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Abstract

Upper and lower bounds on the total domination number of the
direct product of graphs are given. The bounds involve the {2}-total
domination number, the total 2-tuple domination number, and the
open packing number of the factors. Using these relationships one ex-
act total domination number is obtained. An infinite family of graphs
is constructed showing that the bounds are best possible. The domina-
tion number of direct products of graphs is also bounded from below.
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1. Introduction

Recently, the total domination number γt of the direct product of graphs
attracted quite some attention [1, 2, 11]. The primary goal is to exactly
determine this graph invariant on direct products. A very nice result of this
kind is the main result of Rall from [11] asserting that for any tree T with
at least one edge and any graph H without isolated vertices, γt(T ×H) =
γt(T )γt(H). Similar result also holds for graphs with equal total domination
number and open packing number. In [2] the authors computed the total
domination number when one factor is complete and the other factor a cycle,
or when both factors are cycles.

Since the exact problem is quite difficult in general, it is also of interest
to have good lower and upper bounds on the total domination number of
the product in terms of invariants of its factors. Two such lower bounds
were proved in [2, 11] and will be restated in the next section. On the other
hand, the total domination number of factors can be used to bound the
domination number of the product, cf. [1, 11].

In the next section we present definitions and concepts needed in this
paper. For more information and details concerning graph domination pa-
rameters we refer to [4] and for these invariants studied on graph prod-
ucts see [10]. Then, in Section 3, we propose the following relationship
between the total domination number of the direct product and the total
{2}-domination numbers of the factors:

γt(G×H) ≥ max{γ
{2}
t (G), γ

{2}
t (H)} .
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In a special case we also find an upper bound for the total domination
number of the product involving the total 2-tuple domination number of
the factors. This in particular enables us to alternatively obtain the total
domination number of the product of a cycle and a complete graph first
computed in [2]. Graphs that attain these bounds are also constructed.
Finally, in Section 4, we show how one can adopt our approach to bound
the domination number of direct products of graphs in term of the {2}-
domination numbers of the factors.

2. Preliminaries

For a graph G = (V,E) with vertex set V and edge set E, the open neigh-

borhood of a vertex v ∈ V is N(v) = {u ∈ V |uv ∈ E} and the closed

neighborhood is N [v] = N(v) ∪ {v}. By δ(G) we denote the smallest degree
of G, that is, δ(G) = minv |N(v)|.

A set S ⊆ V is a dominating set if each vertex in V − S is adjacent to
at least one vertex of S. The domination number γ(G) of G is the minimum
cardinality of a dominating set. Similarly, S ⊆ V is a total dominating set if
each vertex in V is adjacent to at least one vertex of S. The total domination

number γt(G) of G is the minimum cardinality of a total dominating set.

Let G = (V,E) be a graph. For a real-valued function f : V → R

the weight of f is w(f) =
∑

v∈V f(v), and for S ⊆ V we define f(S) =∑
v∈S f(v), so w(f) = f(V ). Let k ≥ 1, then a function f : V → {0, 1, . . . , k}

is called a {k}-dominating function if for every v ∈ V , f(N [v]) ≥ k. The {k}-

domination number γ{k}(G) ofG is the minimum weight of a {k}-dominating
function. Similarly, f : V → {0, 1, . . . , k} is called a total {k}-dominating

function if for every v ∈ V , f(N(v)) ≥ k. The total {k}-domination number

γ
{k}
t (G) of G is the minimum weight of a total {k}-dominating function.

Yet another related concept introduced in [3] (see also [8, 9]) is the
following. S ⊆ V is a k-tuple dominating set of G if for every vertex v ∈ V ,
|N [v] ∩ S| ≥ k. In other words, either v is in S and has at least k − 1
neighbors in S or v is in V \ S and has at least k neighbors in S. The k-

tuple domination number γ(×k)(G) is the minimum cardinality of a k-tuple
dominating set of G. Note that γt(G) ≤ γ(×2)(G). Finally, S ⊆ V is a total

k-tuple dominating set of G if for every vertex v ∈ V , |N(v) ∩ S| ≥ k, that
is, v is dominated by at least k neighbors in S. The total k-tuple domination

number γ
(×k)
t is the minimum cardinality of a total k-tuple dominating set

of G.
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The 2-packing number ρ(G) of a graph G is the maximum cardinality of a
vertex subset X of G such that N [u] ∩ N [v] = ∅ for any different vertices
u, v ∈ X. An open packing of a graph G is a set S of vertices such that the
sets N(x), x ∈ S, are pairwise disjoint. The open packing number ρ◦(G) is
the maximal cardinality of an open packing on G.

Finally, recall that the direct product G × H is the graph defined by
V (G×H) = V (G)×V (H) and two vertices (g1, h1) and (g2, h2) are adjacent
if and only if g1g2 and h1h2 are edges of G and H, respectively. Let g be a
vertex of G, then the subgraph of G ×H induced by {g} × V (H) is called
a fiber and denoted gH. Similarly one defines the fiber Gh for a vertex h
of H. Note that if the factors graphs are without loops, then the fibers
of their direct product are discrete. Note also that the direct product is
commutative and associative; for more information on the direct product
see [5, 6].

3. Bounding Total Domination Numbers

Let G and H be graphs with no isolated vertices. Then Rall [11] proved the
following lower bound:

(1) γt(G×H) ≥ max{ρ◦(G)γt(H), ρ◦(H)γt(G)} ,

while El-Zahar, Gravier, and Klobučar [2] followed with:

(2) γt(G×H) ≥ max{
|G|

∆(G)
γt(H),

|H|

∆(H)
γt(G)} .

None of the bounds (1) and (2) follows from the other. For this sake note
that for n ≥ 3, ρ◦(Kn) = 1, γt(Kn) = 2, so (1) gives γt(Kn ×Kn) ≥ 2 while
(2) implies γt(Kn ×Kn) ≥ 3. (In fact, γt(Kn ×Kn) = 3 for n ≥ 3, cf. [1].)
On the other hand, for any n ≥ 2, ρ◦(K1,n) = 2, γt(K1,n) = 2, so (1) gives
γt(K1,n ×K1,n) ≥ 4 while (2) only gives γt(K1,n ×K1,n) ≥ 3.

We now give another lower bound on the total domination number of
direct products.

Theorem 3.1. For any nontrivial connected graphs G and H we have

(3) γt(G×H) ≥ max{γ
{2}
t (G), γ

{2}
t (H)} .
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Proof. Let S be a minimum total dominating set of G × H. Define an
integer function f on V (G) with

f(u) = min{2, |S ∩ uH| } .

We claim that f is a total {2}-dominating function of G.
Let u be an arbitrary vertex of G and let V (H) = {v1, . . . , vn}. Recall

that H is nontrivial, hence n ≥ 2. Since S is a total dominating set, there
exists a vertex (x, vi) that dominates (u, v1). Note that x 6= u and i 6= 1.
Consider the vertex (u, vi). It is dominated by some vertex (y, vj), where
y 6= u and j 6= i. If x = y, then since i 6= j we have f(x) = 2, and
hence f(N(u)) ≥ 2. And if x 6= y, then f(x) ≥ 1, f(y) ≥ 1, and therefore
f(N(u)) ≥ 2 again. Thus f is a total {2}-dominating function of G with

w(f) ≤ |S|, hence γt(G×H) ≥ γ
{2}
t (G). By the commutativity of the direct

product the inequality follows.

To see that the lower bound (3) can be simultaneously better than (1) and
(2) consider the following example. For n ≥ 3, let Mn be the graph obtained
from n copies of K3 such that in each copy one vertex is selected and these
vertices are then identified. Then we have ρ◦(Mn) = 1, γt(Mn) = 2, and

γ
{2}
t (Mn) = 4. Then (3) gives γt(Mn ×Mn) ≥ 4, while (2) implies γt(Mn ×
Mn) ≥ 3 and (1) γt(Mn ×Mn) ≥ 2.

On the other hand, suppose that ρ◦(G) ≥ 2. Then

γt(G×H) ≥ ρ◦(G)γt(H) ≥ 2γt(H) ≥ γ
{2}
t (H) ,

hence (3) follows from (1) as soon as ρ◦(G) ≥ 2. It would be nice to have a
lower bound that would cover the three above bounds. However the provided
examples show that this task might be difficult.

Theorem 3.2. Let G be a graph with δ(G) ≥ 2 and let n ≥ γ
(×2)
t (G). Then

(4) γt(G×Kn) ≤ γ
(×2)
t (G) .

Proof. Let S = {s1, . . . , sk} be a minimum total 2-tuple dominating set
of G and let {v1, . . . , vn} be the vertex set of Kn. We claim that T =
{(si, vi) | i = 1, . . . , k} is a minimum total dominating set of G×Kn. Note

first that T is well defined since n ≥ γ
(×2)
t (G) = k. Let (x, vt) be an

arbitrary vertex of G ×Kn and assume that x is dominated by vertices si
and sj . Then si, sj and x are pairwise different vertices. Suppose without
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loss of generality that t 6= i. Then (x, vt) is dominated by (si, vi), and so T is

a total dominating set of G×Kn. We conclude that γt(G×Kn) ≤ γ
(×2)
t (G).

Corollary 3.3 [2] For any m ≥ n ≥ 3, γt(Cn ×Km) = n.

Proof. Clearly, γ
(×2)
t (Cn) = n, hence γt(Cn ×Km) ≤ n by Theorem 3.2.

On the other hand, the lower bound easily follows from (2).

Using inequality (4) we next construct examples where the lower bound (2)
is optimal. Let Gn be the graph obtained from the complete graph Kn by
adding a vertex xe for each edge e = uv of Kn, and joining xe with u and
v. (See Figure 1 where G4 is drawn.)

Figure 1. Graph G4

We claim that for n ≥ 3, γt(Gn × Kn) = n. It is easy to check that

γ
(×2)
t (Gn) = n, hence by (4), γt(Gn × Kn) ≤ n. On the other hand, (2)

implies that for any n ≥ 3,

γt(Gn ×Kn) ≥
|Kn|

∆(Kn)
γt(Gn) = n .

We conclude this section with one more lower bound. We don’t know
whether (5) eventually follows from (1). However, for a given graph G

it might be easier to evaluate γ
(×2)
t (G) than ρ◦(G) and γt(G). Moreover,

the below proof technique is somehow nonstandard and might be useful in
other situations.
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Theorem 3.4 Let G and H be graphs. If δ(G) ≥ 2 and ∆(G) < γt(H),
then

(5) γt(G×H) ≥ γ
(×2)
t (G) .

Proof. Let S be a minimum total dominating set of G×H. We are going
to construct a total 2-tuple dominating set X of G as follows.

Let V (H) = {v1, . . . , vn}. For an arbitrary vertex u of G we proceed as
follows. Let (x, vi) ∈ S be a vertex that dominates (u, v1), where x 6= u and
i 6= 1. Consider the vertex (u, vi). It is dominated by some vertex (y, vj),
where y 6= u and j 6= i. If x 6= y, then set x, y ∈ X. Suppose x = y. If some
vertex (u, vk) with k 6= i, j is dominated by a vertex (z, v`), where z 6= x,
then we put x, z ∈ X. So assume that all vertices of uH are dominated
by vertices of xH. Then select an arbitrary neighbor w 6= x of u and set
x,w ∈ X. (Note that w exists since δ(G) ≥ 2.)

Clearly, X is a total 2-tuple dominating set. We claim that |X| ≤ |S|.
For this sake we will construct an injection f : X → S in the following
way. Let x ∈ X be a vertex for which we have |xH ∩ S| ≥ 1 and let i be
the smallest index for which (x, vi) ∈ S. Then set f(x) = (x, vi). Let next
x ∈ X but xH ∩ S = ∅. Then there exists a neighbor yx of x such that yx
is adjacent to y′x such that |y

′
xH ∩ S| ≥ γt(H). Let i be the smallest integer

such that (y′x, vi) ∈ S and (y′x, vi) is an image of no vertex of X under the
map f . Then set f(x) = (y′x, vi). We need to show that f is well-defined
since then f will be injective. Suppose on the contrary that for some vertex
x such an assignment is not possible. In such a case x is adjacent to yx
such that yx is adjacent to y′x. Moreover, there exist vertices x2, . . . , xγt(H)

adjacent to yxi , respectively, and any yxi , 2 ≤ i ≤ γt(H), is adjacent to y′x.
It follows that the degree of y′x is at least γt(H), which is not possible by
the theorem assumption.

4. A Remark on Domination in Direct Products

In this concluding section we give a lower bound for the usual domination
number of direct products of graphs. The bound is given in the same spirit
as our previous bounds for the total domination number.

Theorem 4.1. For any nontrivial connected graphs G and H,

(6) γ(G×H) ≥ max{γ{2}(G), γ{2}(H)} .
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Proof. Let S be a minimum dominating set of G×H. Define an integer
function f on V (G) with

f(u) = min{2, |S ∩ uH| } .

We claim that f is a {2}-dominating function of G. Let u be an arbitrary
vertex of G and let V (H) = {v1, . . . , vn}. Recall that H is nontrivial, hence
n ≥ 2.

Case 1. For f(u) = 2 there is nothing to be shown.

Case 2. Suppose f(u) = 1. We may assume without loss of generality
that (u, v1) ∈ S. Then (u, vi) /∈ S, for i ≥ 2. Since S is a dominating
set, (u, v2) is dominated by some vertex (x, vj) ∈ S, where x 6= u. Hence
f(x) ≥ 1 and x is adjacent to u. It follows that f(N [u]) ≥ 2.

Case 3. Suppose f(u) = 0. Then (u, v1) /∈ S and (u, v2) /∈ S, therefore
there exist vertices x1, x2 of G and vi, vj of H such that (x1, vi) dominates
(u, v1) and (x2, vj) dominates (u, v2). If x1 6= x2, then f(x1) ≥ 1 and
f(x2) ≥ 1, hence f(N [u]) ≥ 2. Suppose x1 = x2. In the case that i 6= j
we infer that f(x1) = 2 and consequently f(N [u]) ≥ 2. The final case to
consider is when (x1, vi) = (x2, vj), that is, when (u, v1) and (u, v2) are both
dominated by (x1, vi). Observe now that i 6= 1, 2. Then the vertex (u, vi)
must be dominated by some vertex (y, vs) where s 6= i. If y = x1, then
f(x1) = 2 and so f(N [u]) ≥ 2. And if y 6= x1, then f(x1) ≥ 1 and f(y) ≥ 1,
hence we conclude again that f(N [u]) ≥ 2.

Thus we have proved that f is a {2}-dominating function of G. Since
w(f) ≤ |S|, we conclude that γ(G ×H) ≥ γ{2}(G). By the commutativity
of the direct product the result follows.

In [11] Rall proved that for any graphs G and H with no isolated vertices,

(7) γ(G×H) ≥ max{ρ(G)γt(H), ρ(H)γt(G)} .

If ρ(G) ≥ 2, then we have γ(G×H) ≥ 2γt(H) ≥ γ{2}(H), hence (6) follows
from (7). On the other hand, (6) can give a better estimation for some
“small” graphs. Consider, for instance, the Hajós graph H, see Figure 2.
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Figure 2. Hajós graph

Then ρ(H) = 1 (as H is of diameter 2), γt(H) = 2, but γ{2}(H) = 3.
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