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Abstract

The relation between the degree distance DD(G) and the eccentric connectivity

index ξc(G) of a graph G is studied. Sharp lower and upper bounds on DD(G)

involving ξc(G) are determined. A Nordhaus-Gaddum type result on DD(G) in

terms of ξc(G) and the first Zagreb index is proposed for connected graphs G with

connected complements. A sharp upper bound on DD(T ) involving ξc(T ) is given

for trees of given order. It is proved that the difference DD(T )−ξc(T ) on trees with

the same order is minimized on caterpillars. Effect on the degree distance versus the

eccentric connectivity index of a tree under edge contractions is also investigated.



1 Introduction

The usage of different graphical invariants for establishing correlations of chemical struc-

tures with physical properties, chemical reactivity, or biological activity, has a long history.

Many of these invariants, often addressed to as topological indices, are based on distances

in molecular graphs, cf. the survey [22]. Another approach is to use vertex degrees, the

reader can start investigating such topoplogical indices with the paper [10] and references

therein. It is then only one step to combine these two groups and consider degree-distance

based topological indices. An important index of the latter form is the degree distance

index of a graph G defined as

DD(G) =
∑
u6=v

(deg(u) + deg(v))d(u, v) , (1)

where deg(x) denotes the degree of a vertex x, and d(x, y) is the shortest-path distance

between vertices x and y. The degree distance index was independently proposed by Do-

brynin and Kochetova [6] and Gutman [8] and well investigated afterwards. For instance,

its extremal properties were studied in [6,17–19], while for its recent studies see [1,2,4,7].

The second index of our interest here is the eccentric connectivity index introduced by

Sharma, Goswami and Madan [16] and defined for a graph G with

ξc(G) =
∑

v∈V (G)

deg(v)ε(v) , (2)

where ε(v) denotes the eccentricity of v, that is, the distance between v and a farthest ver-

tex from v. See [12,13,24] for basic properties of the eccentric connectivity index including

extremal graphs and various bounds in terms of other graph invariants. We especially

point out to the papers [3, 5] in which the eccentric connectivity index is compared with

the Wiener index and with the Zagreb indices, respectively. Further, for current investi-

gations of the eccentric connectivity index see [11,14,15,20,21,23]. Now, setting D(v) to

denote the sum of distances between v and the other vertices of a graph G, that is, D(v)

denotes the total distance of the vertex v, the definition (1) can be equivalently rewritten

as follows:

DD(G) =
∑

v∈V (G)

deg(v)D(v) . (3)

Looking at (2) and (3), it appears natural to compare the degree distance index with the

eccentric connectivity index. In the next section we bound the degree distance index of G



in terms of the eccentric connectivity and the first Zagreb index of G. We also prove an

additive Nordhaus-Gaddum type result on DD(G) for (connected) graphs with connected

complements. Then, in Section 3, we prove a sharp upper bound on the degree distance

index of trees as a function of the eccentric connectivity index. Moreover, we show that

the minimum difference between the degree distance and the eccentric connectivity index

in the class of trees of the same order is achieved on caterpillars. In the final section we

investigate how the degree distance and the eccentric connectivity index of a tree change

under the edge contraction.

In the rest of the introduction we list some further definitions and give some notation.

Graphs considered in this paper are connected. The order and the size of a graph G

will be denoted with n(G) and m(G), respectively. The minimum and the maximum

vertex eccentricity of G are the radius rad(G) of G and the diameter diam(G) of G.

The maximum and the minimum degree of vertices of G are denoted by ∆(G) and δ(G),

respectively. The complement of G will be denoted with Ḡ. Finally, when speaking of a

graph invariant on a graph G and when necessary to avoid confusion with other graph(s),

we will write G in the subscript of the invariant. For instance, instead of deg(u) and

d(u, v) we will write degG(u) and dG(u, v), respectively.

2 Bounds for general graphs

We first bound the degree distance index of G in terms of the eccentric connectivity and

the first Zagreb index of G. For this recall that the first Zagreb index M1(G) of a graph

G is the sum of the squares of the degrees of G, cf. [9].

Theorem 2.1 If G is a connected graph, then

ξc(G) +M1(G)− 2m(G) ≤ DD(G) ≤M1(G) + (n(G)− 1− δ(G))ξc(G) .

The left equality holds if and only of G = Kn(G), the right equality holds if and only if G

is regular with diam(G) ≤ 2.

Proof. Set n = n(G). If v is a vertex of G, then, simply because the distance from v to

any of its non-neighbors is at least 2, we infer that

ε(v)− 1 ≤ D(v)− deg(v) ≤ (n− deg(v)− 1)ε(v) . (4)



Multiplying the above inequalities with deg(v) we get

deg(v)ε(v)− deg(v) ≤ deg(v)D(v)− deg(v)2 ≤ deg(v)(n− deg(v)− 1)ε(v) ,

from which the inequalities follow by summing over all vertices of G.

The left equality in (4) holds if and only if deg(v) = n−1. As this must hold for every

vertex of G, we get that G is a complete graph when the left equality holds. The right

equality in (4) holds if and only if ε(v) ≤ 2. Hence the equality part of the theorem. �

The degree distance index of G can also be bounded from below only in terms of the

eccentric connectivity index.

Theorem 2.2 If G is a graph with n(G) ≥ 4, then DD(G) ≥ 2ξc(G) + 2m(G)(n(G)− 4).

Moreover, equality holds if and only if G = P4 or G is a graph obtained by removing a

perfect matching of Kn(G).

Proof. Let v be a vertex of G. Considering the vertices on a selected longest path starting

from v, we see that

D(v) ≥ (1 + · · ·+ ε(v)) + (n(G)− ε(v)− 1)

=

(
ε(v) + 1

2

)
+ (n(G)− ε(v)− 1)

=
1

2
(ε(v)(ε(v)− 1) + 6) + n(G)− 4.

Suppose first that n(G) ≥ 5. Then it is straightforward to verify thatD(v) ≥ 1
2
(ε(v)(ε(v)−

1)+6)+n(G)−4 ≥ 2ε(v)+n(G)−4 holds. Summing over all vertices we get the inequality

of the theorem.

If ε(v) 6= 2, we have D(v) > 2ε(v) + n(G) − 4. Moreover in the case ε(v) = 2 and

deg(v) ≤ n(G)−3 we getD(v) ≥ n(G)+1 > 2ε(v)+n(G)−4. ThusD(v) = 2ε(v)+n(G)−4

holds if and only if ε(v) = 2 and deg(v) = n(G)− 2.

Checking the six connected graphs of order 4 we see that the inequality holds for all

of them, where the equality holds only for C4 and P4. �

To conclude the section we give an additive Nordhaus-Gaddum type result on DD(G)

for (connected) graphs with connected complements.

Theorem 2.3 If G is a connected graph with a connected complement, then

DD(G) + DD(Ḡ) ≤M1(G) +M1(Ḡ) + (n(G)− 1− δ(G))ξc(G) + ∆(G)ξc(Ḡ) .
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Moreover, equality holds if both G and Ḡ are regular graphs of diameter 2.

Proof. Let v be a vertex of G and set n = n(G). Then

DG(v) ≤ deg(v) + (n− deg(v)− 1)εG(v) , (5)

DḠ(v) ≤ (n− deg(v)− 1) + deg(v)εḠ(v) . (6)

Multiplying these two inequalities with deg(v) and n− deg(v)− 1, respectively, we have

deg(v)DG(v) + (n− deg(v)− 1)DḠ(v) ≤ deg(v)2 + deg(v)(n− deg(v)− 1)εG(v)

+(n− deg(v)− 1)2 + deg(v)(n− deg(v)− 1)εḠ(v)

= deg(v)2 + (n− deg(v)− 1)2 + (n− 1) deg(v)εG(v)

− deg(v)2εG(v) + deg(v)(n− 1− deg(v))εḠ(v)

≤ deg(v)2 + (n− deg(v)− 1)2 + (n− 1− δ(G)) deg(v)εG(v)

+∆(G)(n− 1− deg(v))εḠ(v) .

Summing over all vertices of G, the inequality follows.

If diam(G) = 2, then equality holds in (5), and if diam(Ḡ) = 2, the same is true in (6).

Moreover, the inequality in the computation above becomes equality if δ(G) = ∆(G).

Hence equality in Theorem 2.3 holds if both G and Ḡ are regular graphs of diameter 2.

�

3 Trees

In this section we first give a sharp upper bound on the degree distance index of trees as

a function of the eccentric connectivity index. Then, in our second main result, we prove

that the minimum difference between the degree distance and the eccentric connectivity

index in the class of trees of the same order is achieved on caterpillars. For the first main

result two lemmas are needed.

Lemma 3.1 If x is a vertex of tree T , then∑
y∈V (T )

deg(y)d(x, y) = 2D(x)− n(T ) + 1 .



Proof. For a vertex u ∈ V (T ), let Nk(u) be the set of vertices at distance k from

x. Since no pair of vertices from Nk(x) have a common neighbor in Nk+1(x), we have

|Nk+1(u)| =
∑

v∈Nk(u)(deg(v)− 1), k ≥ 1. Thus

D(x) =

ε(x)∑
k=1

k|Nk(x)| = deg(x) +

ε(x)−1∑
k=1

[
(k + 1)

∑
y∈Nk(x)

(deg(y)− 1)
]

= deg(x) +
∑

y∈V (T−x)

(d(x, y) + 1)(deg(y)− 1)

= deg(x) +
∑

y∈V (T−x)

deg(y)d(x, y)−D(x)

+2(n(T )− 1)− deg(x)− (n(T )− 1) ,

and the result follows. �

Lemma 3.2 If x is a pendant vertex of T and T ′ = T − x, then

DD(T )−DD(T ′) = 4DT (x)− 2n(T ) + 2 .

Proof. Let y be the neighbor (support) of x. Then we have:

DD(T )−DD(T ′) =
∑

z∈V (T )

degT (z)dT (z, x) +
∑

z∈V (T−x)

d(z, y) +DT (x)

=
∑

z∈V (T )

degT (z)dT (z, x) +DT (y)− 1 +DT (x) .

Using Lemma 3.1 and the fact that DT (x) = DT (y) + n(T )− 2, we get

DD(T )−DD(T ′) = 2DT (x)− (n(T )− 1) +DT (x)− (n(T )− 2)− 1 +DT (x)

= 4DT (x)− 2(n(T )− 1) ,

which was to be proved. �

For our first main result, besides the above lemmas, we also need the following known

result.

Theorem 3.3 [13, Theorem 5] If T is a tree with diam(T ) = d and n(T ) = n, then

ξc(T ) ≥

{
n(d+ 1) + 1

2
d2 − 2d− 1; d even ,

n(d+ 2) + 1
2
d2 − 3d− 3

2
; d odd .

Now all is ready for the first main result of this section.



Theorem 3.4 If T is a tree of order n ≥ 3, then

DD(T ) ≤ 4

3
nξc(T )− (n− 1)(n+ 4) .

Moreover, equality holds if and only if T is a star.

Proof. We prove the result by induction on the order of T . One can easily verify that

the result is true if n = 3 and that the equality holds if T is a star.

Assume that n > 3 and that the result holds for all trees of order less than n. As

we have already dealt with stars, we may also suppose that diam(T ) = d ≥ 3. Let x

be a vertex of eccentricity d. Clearly, x is a leaf and let T ′ = T − x. By the induction

hypothesis,

DD(T ′) ≤ 4

3
(n− 1)ξc(T ′)− (n− 2)(n+ 3) . (7)

If y is the neighbor of x in T , then we have

ξc(T )− ξc(T ′) ≥ ε(x) + ε(y) = 2d− 1 .

Moreover

DT (x) ≤ (1 + 2 + · · ·+ d− 1) + (n− d)d = nd−
(
d+ 1

2

)
.

Combining this inequality with Lemma 3.2 and setting X = DD(T )−DD(T ′) we get the

following estimates:

X ≤ 4nd− 4

(
d+ 1

2

)
− 2(n− 1)

≤ 4

3
(n− 1)ξc(T ′)− (n− 2)(n+ 3) + 4nd− 4

(
d+ 1

2

)
− 2(n− 1)

≤ 4

3
(n− 1)(ξc(T )− 2d+ 1)− (n− 2)(n+ 3) + 4nd− 4

(
d+ 1

2

)
− 2(n− 1)

=
4

3
nξc(T )− (n− 1)(n+ 4)− 4

3
ξc(T ) +

4

3
n(d+ 1)− 2d2 +

2

3
d+

8

3
,

where, to obtain the second inequality above, we have used the fact that by (7) we have

4
3
(n− 1)ξc(T ′)− (n− 2)(n+ 3) ≥ 0.

Now it is sufficient to show that

4

3
ξc(T ) ≥ 4

3
n(d+ 1)− 2d2 +

2

3
d+

8

3
.



Applying Theorem 3.3 and setting Y = 4
3
ξc(T )− 4

3
n(d+ 1) + 2d2 − 2

3
d− 8

3
we get

Y ≥ −4

3
n(d+ 1) + 2d2 − 2

3
d− 8

3
+

4

3

{
n(d+ 1) + 1

2
d2 − 2d− 1; d even

n(d+ 2) + 1
2
d2 − 3d− 3

2
; d odd

=

{
8
3
d2 − 10

3
d− 4; d even

8
3
d2 + 4

3
n− 14

3
(d+ 1); d odd

> 0 .

We conclude that if T is not a star, then the claimed inequality is strict. �

Recall that a catterpilar is a tree T that contains a path P such that each vertex from

V (T ) \ V (P ) is adjacent to a vertex of P . Then the second main result of this section

reads as follows.

Theorem 3.5 If n is a positive integer, then min{DD(T )−ξc(T ) : T tree with n(T ) = n}

is attained on caterpillars.

Proof. Assume that T is not a caterpillar. Let P be a diametrical path of T . Let u be

a non-pendant vertex of T which is farthest from P , and let z ∈ V (P ) be the vertex on

P which is closest to u. Let dT (u, z) = d. Since T is not a caterpillar, d ≥ 1. Let v be

the neighbor of u on the u, z-path, and let Tz be the maximal subtree of T that contains

z and no other vertex of P . Consider the following transformation. Let S = N(u)− {v}

and let |S| = s ≥ 1. Construct a tree T ′ from T by removing the edges between u and the

vertices of S and then connecting vertex v to each vertex of S. See Fig. 1 for an example

of this construction where the subtree Tz is induced by the black vertices.

It is clear that distances between the vertices from V (G)−S are the same in T and T ′.

Also, the distance between a vertex from S and the vertices not in S except u decrease

by 1, while for each vertex w ∈ S we have dT ′(u,w) = 2 and dT (u,w) = 1. From these

observations we deduce that

DD(T )−DD(T ′) =
∑

x∈{u,v}

[
degT (x)DT (x)− degT ′(x)DT ′(x)

]
+
∑
j∈S

[
degT (j)DT (j)− degT ′(j)DT ′(j)

]
+

∑
j∈V (T )−S
j /∈{u,v}

[
degT (j)

(
DT (j)−DT ′(j)

)]



u

v

T

S

z︸ ︷︷ ︸
P

u

v

T ′

S

z︸ ︷︷ ︸
P

Figure 1. Constructing T ′ from T

=
(

(s+ 1)DT (u)− (DT (u) + s)
)

+
(

degT (v)DT (v)− (degT (v) + s)(DT (v)− s)
)

+
∑
j∈S

(n− s− 2) +
∑

j∈V (T )−S
j /∈{u,v}

degT (j)s

= s(DT (u)− 1) + s(degT (v)−DT (v) + s) + s(n− s− 2)

+s
[
2(n− 1)− (degT (v) + 2s+ 1)

]
= s

[
DT (u)−DT (v) + 3n− 2s− 6

]
= s

[
n− 2s− 2 + 3n− 2s− 6

]
= s(4n− 4s− 8) .

The described transformation decreases the eccentricity of each vertex in S by 1, while

the other vertices (not equal to u or to v) have the same eccentricity and degree in both
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T and T ′. Thus we get

ξc(T )− ξc(T ′) =
∑

x∈{u,v}

[
degT (x)εT (x)− degT ′(x)εT ′(x)

]
+
∑
j∈S

(εT (j)− εT ′(j))

=
[
(s+ 1)εT (u)− εT (u) + degT (v)εT (v)− (s+ degT (v))εT (v)

]
+ s

= s(εT (u)− εT (v)) + s = 2s .

Since T is not a caterpillar we have n− s ≥ 6 and hence

DD(T )−DD(T ′) = s(4n− 4s− 8) > 2s = ξc(T )− ξc(T ′) ,

that is, DD(T ′)− ξc(T ′) < DD(T )− ξc(T ). Repeating the construction until a caterpillar

is obtained proves the result. �

Let B(n, d) denotes the tree obtained from a path P : v1v2 · · · vd+1 with attaching

n− d− 1 pendant vertices to vertex vbn
2
c.

Conjecture. Among trees of of given order n and diameter d, graph B(n, d) gets the

minimum value of DD − ξc.

4 Contracting edges in trees

Let e = uv be an edge of graph G. Then we denote by G.e the graph obtained from G

by contracting e. In this section we investigate how the degree distance and the eccentric

connectivity index of a tree change under the edge contraction.

For our first main result of the section we need the following straightforward lemma,

where, for an edge e = uv, we use the notation nu for the number of vertices closer to u

than to v. The notation nv has the analogous meaning.

Lemma 4.1 If e = uv is an edge of a tree T , then DT (u)−DT (v) = nv − nu.

Theorem 4.2 If e = uv is an edge of a tree T of order n, then

DD(T )−DD(T.e) = 4nv(nu − 1) + 4DT (u)− 2(n− 1) .
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Proof. Let Tu and Tv be the components (trees) of T−uv containing u and v, respectively.

Setting W = DD(T )−DD(T.e), we can compute as follows:

W =
∑

x∈V (Tu−u)

degT (x)(DT (x)−DT.e(x)) +
∑

y∈V (Tv−v)

degT (y)(DT (y)−DT.e(y))

+ degT (u)DT (u) + degT (v)DT (v)− (degT (u) + degT (v)− 2)(DT (u)− nv)

=
∑

x∈V (Tu−u)

degT (x)(nv + dT (x, u)) +
∑

y∈V (Tv−v)

degT (y)(nu − 1 + dT (y, u))

+ degT (u)DT (u) + degT (v)DT (v)− (degT (u) + degT (v)− 2)(DT (u)− nv)

= nv

∑
x∈V (Tu−u)

degT (x) + (nu − 1)
∑

y∈V (Tv−v)

degT (y)

+
∑

x∈V (T )

degT (x)dT (x, u)− degT (v) + degT (u)DT (u) + degT (v)DT (v)

−(degT (u) + degT (v)− 2)(DT (u)− nv)

= nv(2nu − degT (u)− 1) + (nu − 1)(2nv − degT (v)− 1)

+(2DT (u)− (n(T )− 1)− degT (v))

+ degT (v)(DT (v)−DT (u) + nv) + degT (u)nv + 2(DT (u)− nv)

= 4nunv − (nu + nv) + 4DT (u)− 4nv

−n(T ) + 2 + degT (v)(DT (v)−DT (u) + nv − nu) .

The result now follows by an application of Lemma 4.1. �

For the second main result of the section recall that the center C(G) of a graph G is

the set of vertices of G with minimum eccentricity. It is well-known that if T is a tree,

then |C(T )| ∈ {1, 2}. Moreover, if |C(T )| = 2, then the two central vertices are adjacent.

Theorem 4.3 If e = uv is an edge of a tree T , where ε(u) ≥ ε(v), then

2nu + 2ε(v)− 1 ≤ ξc(T )− ξc(T.e) ≤ 2(n(T ) + ε(u)− 2) .

Moreover, the right-hand side equality holds if and only if C(T ) = {u, v}.

Proof. Suppose first that ε(u) = ε(v). Then necessarily both u and v are central ver-

tices, that is, C(T ) = {u, v}. Contracting the edge uv, the eccentricity of each vertex is

decreased by 1 and hence

ξc(T )− ξc(T.e) =

 ∑
x∈V (T )−{u,v}

degT (x)

+ degT (u)ε(u) + degT (v)ε(v)

−(degT (u) degT (v)− 2)(ε(u)− 1)

= 2(n(T )− 1) + 2(ε(u)− 1) .



Suppose now that ε(u) > ε(v). Then contracting the edge uv, the eccentricity of each

vertex in Tu is decreased by 1 and for vertices in Tv it is decreased by at most 1. Moreover

ε(u) = ε(v) + 1. Thus

ξc(T )− ξc(T.e) ≥
∑

x∈V (Tu−u)

degT (x) + degT (u)ε(u)

+ degT (v)ε(v)− (degT (u) degT (v)− 2)(ε(v))

= 2nu − 1− degT (u) + degT (u)(ε(u)− ε(v)) + 2ε(v)

= 2nu + 2ε(v)− 1.

As for the right-hand side inequality for the case when ε(u) > ε(v), we proceed as follows:

ξc(T )− ξc(T.e) ≤
∑

x∈V (T )−{u,v}

degT (x) + degT (u)ε(u) + degT (v)ε(v)

−(degT (u) degT (v)− 2)(ε(v))

= 2(n(T )− 1)− degT (v) + 2ε(v)

= 2(n(T ) + ε(u)− 2)− degT (v) ,

which completes the argument. �
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