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Abstract

A general description of the cut method is presented and an overview of its applications in

chemical graph theory is given. Applications include the Wiener index, the Szeged index, the

hyper-Wiener index, the PI index, the weighted Wiener index, Wiener-type indices, and classes of

chemical graphs such as trees, benzenoid graphs and phenylenes. A computation of the Wiener

index of an arbitrary connected graph using its canonical metric representation is described.

Algorithmic issues are also briefly mentioned as well as are the recently introduced CI index and

related polynomials.
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1 Introduction

Let us describe the cut method in the following general form. For a given (molecular) graph G,

1. partition the edge set of G into classes F1, . . . , Fk, call them cuts, such that each of the

graphs G − Fi, i = 1, . . . , k, consists of two (or more) connected components; and

2. use properties (of the components) of the graphs G − Fi to derive a required property of

G.

The cut method can hardly be studied in the above generality, instead we are interested in

classes of (chemical) graphs that allow applicable partitions into cuts and in relevant properties.

Often a property of G, that we are interested in, is some graph invariant, for instance the Wiener

index. We could be interested to obtain expressions for such invariants for certain (chemically)

important classes of graphs or to develop fast algorithms for computing them.

The cut method turned out to be especially useful when if comes to metric properties of

graphs. The key idea how the graphs G − Fi can be used to obtain such properties of G is to

find an isometric embedding f : G → H, where H is a properly selected target graph and to use

the image f(G) to obtain distance properties of G. The key subidea is then to select H to be a

Cartesian product graph. We introduce and explain the concepts mentioned in this paragraph

in Section 2.

The most prominent class of chemical graphs for which the cut method turned out to be

extremely fruitful is the class of benzenoid graphs. In fact, the 1995 paper [40] and the elabo-

ration of its method for the computation of the Wiener index of benzenoid graphs (and, more

generally, of partial cubes) from [24] can be considered as the starting point (at least in this

context) of the cut method. We explain the method and its consequences in Section 3.

A similar approach that works for the Wiener index can be applied to the Szeged index as

well. This is presented in Section 4. We continue with a section on the hyper-Wiener index.

Again, the cut method is applicable, however, in this case it is slightly more involved than

the corresponding methods for the Wiener and the Szeged index because the computation of

the hyper-Wiener index requires not only graph distance but also squares of graphs distances.

When arbitrary powers of distances are summed up, one speaks of Wiener-type indices. The

cut method is once again fruitful by providing recursive theorems between such indices, see



Section 6.

In the subsequent section we consider the recently studied PI index in which case the cut

method is already inherent in the definition of the index. Then, in Section 8 we introduce the

notion of the weighted Wiener index, give an application of it, and use it for the expression

of the Wiener index of an arbitrary graph. This last result uses a deep theory of the so-called

canonical metric representation of a graph. In the concluding section several other topics related

to the cut method are briefly mentioned.

2 Preliminaries

Let G = (V,E) be a connected graph and u, v ∈ V . Then the distance dG(u, v) between u and v

is the number of edges on a shortest u, v-path. (Other graph distances exist, some of then also

of interest in mathematical chemistry, but they will are not treated in this paper.)

The Cartesian product G� H of graphs G and H is probably the most important graph

product and is defined in the following way:

• V (G� H) = V (G) × V (H);

• E(G� H) consists of pairs (g, h)(g′, h′) where either g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G)

and h = h′.

The graphs G and H are called the factors of G� H. The Cartesian product is commutative and

associative. The latter property implies that products of several factors are well-defined. The

fundamental metric property of the Cartesian product is that the distance function is additive:

dG �H((g, h), (g′ , h′)) = dG(g, g′) + dH(h, h′) .

This property has been independently discovered several times, see for instance [51]. For more

in-depth information on the Cartesian product operation see the book [28].

The simplest (yet challenging in many ways) Cartesian products are products in which all

factors are the complete graph on two vertices K2. These graphs are known as hypercubes. More

precisely, the n-cube Qn is the Cartesian product of n factors K2, that is, Qn = �
n
i=1K2. It

is important to observe that the n-cube Qn can be equivalently described as the graph whose

vertex set consists of all n-tuples b1b2 . . . bn with bi ∈ {0, 1}, where two vertices are adjacent if

the corresponding tuples differ in precisely one position.



A subgraph H of a graph G is isometric if for any vertices u and v of H,

dH(u, v) = dG(u, v) .

The class of graphs that consists of all isometric subgraphs of hypercubes turns out to be very

important and has got the name partial cubes. We point out that (of course) hypercubes,

even cycles, trees, median graphs (in particular acyclic cubical complexes), benzenoid graphs,

phenylenes, and Cartesian products of partial cubes are all partial cubes.

Finally, in Fig. 1 the first three graphs from the circumcoronene series, Hk, k ≥ 1, are shown.

Figure 1: The first three graphs, H1 H2, and H3, from the circumcoronene series

3 Wiener index

Recall that the Wiener index W (G) of a graph G = (V,E) is defined with

W (G) =
1

2

∑

u∈V

∑

v∈V

dG(u, v) .

As we have already mentioned, the cut method was first implemented for a calculation of the

Wiener index of benzenoid graphs. In fact, the method works for any partial cube as the next

theorem asserts. For its formulation we need the following concepts.

Let G be a connected graph. Then e = xy and f = uv are in the Djoković-Winkler relation

Θ [13, 50] if

dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u) .

The relation Θ is always reflexive and symmetric, and is transitive on partial cubes. Therefore,

Θ partitions the edge set of a partial cube G into equivalence classes, called Θ-classes. Now:



Theorem 3.1 ([40]) Let G be a partial cube and let F1, . . . , Fk be its Θ-classes. Let n1(Fi) and

n2(Fi) be the number of vertices in the two connected components of G − Fi. Then

W (G) =

k
∑

i=1

n1(Fi) · n2(Fi) .

The proof of this theorem is short and typical for the cut method, hence it is worth to

reproduce it here. So let G be a partial cube isometrically embedded into Qk. (Note that the

number of Θ-classes is equal to the dimension of the hypercube into G is embedded.) Then a

vertex u of G can be considered as a binary k-tuple u = u1u2 . . . uk, and the distance between

two vertices is the number of positions in which they differ. For b, b′ ∈ {0, 1}, let δ(b, b′) = 0 if

b = b′, and δ(b, b′) = 1 if b 6= b′. Having this in mind we can compute as follows:

W (G) =
1

2

∑

u∈V

∑

v∈V

dG(u, v)

=
1

2

∑

u∈V

∑

v∈V

dQk
(u, v)

=
1

2

∑

u∈V

∑

v∈V

k
∑

i=1

δ(ui, vi)

=
k
∑

i=1

(

1

2

∑

u∈V

∑

v∈V

δ(ui, vi)

)

=
k
∑

i=1

n1(Fi) · n2(Fi) .

In benzenoid graphs the Θ-classes are precisely their orthogonal cuts. Hence if C is the set

of orthogonal cuts of a benzenoid graph B, and for C ∈ C we let n1(C) and n2(C) be the

number of vertices in the two components of G − C, respectively, then Theorem 3.1 specializes

as follows [40, 24]:

W (B) =
∑

C∈C

n1(C) · n2(C) . (1)

We illustrate the use of (1) on the coronene H2, see Fig. 2.

The coronene H2 has three horizontal cuts, two of them being symmetric. Each of the these

two cuts contributes 5 · 19 to W (H2), while contribution of the remaining cut is 12 · 12. Hence

horizontal cuts contribute 2 · 5 · 19 + 12 · 12 = 334. Clearly, there are two more such groups of

cuts, hence we conclude that W (H2) = 3 · 334 = 1002.

The above example demonstrates that the cut method (1) is very simple to apply and hence

it is not surprising that it turned out to be extremely useful for obtaining closed expressions



Figure 2: Coronene H2 and two of its cuts

for the Wiener index of families of benzenoid graphs as was demonstrated in [22, 41]. The cut

method was further applied in [16, 17] to obtain rules for the comparison of the Wiener index

of various benzenoid isomers. For another aspect and application of Theorem 3.1 see [27].

A particular application of (1) is a straightforward, short proof of the following theorem that

was obtained independently by two groups of authors.

Theorem 3.2 ([24, 48]) For the graphs from the circumcoronene series, Hk, k ≥ 1,

W (Hk) =
1

5

(

164k5 − 30k3 + k
)

.

Before Theorem 3.2 was proved, it was an open problem to obtain a closed formula for

W (Hk). The cut method turned the problem into a straightforward computation, as the above

computation for W (H2) indicates.

In [20] Gutman and Cyvin demonstrated that several other non-distance properties of a

benzenoid graph can be deduced from its cuts. The properties include the number of vertices

of degree two and the number of internal vertices. Moreover, they also studied the so-called

edge-cut sequences that are defined as the vectors whose components are the numbers of edges

in cuts. Their main result asserts that any partition of the number 5h+1 into 2h+1 parts, each

summand being an integer at least 2, yields an edge-cut sequence of some benzenoid graph. We

note that the edge-cut sequences were recently studied for all partial cubes in [42]. In this case

the vector corresponding to a partial cube contains the number of edges in its Θ-classes.

We conclude this section by pointing out that Chepoi, Deza and Grishukhin [6] extended

Theorem 3.1 from partial cubes to the class of all L1-graphs that contains also many (chemical)

non-bipartite graphs. Here, a graph G is an L1-graph if it admits a scale embedding into a

hypercube, where a scale embedding of H into G is a mapping β : V (H) → V (G) such that



dG(β(u), β(v)) = λdH(u, v) holds for some fixed integer λ and all vertices u, v ∈ V (H). Hence a

scale embedding with λ = 1 is an isometric embedding.

4 Szeged index

The Szeged index was introduced in [31] in the following way. For an edge e = uv of a connected

graph G let Wuv = {x ∈ V (G) | dG(x, u) < dG(x, v)}. The set Wvu is defined analogously. Then

the Szeged index of G is defined as:

Sz(G) =
∑

uv∈E(G)

|Wuv| · |Wvu| .

Now, let uv be an edge of a partial cube G and suppose that it belongs to the Θ-class F . Then

it follows easily from definitions that Wuv and Wvu induce the connected components of G−F .

Therefore, Theorem 3.1 has its variant for the Szeged index:

Theorem 4.1 Let G be a partial cube and let F1, . . . , Fk be its Θ-classes. Let n1(Fi) and n2(Fi)

be the number of vertices in the two connected components of G − Fi. Then

Sz(G) =

k
∑

i=1

|Fi| · n1(Fi) · n2(Fi) .

Theorem 4.1 was elaborated in [23] for benzenoid graphs. Since the Θ-classes of a benzenoid

graph are its cuts, the result specializes to:

Corollary 4.2 ([23]) Let B be a benzenoid graph and C the set of its orthogonal cuts. For C ∈ C

let n1(C) and n2(C) be the number of vertices in the two components of G − C, respectively.

Then

Sz(B) =
∑

C∈C

|C| · n1(C) · n2(C) .

Consider again the coronene H2 from Fig. 2. The computation of Sz(H2) goes along the

same lines as the computation of W (H2), except that now we need to multiply each contribution

with the size of the corresponding cut. Therefore,

Sz(H2) = 3 ·
(

3 · 2 · 5 · 19 + 4 · 12 · 12
)

= 3438 .

The cut method was then used on several classes of benzenoid graphs, in particular on the

challenging circumcoronene series.



Theorem 4.3 ([23]) For the graphs from the circumcoronene series, Hk, k ≥ 1,

Sz(Hk) =
3

2
k2
(

36k4 − k2 + 1
)

.

5 Hyper-Wiener index

The hyper-Wiener index WW was proposed by Randić in [47]. His definition was originally

given only for trees and was extended to all connected graphs G = (V,E) by Klein, Lukovits

and Gutman [44] as follows:

WW (G) =
1

4

∑

u∈V

∑

v∈V

dG(u, v) +
1

4

∑

u∈V

∑

v∈V

dG(u, v)2 . (2)

Note that the first term is one half of the Wiener index, while in the second we need to compute

the squares of distances. The cut method is applicable also in this case, but because squares of

distances are involved, the method, that we describe next, becomes slightly more involved.

Let G be a partial cube and let F1, . . . , Fk be its Θ-classes. For each Θ-class Fi let uivi be a

representative of Fi. Then for any 1 ≤ i < q let

n11(Fi, Fj) = |Wuivi
∩ Wujvj

| , n22(Fi, Fj) = |Wviui
∩ Wvjuj

| ,

and

n12(Fi, Fj) = |Wuivi
∩ Wvjuj

| , n21(Fi, Fj) = |Wviui
∩ Wujvj

| .

Now we have the following theorem.

Theorem 5.1 ([34]) Let G be a partial cube with Θ-classes F1, . . . , Fk and representatives uivi ∈

Fi, 1 ≤ i ≤ k. Then

WW (G) = W (G) +

k
∑

i=1

k
∑

j=i+1

(

n11(Fi, Fj) · n22(Fi, Fj) + n12(Fi, Fj) · n21(Fi, Fj)
)

. (3)

The key step in proving Theorem 5.1 is to show that

∑

u∈V

∑

v∈V

dG(u, v)2 = 2W (G) + 4

k
∑

i=1

k
∑

j=i+1

(

n11(Fi, Fj) · n22(Fi, Fj) + n12(Fi, Fj) · n21(Fi, Fj)
)

.

The result then follows immediately by plugging the last equality into (2).

Theorem 5.1 was also derived in [39] as a consequence of the main theorem.



(a)

(d)

(b)

(e)

(c)

(f)

Figure 3: Types of pairs of cuts in the coronene

For an example consider again the coronene. It contains 9 cuts, hence there are
(9
2

)

= 36

pairs of cuts to be considered. These cuts can be grouped into 6 types that are shown in Fig. 3.

There are 6, 12, 6, 6, 3, and 3 pairs of cuts in the cases (a), (b), (c), (d), (e), and (f),

respectively. Hence the second term of Theorem 5.1 gives

6(5·12+0·7)+12(4·11+1·8)+6(2·16+3·3)+6(5·5+0·14)+3(5·5+0·14)+3(4·4+8·8) = 1695 .

Since W (H2) = 1002 we conclude by Theorem 5.1 that WW (H2) = 2697.

We have already mentioned that a closed expression for the Wiener index of the circum-

coronene series was quite a challenge. Hence an even more challenging task was to obtain an

expression for the hyper-Wiener index of this class of chemical graphs. The cut method is ap-

plicable also this case, but the computations are not so short any more—the majority of the

paper [52] consists of the computation for the following result.

Theorem 5.2 ([52]) For the graphs from the circumcoronene series, Hk, k ≥ 1,

WW (Hk) =
548

15
k6 +

82

5
k5 −

55

6
k4 − 3k3 +

17

15
k2 +

1

10
k .

For further information on the cut method applied on the hyper-Wiener index see [43].



6 Wiener-type indices

Let λ be an arbitrary real (or complex) number. Then the Wiener index can be widely gener-

alized by the following definition proposed by Gutman in [18]:

Wλ(G) =
∑

u,v

dG(u, v)λ .

Of course, W1(G) = W (G), but this definition covers several additional previously studied

topological indices, for instance W−2, W−1, and W−1/2, cf. [12]. Note also that WW (G) =

1
2W1(G) + 1

2W2(G).

Using the cut method the following theorem can be proved.

Theorem 6.1 ([38]) Let B be a benzenoid graph and C the set of its orthogonal cuts. Then

Wλ+1(B) = |C|Wλ(B) −
∑

C∈C

Wλ(B − C) .

Using Theorem 6.1, the following relation between the hyper-Wiener index and the Wiener

index of a benzenoid graph (and again, of an arbitrary partial cube) can be deduced.

Corollary 6.2 ([38]) Let B be a benzenoid graph and C the set of its orthogonal cuts. Then

WW (B) =
|C| + 1

2
W (B) −

1

2

∑

C∈C

W (B − C) .

In fact, Theorem 6.1 and Corollary 6.2 hold for arbitrary partial cubes. See [39] for the proof

(using the cut method, of course) as well as for additional applications of Theorem 6.1.

7 PI index

The PI index is a recently introduced index [33] that received a considerable attention, see for

instance [3, 8, 32]. For an edge e = uv of a connected graph G let mu(e|G) be the number of

edges of G whose distance to u is smaller than the distance to v; define mv(e|G) analogously.

Then the PI index of G is:

PI(G) =
∑

e=uv∈E(G)

(

mu(e|G) + mv(e|G)
)

.

(See [2] for three different variations of this concept.)



Recall that for an edge e = uv of a connected graph G we denote with Wuv the set of vertices

of G that are closer to u than to v. By abuse of language we also identify Wuv with the subgraph

of G induced by the vertices from Wuv. Suppose now that uv is an edge of a bipartite graph G

and x a vertex of G. Then d(x, u) = d(x, v) would yield an odd cycle in G. Therefore, an edge

that is closer to u than to v lies in Wuv and an edge that is closer to v than to u lies in Wvu.

Consequently, if G is a bipartite graph, then its PI index can be equivalently expressed as

PI(G) =
∑

uv∈E(G)

(

|E(Wuv)| + |E(Wvu)|
)

.

Let G be a partial cube and uv and xy edges from the same Θ-class. Then it easily follows

from definitions (and is also well-known) that the notation can be selected such that Wuv = Wxy

and Wvu = Wyx. Hence the contribution of any edge from a given Θ-class to PI(G) is the

same. Therefore, the cut method is applicable by partitioning E(G) into Θ-classes. As we have

pointed out earlier, in the case of benzenoid graphs the Θ-classes are their orthogonal cuts. This

is precisely the idea followed by John, Khadikar and Singh in [29]. But the cut method works

much more generally as shown in [36]. This general cut method for the PI index goes as follows.

For a graph G, a partition E1, . . . , Ek of E(G) is a PI-partition if for any i, 1 ≤ i ≤ k, and

for any uv, xy ∈ Ei we have Wuv = Wxy and Wvu = Wyx. Let also uWv be the set of all vertices

that are at equal distance from u and v and for X ⊆ V (G) let ∂X denote the set of edges of G

with one end vertex in X and the other not in X. Then we have:

Theorem 7.1 ([36]) Let E1, . . . , Ek be a PI-partition of a graph G and let uivi ∈ Ei, 1 ≤ 1 ≤ k,

be representatives of Ei’s. Then

PI(G) = |E(G)|2 −
k
∑

i=1

|Ei| ·
(

|Ei| + |E(ui
Wvi

)| + |∂ ui
Wvi

|
)

.

If G is bipartite then ui
Wvi

= ∅ and therefore ∂ ui
Wvi

= ∅. Thus:

Corollary 7.2 ([36]) Let G be a bipartite graph. Then using the notation of Theorem 7.1,

PI(G) = |E(G)|2 −
k
∑

i=1

|Ei|
2 .



8 Weighted Wiener index and canonical metric representation

In this section we give a general theorem proved in [35] for the Wiener index of an arbitrary

connected graph. In this way Theorem 3.1 becomes a very special case.

In order to give an appealing formulation of the announced theorem, the concept of the

weighted Wiener index is useful. A weighted graph (G,w) is a graph G together with a weight

function w : V (G) → R. The Wiener index W (G,w) of a weighted graph (G,w) is defined

as [37]:

W (G,w) =
1

2

∑

u∈V

∑

v∈V

w(u) w(v) dG(u, v) .

Clearly, if all the weights are 1 then W (G,w) = W (G).

Another concept that we need for the main theorem is the canonical metric representation

of a graph due to Graham and Winkler [15].

Recall that the relation Θ is always reflexive and symmetric. Let Θ∗ be the transitive closure

of Θ. Then Θ∗ is an equivalence relation on E(G) for any connected graph and it partitions the

edge set of G into Θ∗-classes. For computing Θ∗-classes it is useful to know the following basic

facts. Since two adjacent edges of G are in relation Θ if and only if they belong to a common

triangle, all the edges of a given complete subgraph of G will be in the same Θ∗-class. Also,

since an edge e of an isometric cycle C of G is in relation Θ with its antipodal edge(s) on C, all

the edges of an odd cycle will be in the same Θ∗-class.

The canonical metric representation α of a connected graph G is defined as follows.

• Let G be a connected graph and F1, . . . , Fk its Θ∗-classes.

• Define quotient graphs G/Fi, i = 1, . . . , k, as follows. Its vertices are the connected com-

ponents of G − Fi, two vertices C and C ′ being adjacent if there exist vertices x ∈ C and

y ∈ C ′ such that xy ∈ Fi.

• Define α : G → �
k
i=1G/Fi with

α : u 7→ (α1(u), . . . , αk(u)) ,

where αi(u) is the connected component of G − Fi that contains u.

The fundamental property of α is that α(G) is an isometric subgraph of �
k
i=1G/Fi [15], but it

has other interesting properties. For instance, it is irredundant, has the largest possible number



of factors among all irredundant isometric embeddings and is unique among such embeddings.

See [9, 28] for more information on this embedding as well as for proofs.

Let G be an arbitrary connected graphs and

α : G → �
k
i=1G/Fi

the canonical metric representation of G. Let (G/Fi, wi) be “natural” weighted graphs: the

weight of a vertex of G/Fi is the number of vertices in the corresponding connected component

of G − Fi. Then:

Theorem 8.1 ([35]) For any connected graph G,

W (G) =
k
∑

i=1

W (G/Fi, wi) .

Note that Theorem 8.1 is also a particular instance of the cut method: in this case the cuts

are the Θ∗-classes, and we derive the Wiener index of G from the connected components of the

graphs G − Fi via the weighted Wiener index.

For a small example illustrating Theorem 8.1 consider the fullerene C20(2) from Fig. 4.

5

15

4

4

44

4

G-FF

G-FF

G/F

G/F

11

6
66

1

Figure 4: Computing the Wiener index of C20(2)



C20(2) has 6 Θ∗-classes F1, . . . , F6. The class F1 is shown in the top left part of the figure.

Classes F2, . . . , F5 are symmetric and hence not drawn. The last class F6 is given on the bottom

left. Then the graphs obtained be removing F1 and F6, and the quotient graphs G/F1 and G/F6

together with the corresponding weight functions w1 and w6 are shown. Now, W (G/Fi, wi) =

5 · 15 = 75, i = 1, . . . , 5 and W (G/F6, w6) = 5 · 4 · 4 + 5 · 2 · 4 · 4 = 240. Therefore, W (C20(2)) =

5 · 75 + 240 = 615, see also [1].

9 Concluding remarks

In this section we briefly present additional applications of the cut method.

9.1 Fast algorithms

The cut method is also useful for developing fast algorithms for computing distance-based graph

invariants. A detailed overview of the related approached was given earlier in [14, Section 3],

hence here we will only briefly mention this point of view of the cut method.

Suppose B is a benzenoid graph. Then the edge set of B can be partitioned into three cuts

as follows: each cut consists of all parallel edges. Then, making quotient graphs just as it is done

in the canonical metric representation, we obtain three trees T1, T2, T3. The key observation of

Chepoi [5] is that B embeds isometrically into T1 � T2 � T3. Now, defining the weights on these

trees in the analogous way as it is done for the canonical representation, we get the following

result.

Theorem 9.1 ([7]) Let B be a benzenoid graph and let (T1, w1), (T2, w2), and (T3, w3) be the

corresponding weighted trees. Then

W (B) = W (T1, w1) + W (T2, w2) + W (T3, w3) .

The Wiener index of a tree can be computed in linear time [45] as well as it can be the weighted

Wiener index [7]. Therefore Theorem 9.1 leads to a linear algorithm for computing the Wiener

index of a benzenoid graph.

A similar approach works for the Szeged index as well [7]. That is, Theorem 9.1 also leads

to a linear algorithm for computing the Szeged index of a benzenoid graph.



9.2 Phenylenes

Phenylenes are a class of chemical compounds in which the carbon atoms form 6-cycles and 4-

cycles, where each 4-cycle is adjacent to two disjoint 6-cycles, and no two 6-cycles are adjacent.

The respective graphs are also called phenylenes.

Given a phenylene PH, its hexagonal squeeze HS is the graph obtained from PH by iden-

tifying for each 4-cycle C the two edges of C that lie in the neighboring 6-cycles. Let (HS,w)

be the weighted hexagonal squeeze, where the weight of the vertices that were identified is 2,

while the weights of the remaining vertices are 1. The inner dual ID of PH is the graph with

vertices corresponding to the 6-cycles and 4-cycles of PH, two vertices being adjacent if the

corresponding cycles share an edge. Then using the cut method we can prove:

Theorem 9.2 ([37]) For a phenylene PH,

W (PH) = W (HS,w) + 36W (ID) .

For similar relations between the Wiener index of phenylenes and their hexagonal squeezes

see [25, 26, 46].

Very recently Gutman and Ashrafi [19] applied the cut method on the phenylenes for the PI

index and obtained the following nice result.

Theorem 9.3 For a phenylene PH with h hexagons,

PI(PH) = 4PI(HS) − 36h2 − 44h + 8 .

9.3 Quasi-orthogonal cuts, CI index, and related polynomials

Suppose G is a plane bipartite graph with isometric faces. A quasi-orthogonal cut with respect

to a given edge is the smallest subset of edges closed under taking opposite edges on faces.

Recalling that an edge f of an isometric face F is in relation Θ to its antipodal edge f ′ on F

we observe that on partial cubes quasi-orthogonal cuts coincide with the Θ-classes. However, if

Θ is not transitive, quasi-orthogonal cuts present a new concept applicable for the cut method.

Based on quasi-orthogonal cuts several new concepts have been recently introduced into

mathematical chemistry. First, the CI index [30] of a graph G is defined with

CI(G) = |E(G)|2 −
k
∑

i=1

|Ei|
2 ,



where E1, . . . , Ek are the quasi-orthogonal cuts of G. (Note the close similarity of the definition

of the CI index with Corollary 7.2.) Second, three counting polynomials, the Omega polynomial,

the Theta polynomial and the PI polynomial, all of them defined via quasi-orthogonal cuts, were

introduced in [4, 10]. See also [11] for the mutual inter-relations between these polynomials.
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[38] S. Klavžar and I. Gutman, Relation between Wiener-type topological indices of benzenoid

molecules, Chem. Phys. Lett. 373 (2003) 328–332.
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[42] S. Klavžar and I. Peterin, Projection vectors and Fibonacci and Lucas cubes, Publ. Math.

Debrecen 71 (2007) 267–278.
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