
On distance-balanced graphs

Aleksandar Ilić
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Abstract

It is shown that the graphs for which the Szeged index equals ‖G‖·|G|2
4 are

precisely connected, bipartite, distance-balanced graphs. This enables to dis-
prove a conjecture proposed in [Some new results on distance-based graph in-
variants, European J. Combin. 30 (2009) 1149–1163]. Infinite families of coun-
terexamples are based on the Handa graph, the Folkman graph, and the Carte-
sian product of graph. Infinite families of distance balanced, non-regular graphs
that are prime with respect to the Cartesian product are also constructed.

Key words: Szeged index; distance-balanced graphs; Folkman graph; Handa graph;
graph products

1 Introduction

For an edge uv of a graph G let Wuv be the set of vertices closer to u than to v,
that is

Wuv = {w ∈ G | d(w, u) < d(w, v)}.
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Note that in bipartite graphs Wuv and Wvu form a partition of the vertex set of G
for any edge uv. These sets play a prominent role in metric graph theory, see for
instance [2]. More information on these sets and references can be found in [6].

The sets Wuv also appear in chemical graph theory as the key constituent of an
important invariant, called the Szeged index of graph G (see [4] and [8] and references
therein), defined by Gutman [7] as

Sz(G) =
∑

uv∈E(G)

|Wuv| · |Wvu|.

Denoting the number of vertices and edges of a graph G with |G| and ‖G‖,
respectively, the following conjecture was proposed in [9]:

Conjecture 1.1 For a connected graph G,

Sz(G) =
‖G‖ · |G|2

4

if and only if G is bipartite and regular.

In the next section we show that the conditions are not necessary by constructing
an infinite family of non-regular bipartite graphs for which the Szeged index is largest
possible. The key observation for this construction is that bipartite, Szeged extremal
graphs can be characterized as distance-balanced graphs. Moreover, we show that
the conditions of the conjecture are also not sufficient by giving bipartite regular
graphs that are not extremal with respect to the Szeged index. In the final section
we propose constructions to obtain additional non-regular distance-balanced graphs.

2 Bipartite distance-balanced graphs

Let G be an arbitrary graph. From obvious inequality 2 ≤ |Wuv| + |Wvu| ≤ |G|,
using the arithmetic–geometric mean inequality we have

|Wuv| · |Wvu| ≤ |G|2
4

.

After summing for all edges uv from G, we derive that

Sz(G) ≤ ‖G‖ · |G|2
4

.

Conjecture 1.1 is thus asking for a characterization of graphs extremal with respect
to the Szeged index. As noted in [9], the necessary conditions for achieving the
equality are: G is bipartite, |G| is even and G has no pendent vertices.

A graph G is distance-balanced if |Wuv| = |Wvu| holds for any edge uv of G. These
graphs were first studied by Handa [3] within the class of partial cubes and later for
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all graphs and named distance-balanced in [6]. An interesting observation from [1]
asserts that they can be characterized as the graphs whose median sets are whole
vertex sets. Our main observation is that in the bipartite case they characterize the
extremal graphs with respect to the Szeged index.

Proposition 2.1 A connected bipartite graph G is distance-balanced if and only if
Sz(G) = ‖G‖·|G|2

4 .

Proof. We have already observed that for any graph G, Sz(G) ≤ ‖G‖·|G|2
4 . Suppose

Sz(G) = ‖G‖·|G|2
4 holds. Then

|Wuv| = |Wvu| = |G|
2

,

holds for all edges uv ∈ E(G) and consecutively G is distance-balanced.
Conversely, suppose G is distance-balanced. Then for any edge uv, |Wuv| = |Wvu|

and since G is bipartite also |Wuv|+ |Wvu| = |G| holds. Therefore, Sz(G) = ‖G‖·|G|2
4 .

¥

Let H be the Handa graph, see Fig. 2, that was constructed in [3] as an example
of a bipartite distance-balanced graph (which is not “even”).

Figure 1: Handa graph

For n ≥ 1 let Hn denote the Cartesian power of H, that is, the Cartesian product
H ¤H ¤ · · · ¤H of n copies of H.
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Theorem 2.2 For any n ≥ 1, Hn is a bipartite, non-regular, distance-balanced
graph.

Proof. We have already noted that H is bipartite and distance-balanced. Moreover,
it is also not regular. For n ≥ 2 the assertion follows because:

• G¤G′ is regular if and only if G and G′ are regular;

• G¤G′ is bipartite if and only if G and G′ are bipartite; and

• G¤G′ is distance-balanced if and only if G and G′ are distance-balanced.

The first two assertions are well-known easy facts (cf. [5]), the last one is proved
in [6]. ¥

Thus a bipartite, distance-balanced graph need not be regular. On the other
hand, Kutnar et al. [10] constructed an infinite family of semisymmetric graphs
which are not distance-balanced. (A regular graph is called semisymmetric if it is
edge-transitive but not vertex-transitive [11].) The first graph of their sequence is
the well-known Folkman graph. Hence their construction gives an infinite family
of regular bipartite graphs that are not distance-balanced. Thus the conditions of
Conjecture 1.1 are not sufficient.

A simpler construction of such an infinite family can be done using the Cartesian
product again. For any n ≥ 1, Fn is regular bipartite graph that is not distance-
balanced.

It would be interesting to have some other structural characterization of bipartite
distance-balanced graphs. As already mentioned, they are of even order and have
no pendant vertices. But more is true. Handa [3] proved that they are 2-connected
and with the exception of even cycles have minimum degree at least 3. It is on open
problem whether they (except even cycles) are 3-connected.

3 More non-regular distance-balanced graphs

To find more distance-balanced graphs that are not regular, we checked all graphs
with ≤ 10 vertices with the help of Nauty [12]. The only graph that is distance-
balanced and non-regular is depicted on Fig. 3 and has nine vertices. Note that it
is not bipartite.

Based on this example, we can construct an infinite family of distance-balanced
graphs that are non-regular and prime with respect to the Cartesian product. Let
k ≥ 1, then for n = 6k+3 consider the cycle C4k+2 with vertex labels 1, 2, . . . , 4k+2
and add additional vertices labeled 4k+3, 4k+4, . . . , 6k+3, such that vertex 4k+3
is adjacent to 1, 2, 3, vertex 4k+4 is adjacent to 3, 4, 5, ..., and finally vertex 6k+3 is
adjacent to 4k+1, 4k+2, 1. The constructed graph, say Gk, is obviously non-regular.
Because of the symmetry, we have to consider three types of edges:
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Figure 2: Non-regular distance-balanced graph

• the edges of the type (i, i + 1), i = 1, 2, . . . , 4k + 2;

• the edges of the type (2i, 4k + 2 + i), i = 1, 2, . . . , 2k + 1;

• the edges of the type (2i± 1, 4k + 2 + i), i = 1, 2, . . . , 2k + 1.

In all the cases it holds |Wuv| = |Wvu| = 3k + 1, hence Gk is distance-balanced for
any k ≥ 1.

In [6] it is proved that the lexicographic product of two graphs is distance-
balanced if and only if the first factor is distance-balanced and the second factor
is regular. This gives another construction to get many additional (non-bipartite)
non-regular distance-balanced graphs.

As noted in the previous section, there exist semisymmetric graphs that are not
distance-balanced. On the other hand, the following holds for all edge-transitive
graphs.

Proposition 3.1 Let G be an edge-transitive graph. Then for any edge uv of G,
the absolute value of |Wuv| − |Wvu| is a constant (independent of uv).

Proof. Let e1 = uv be an arbitrary edge of G and c = | |Wuv| − |Wvu| |. For an
arbitrary edge e′1 = u′v′ there exists an automorphism γ of the line graph L(G),
such that e′1 = γ(e1). It follows that either u maps to u′ and v maps to v′, or u
maps to v′ and v maps to u′. In both cases, the automorphism preserve distances
and the vertices that are closer to u are mapped to vertices closer to u′ or v′. This
means that | |Wu′v′ | − |Wv′u′ | | = c. ¥

For instance, for the Folkman graph it holds | |Wuv| − |Wvu| | = 6 for any edge
uv ∈ E(G); for the Gray graph it holds | |Wuv|−|Wvu| | = 8 for any edge uv ∈ E(G);
and | |Wuv| − |Wvu| | = |n−m| for the complete bipartite graph Kn,m.
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[11] D. Marušič, P. Potočnik, Semisymmetry of generalized Folkman graphs, Euro-
pean J. Combin. 22 (2001) 333–349.

[12] B. McKay, Nauty, http://cs.anu.edu.au/∼bdm/nauty/

6


