

’ is 1-1. Let u; v 2 VðSðn; kÞÞ. Then u is adjacent to v if and only if

u ¼ hi1i2 . . . ik�1rs . . . si and v ¼ hi1i2 . . . ik�1sr . . . ri, where k 2 f1; . . . ; ng and
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r 6¼ s. But this is true if and only if ’ðuÞ ¼ h’ði1Þ . . .’ðik�1Þ’ðrÞ’ðsÞ . . .’ðsÞi is

adjacent to ’ðvÞ ¼ h’ði1Þ . . .’ðik�1Þ’ðsÞ’ðrÞ . . .’ðrÞi because ’ðrÞ 6¼ ’ðsÞ.
Hence ’ 2 AutðSðn; kÞÞ and, clearly, maps extreme vertices onto extreme

vertices.

To show injectivity, we prove that given ’ 2 AutðSðn; kÞÞ, ’ is the unique

automorphism with the image f ð’Þ. Let u ¼ hi1i2 . . . ini be an arbitrary vertex of

Sðn; kÞ, and set

DðuÞ ¼ ðdðu; h11 . . . 1iÞ; . . . ; dðu; hkk . . . kiÞÞ

be its vector of distances from the extreme vertices. Since ’ is an automorphism

that maps extreme vertices onto extreme vertices,

Dð’ðuÞÞ ¼ ðdð’ðuÞ; ’ðh11 . . . 1iÞÞ; . . . ; dð’ðuÞ; ’ðhkk . . . kiÞÞÞ:

Moreover, Proposition 2.1 implies that if u 6¼ v then DðuÞ 6¼ DðvÞ. Hence ’ðuÞ is

uniquely determined, so there is a unique automorphism (namely ’) with the

image f ð’Þ. &

We now introduce the extended Sierpiński graphs Sþðn; kÞ and Sþþðn; kÞ. The

graph Sþðn; kÞ, n � 1, k � 1, is obtained from Sðn; kÞ by adding a new vertex w,

called the special vertex of Sþðn; kÞ, and all edges joining w with extreme vertices

of Sðn; kÞ. The graphs Sþþðn; kÞ, n � 1, k � 1, are defined as follows. For n ¼ 1,

we set Sþþð1; kÞ ¼ Kkþ1. Suppose now that n � 2. Then Sþþðn; kÞ is the graph

obtained from the disjoint union of k þ 1 copies of Sðn� 1; kÞ in which the

extreme vertices in distinct copies of Sðn� 1; kÞ are connected as the complete

graph Kkþ1. By Lemma 2.2, this construction defines a unique graph. Figure 1

shows graphs Sð2; 4Þ, Sþð2; 4Þ, and Sþþð2; 4Þ.
Sþðn; kÞ is a k-regular graph on kn þ 1 vertices; in particular, Sþð1; kÞ ¼ Kkþ1.

Note also that Sþþðn; kÞ is a k-regular graph on kn�1ðk þ 1Þ vertices that can also

be described as the graph obtained from the disjoint union of a copy of Sðn; kÞ and

FIGURE 1. Graphs (a) Sð2; 4Þ, (b) Sþð2; 4Þ, and (c) Sþþð2; 4Þ:
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a copy of Sðn� 1; kÞ such that the extreme vertices of Sðn; kÞ and the extreme

vertices of Sðn� 1; kÞ are connected by a matching.

For a fixed k, we will write Sn, S
þ
n , and Sþþ

n for Sðn; kÞ, Sþðn; kÞ, and Sþþðn; kÞ,
respectively. Also, Siðn� 1; kÞ will be denoted by Sin�1. The graph Sþn consists of

k disjoint copies S1
n�1; . . . ; S

k
n�1 of Sn�1 and an additional vertex w. Let eij ¼ eji be

the edge joining Sin�1 and S
j
n�1, where i 6¼ j, and ei0 ¼ e0i the edge joining Sin�1

and w, so that

VðSþn Þ ¼
[k
i¼1

VðSin�1Þ [ fwg;

and

EðSþn Þ ¼
[k
i¼1

EðSin�1Þ [ feij j 0 � i < j � kg:

Similar notation is also used for Sþþ
n where w is replaced by S0

n�1.

Lemma 2.3. For k � 3 and n � 2, AutðSþn Þ � SymðkÞ and AutðSþþ
n Þ �

Symðk þ 1Þ, where AutðSþn Þ and AutðSþþ
n Þ act as SymðkÞ on the extreme vertices

of the subgraph Sn in Sþn and Sþþ
n , respectively.

Proof. Let � 2 SymðkÞ and let ’ be the unique automorphism of Sn that acts

on the extreme vertices of Sðn; kÞ as �, cf. Lemma 2.2. Then we can extend ’ to

an automorphism of Sþn , resp. Sþþ
n , by fixing f on the special vertex w of Sþn , resp.

the special copy S0
n�1 of Sn�1.

The blocks of the action of the automorphism group on the vertex set are

vertex sets of subgraphs Sin�1, and any permutation of these blocks defines a

unique automorphism of Sþn (or Sþþ
n ). This easily implies the statement of the

lemma. &

3. DRAWINGS OF Sþ
n , Sþþ

n , AND Sn

For k � 3 and every n � 1, Sierpiński graphs Sðn; kÞ and their regularizations

Sþðn; kÞ and Sþþðn; kÞ are planar, cf. [4]. We now describe explicit drawings of

these graphs for any k � 4. Our results are given in terms of the crossing number

of complete graphs, we refer to [16] for more information on crðKkÞ, k 2 N.

Lemma 3.1. For k � 4 and n � 1, the following holds:

(i) crðSþn Þ � k � crðSþn�1Þ þ crðKkþ1Þ �
kn � 1

k � 1
crðKkþ1Þ:

(ii) crðSþþ
n Þ � crðSþn Þ þ crðSþn�1Þ �

ðk þ 1Þkn�1 � 2

k � 1
crðKkþ1Þ:
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Proof. (i) For n ¼ 1, the graph Sþn is Kkþ1, so it can be (optimally) drawn with

crðKkþ1Þ crossings. For n � 2, we draw the graph Sþn inductively as follows. First

take an optimal drawing of Sþn�1. We may assume that the special vertex of Sþn�1 is

on the unbounded face of this drawing. If we ‘‘erase’’ a small neighborhood of the

special vertex in this drawing, we obtain a drawing D0 of Sn�1 together with

pendant edges incident with all extreme vertices and all sticking out to the infinite

face. Clearly, D0 has crðSþn�1Þ crossings. We now take an optimal drawing of Kkþ1

(with crðKkþ1Þ crossings). Select an arbitrary vertex w of this drawing to represent

the special vertex of Sþn . Around every remaining vertex v of Kkþ1, select a

sufficiently small disk �v so that only drawings of edges incident with v intersect

�v . For each such edge uv, follow its drawing from u towards v until �v is

reached for the first time, and then erase the rest of the drawing of this edge. Now,

add the drawing D0 inside �v and connect its pending edges with the points on

@�v where arcs coming from the outside have been stopped. By Lemma 2.3,

the resulting drawing is a drawing D of Sþn . Clearly, crðDÞ ¼ k � crðD0Þþ
crðKkþ1Þ ¼ k � crðSþn�1Þ þ crðKkþ1Þ. This implies the first inequality in (i). The

second inequality easily follows by induction.

The same construction in which also the special vertex is replaced by a

drawing of Sþn�1 shows (ii). &

In the next section, we will prove that the drawings described above are

optimal for every k � 4.

The construction from the proof of Lemma 3.1 can also be used for the graphs

Sn with a modification that an optimal drawing of Kk is used instead of Kkþ1. In

this way, we obtain, using Lemma 3.1(i),

crðSnÞ � k � crðSþn�1Þ þ crðKkÞ �
kðkn�1 � 1Þ

k � 1
crðKkþ1Þ þ crðKkÞ: ð1Þ

However, in contrast to the optimality of the construction for Sþn and Sþþ
n , these

drawings for the graphs Sn are not always optimal. This is shown for k ¼ 4 by the

following proposition whose upper bound is strictly smaller than the one in (1).

Proposition 3.2. For n � 3;

3

16
4n � crðSðn; 4ÞÞ � 1

3
4n � 12n� 8

3
:

Proof. Let k ¼ 4 and consider the drawings of Sð2; 4Þ and Sð3; 4Þ as shown in

Figure 2.

For n � 4, we inductively construct a drawing of Sðn; 4Þ from four copies of

Sðn� 1; 4Þ analogously, as the drawing of Sð3; 4Þ is obtained from the drawing of

Sð2; 4Þ. Let an be the number of crossings of this drawing of Sðn; 4Þ. Then a2 ¼ 0

and an ¼ 4an�1 þ 12ðn� 2Þ, n � 3, with the solution an ¼ 4n=3 � 4nþ 8=3.
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On the other hand, we are going to show that crðSð3; 4ÞÞ ¼ 12. Since

crðSðnþ 1; 4ÞÞ � 4crðSðn; 4ÞÞ, this will prove the lower bound.

Let D be a drawing of S ¼ Sð3; 4Þ. The graph S contains 16 disjoint copies of

K4, twelve of which do not contain extreme vertices of S. Let L1; . . . ; L12 be these

subgraphs. For i ¼ 1; . . . ; 12, we define a subgraph Lþi such that the following

conditions are satisfied:

(a) Li � Lþi .

(b) Lþi is a nonplanar graph and in the drawing of Lþi , there is a crossing

Ci ¼ fðei; siÞ; ð fi; tiÞg involving an edge ei 2 EðLiÞ.
(c) If j < i, then ej =2 EðLþi Þ.

The graphs Lþi can be obtained as follows. Suppose that Lþ1 ; . . . ; L
þ
i�1 have

already been defined and that their edges e1; . . . ; ei�1 have been selected. The

graph S0 ¼ S� fe1; . . . ; ei�1g is connected. If we contract all edges in S0 � Li,

the graph resulting from S after contraction is isomorphic to K5. This implies that

S0 contains a subgraph Lþi that is either homeomorphic to K5 or to the graph

obtained from K5 by splitting one of its vertices into a pair of adjacent vertices

x; y, each of which is adjacent to two vertices of the 4-clique Li. Clearly, Lþi
satisfies (a) and (c), and we leave it to the reader to verify (b).

Condition (c) implies that all crossings Ci are distinct. This shows that

crðDÞ � 12 and completes the proof. &

4. LOWER BOUNDS

In this section, we prove the main result of this paper. As before, we shall

consider k � 2 as being fixed and will omit it from the notation of Sn, S
þ
n , and

Sþþ
n .

FIGURE 2. Drawings of Sð2; 4Þ and Sð3; 4Þ.
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Theorem 4.1. For k � 2 and n � 1,

(i) crðSþn Þ ¼
kn � 1

k � 1
crðKkþ1Þ:

(ii) crðSþþ
n Þ ¼ ðk þ 1Þkn�1 � 2

k � 1
crðKkþ1Þ:

By Lemma 3.1, we only have to prove that the values on the right-hand side of

(i) and (ii) are lower bounds for the crossing number. The proof is deferred to the

end of this section.

Below we will introduce some notation that applies to all three families Sn, S
þ
n ,

and Sþþ
n . Recall that if i 6¼ j, there is precisely one edge, denoted by eij ¼ eji,

connecting Sin�1 with S
j
n�1. The edge eij is incident with an extreme vertex of Sin�1

and this vertex is called the jth extreme vertex of Sin�1 and denoted by zij. With this

notation, eij ¼ eji ¼ zijz
j
i. We also consider Sn as a subgraph of Sþn , and then the

extreme vertices of Sn are precisely the vertices zi0, 1 � i � k.

Lemma 4.2. For n � 1, Sn contains a subdivision of the complete graph Kk in

which vertices of degree k � 1 are precisely the extreme vertices of Sn.

Proof. The proof is by induction on n. The claim is trivially true for S1 ¼ Kk.

For n � 2, the subdivision of Kk in Sn is obtained by taking the union of all edges

eij ð1 � i < j � kÞ and all paths in subdivision cliques in Sin�1 joining the extreme

vertex zi0 with zij, j =2 f0; ig, i ¼ 1; . . . ; k. &

In what follows, we fix a subdivision of Kk in every Sin�1 and denote by Pi
j‘ the

path in this subdivision joining the extreme vertices zij and zi‘.

Lemma 4.3. Let k � 3 and n � 1. If �0; . . . ; �k are integers such that

�i 2 f0; . . . ; kgnfig for i ¼ 0; . . . ; k, then Sþþn contains a subgraph Kð�0; . . . ; �kÞ,
which is isomorphic to a subdivision of the complete graph Kkþ1 in which vertices

of degree k are precisely the vertices zi�i , i ¼ 0; . . . ; k. There are kkþ1 distinct

choices for parameters �0; . . . ; �k; they give rise to kkþ1 distinct subdivisions of

Kkþ1. Every edge eij is in every such subdivision. Every edge contained in some

path Pi
jl is in precisely 2kk of them, while any other edge of Sþþ

n is in none of these

subdivisions.

Proof. The subgraph Kð�0; . . . ; �kÞ consists of all paths Rij ¼ Pi
�ij

[
feijg [ P

j
i�j

, 0 � i < j � k.

The claims in the second part of the lemma are easy to verify. Let us just

observe that the path Pi
jl is in Kð�0; . . . ; �kÞ if and only if �i ¼ j or �i ¼ l. &

Let D be a drawing. For subdrawings K;L of D, let crðK;LÞ be the number of

crossings involving an edge of K and an edge of L. We write crðKÞ ¼ crðK;KÞ.
We also allow K or L be a subgraph of S, where S is one of the graphs Sn, S

þ
n , and

Sþþ
n . In that case, crðK;LÞ refers to their drawings under D.
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Two drawings, D and D0, are said to be isomorphic if there is a homeomor-

phism of the extended plane (the plane plus the point at the infinity, which is

homeomorphic to the 2-sphere) mapping D onto D0.
Let D be a drawing of S, where S is one of the graphs Sn, S

þ
n , and Sþþ

n . For

every Sin�1 � S, let Di be the induced drawing of Sin�1.

Lemma 4.4. Let k � 4 and let D be a drawing of Sþþ
n . Then there is a drawing

D0 of Sþþ
n such that

(a) For i ¼ 0; . . . ; k, the subdrawings Di and D0
i of Sin�1 in D and D0

(respectively) are isomorphic.

(b) For i 6¼ j, crðD0
i;D0

jÞ ¼ 0 and D0
j is contained in the unbounded face of D0

i.

(c) crðD0Þ � crðDÞ.
Proof. For i ¼ 0; . . . ; k, the graph Bi ¼ Sþþ

n � Sin�1 is isomorphic to Sn. For

every extreme vertex z
j
‘ of S

j
n�1 in Bi � Sn, let Zi

j‘ be the subgraph consisting of k

(or k � 1 if ‘ ¼ i) internally disjoint paths Rm ¼ P
j
‘m [ fejmg [ Pm

ji (m 6¼ i; j) and

Ri ¼ P
j
‘i. Finally, let Wi

j‘ be the subgraph of Sþþ
n , which is the union of Sin�1, Zi

j‘,

and all edges eim ðm 6¼ iÞ joining Sin�1 with Zi
j‘. Then Wi

j‘ is isomorphic to a

subdivision of the graph Sþn�1 in which z
j
‘ plays the role of the special vertex in

Sþn�1. Among all such subgraphs Wi
j‘ (i; j; ‘ distinct), let Siþn�1 be one whose

induced drawing has the minimum number of crossings in D. Let Dþ
i be a

drawing isomorphic to the induced drawing of Siþn�1 such that the special vertex is

on the outer face of the drawing.

Drawings Dþ
0 ; . . . ;Dþ

k can be combined (as explained in the proof of Lemma 3.1)

so that a drawing D0 of Sþþ
n satisfying (a) and (b) is obtained and such that

crðD0Þ ¼
Xk
i¼0

crðDþ
i Þ þ crðKkþ1Þ: ð2Þ

We introduce the following notation, where all crossing numbers are taken with

respect to the drawing D:

ci :¼ crðDiÞ;
cij :¼ crðDi;DjÞ;
fi :¼ crðDi;FiÞ where Fi ¼ feij j j 6¼ ig;
fi :¼ crðDi;FiÞ where Fi ¼ fej‘ j j 6¼ ‘; i =2 fj; ‘gg;
fij :¼ crðFi n feijg;Fj n fejigÞ:

Clearly,

crðDÞ �
Xk
i¼0

ci þ
Xk
i¼0

fi þ
Xk
i¼0

fi þ
1

2

Xk
i¼0

X
j6¼i

ðcij þ fijÞ: ð3Þ

Next, let cþi ¼ crðDþ
i Þ (where the number of crossings is counted with respect to

the drawing D0). Then
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cþi ¼ ci þ fi þ minfcrðDi; Z
i
j‘Þ j j 6¼ i; ‘ 6¼ jg

� ci þ fi þ
1

k2

X
j6¼i

X
‘ 6¼j

crðDi; Z
i
j‘Þ

ð4Þ

� ci þ fi þ
1

k2

�X
j6¼i

ðk þ 2Þcij þ 2kfi

�
: ð5Þ

Inequality (4) holds since the minimum is always less than or equal to the

average, while (5) follows from the observation that an edge of S
j
n�1 (j 6¼ i) is in

at most two subgraphs Zi
jl and in at most k subgraphs Zi

ml (m =2 fi; jg), while an

edge ejm (i =2 fj;mg) belongs to precisely 2k subgraphs Zi
jl and Zi

ml.

Combining (2)–(5), we get

FIGURE 3. Subgraph Wi
j‘.

crðDÞ � crðD0Þ þ crðKkþ1Þ ¼ crðDÞ �
Xk
i¼0

cþi

�
Xk
i¼0

fi þ
Xk
i¼0

X
j6¼i

�1

2
� k þ 2

k2

�
cij �

2

k

Xk
i¼0

fi þ
1

2

Xk
i¼0

X
j6¼i

fij

¼ k � 2

k

Xk
i¼0

fi þ
k2 � 2k � 4

2k2

Xk
i¼0

X
j6¼i

cij þ
1

2

Xk
i¼0

X
j6¼i

fij: ð6Þ
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For k ¼ 4, we have

crðDÞ � crðD0Þ � 1

2

X4

i¼0

fi þ
1

8

X4

i¼0

X
j6¼i

cij � 1: ð7Þ

If cij ¼ 0 for every i and j, and every fi ¼ 0, then a drawing isomorphic to D
satisfies (a)–(c). Otherwise, (7) implies that crðDÞ � crðD0Þ > �1. Since the left-

hand side is an integer, this implies that crðD0Þ � crðDÞ. This completes the proof

for k ¼ 4.

Suppose now that k � 5. By (6), it remains to show that

1

2

Xk
i¼0

X
j6¼i

fij þ
k � 2

k

Xk
i¼0

fi þ
k2 � 2k � 4

2k2

Xk
i¼0

X
j6¼i

cij � r ð8Þ

where r ¼ crðKkþ1Þ.
Let us consider all kkþ1 subgraphs Kð�0; . . . ; �kÞ of Sþþ

n isomorphic to

subdivisions of Kkþ1; see Lemma 4.3. A crossing (in D) of two edges of

Kð�0; . . . ; �kÞ is said to be pure if the two edges lie on subdivided edges of Kkþ1

that are not incident in Kkþ1. Any drawing of Kð�0; . . . ; �kÞ has at least r pure

crossings.

Let C ¼ fðe; sÞ; ðf ; tÞg be a crossing in D. Let us estimate the maximum

number of subgraphs Kð�0; . . . ; �kÞ in which C is a pure crossing.

(i) If e 2 Fi n feijg and f 2 Fj n fejig, where i 6¼ j, then C is a pure crossing

in at most kkþ1 subgraphs Kð�0; . . . ; �kÞ.
(ii) If e 2 EðSin�1Þ and f ¼ ejl, where i =2 fj; lg, then by Lemma 4.3, C can be

a pure crossing in at most 2kk subgraphs Kð�0; . . . ; �kÞ.
(iii) If e 2 EðSin�1Þ and f 2 EðSjn�1Þ, where i 6¼ j, then C can be a pure

crossing of Kð�0; . . . ; �kÞ only when e 2 EðPi
abÞ, f 2 EðPj

cdÞ, �i 2 fa; bg,

and �j 2 fc; dg. So, 4kk�1 is an upper bound for the number of such cases.

The bounds derived in (i)–(iii) imply that

kkþ1 r � kkþ1 1

2

Xk
i¼0

X
j6¼i

fij þ 2kk
Xk
i¼0

fi þ 4kk�1
Xk
i¼0

X
j6¼i

cij: ð9Þ

Clearly, 2=k � ðk � 2Þ=k (for k � 4) and 4=k2 � ðk2 � 2k � 4Þ=ð2k2Þ (for

k � 5). Therefore (9) implies (8). The proof is complete. &

Inequalities used at the very last step of the above proof are strict for k � 5. If

either some fi 6¼ 0 or some cij 6¼ 0, this would imply that the lower bound would

be strictly greater than the upper bound of Lemma 4.4 (if D is an optimal
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drawing). This implies that every optimal drawing of Sþþ
n (for k � 5) satisfies the

condition stated for D0 in Lemma 4.4(b).

Proof of Theorem 4.1. We may assume that k � 4. By Lemma 3.1, we only

have to prove that the values in (i) and (ii) are lower bounds for the crossing

number. The proof is by induction on n. The case when n ¼ 1 is trivial, so we

assume that n � 2.

By Lemma 4.4, there is an optimal drawing D of Sþþ
n such that condition (b) of

the lemma holds for its subdrawings D0; . . . ;Dk. In other words, crðDi;DjÞ ¼ 0

and Dj is in the unbounded face of Di for every i 6¼ j. This implies that

crðDÞ �
Xk
i¼0

crðDþ
i Þ þ crðKkþ1Þ � ðk þ 1ÞcrðSþn�1Þ þ crðKkþ1Þ: ð10Þ

By the induction hypothesis for (i), crðSþn�1Þ � kn�1�1
k�1

crðKkþ1Þ, so (10) implies

(ii).

To prove (i), suppose that there is a drawing D0 of Sþn with crðD0Þ <
ðkn � 1Þ=ðk � 1ÞcrðKkþ1Þ. As in the proof of Lemma 3.1, we see that D0 and

a drawing of Sþn�1 can be combined in such a way as to get a drawing D of Sþþ
n

with

crðDÞ ¼ crðD0Þ þ crðSþn�1Þ

<
kn � 1

k � 1
crðKkþ1Þ þ

kn�1 � 1

k � 1
crðKkþ1Þ

¼ ðk þ 1Þkn�1 � 2

k � 1
crðKkþ1Þ:

This is a contradiction to the already proved equality in (ii). &
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