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Abstract

Rainbow connection number of Cartesian products and their subgraphs
are considered. Previously known bounds are compared and non-existence
of such bounds for subgraphs of products are discussed. It is shown that
the rainbow connection number of an isometric subgraph of a hypercube is
bounded above by the rainbow connection number of the hypercube. Iso-
metric subgraphs of hypercubes with the rainbow connection number as
small as possible compared to the rainbow connection of the hypercube are
constructed. The concept of c-strong rainbow connected coloring is intro-
duced. In particular, it is proved that the so-called Θ-coloring of an isometric
subgraph of a hypercube is its unique optimal c-strong rainbow connected
coloring.
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1. Introduction

The concept of rainbow connection was introduced just a few years ago by Char-
trand, Johns, McKeon, and Zhang [4] but it already received amazing attention.
For instance, the recent survey [11] of Li and Sun on the topic contains a list of
56 references. Let us briefly mention a sample of the related research directions.

In the seminal paper [4], the rainbow connection number rc(G) as well as the
strong rainbow connection number src(G) of a connected graph G were intro-
duced. Among other results, these two graphs invariants were determined for
cycles, wheels, complete bipartite graphs, and complete multipartite graphs. As
a consequence, the difference src(G) − rc(G) can be arbitrarily large. In [3] it is
proved that the invariants are intrinsically difficult, in fact even deciding whether
rc(G) = 2 holds for a graph G is an NP-complete problem. On a positive note,
Kemnitz and Schiermeyer [8] proved that most of graphs of order n, diameter two
and clique number at least n−3 have rainbow connection number two, and list all
the exceptions. Some more bad news: to find out whether a given edge coloring
is a rainbow connected coloring is also an NP-complete problem [3]. Bounds on
the rainbow connection number of graphs in terms of minimum degree and other
graph parameters are given in [2, 9, 12].

Very recently, two groups of authors independently considered the rainbow
connection of graph products [1, 5]. More precisely, the first of these papers deals
with Cartesian, lexicographic and strong products, while the latter treats direct,
strong and lexicographic products. So all standard graph products (see [6] for
the theory of these products) have been addresses by now. Additional results on
graph operations, including graph products, were reported in [10].

In this paper, we are interested in the rainbow connection number of Carte-
sian products of graphs with the emphasis on the question what can be said about
their subgraphs. In Section 3, we present and compare known upper bounds
and demonstrate that there is no hope for some general bounds on the rainbow
connection number of (isometric) subgraphs of Cartesian products. On the other
hand, for the simplest products—hypercubes—the situation is different. We treat
hypercubes in Section 4 where it is shown that the rainbow connection number
of an isometric subgraph of a hypercube is bounded above by the rainbow con-
nection number of the hypercube. Using bipartite wheels, we show that there
exist isometric subgraphs of hypercubes with rainbow connection number arbi-
trarily smaller than the rainbow connection number of the hypercube. In the
final section the concept of c-strong rainbow connected coloring is introduced
and studied. This is in part motivated by the fact that the c-strong rainbow
connection number of an isometric subgraph of an arbitrary Cartesian product
graph is bounded above by one of the products.
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2. Preliminaries

In this section, we collect definitions and concepts needed in the rest of the paper.
All the graphs considered will be simple, finite, and connected.

An edge coloring of a connected graph G is a rainbow connected coloring if
for any two vertices of G there is a path between them whose edges have pairwise
different colors. Such paths are called rainbow paths and G is called rainbow

connected. The smallest number of colors needed to make G rainbow connected
is the rainbow connection number rc(G) of G. If, in the above definitions, the
paths considered are shortest paths, we speak of the strong rainbow connected

coloring, strong rainbow connected graphs, and the strong rainbow connection

number src(G) of G.

The Cartesian product G�H of graphs G and H has the vertex set V (G)×
V (H). Vertices (g, h) and (g′, h′) of G�H are adjacent whenever gg′ ∈ E(G)
and h = h′, or g = g′ and hh′ ∈ E(H). The subgraph of G�H induced on
vertices {(g, h) | g ∈ V (G)} is a G-layer (through h). H-layers are defined anal-
ogously. Clearly, G-layers and H-layers are isomorphic to G and H, respectively.
The Cartesian product operation is commutative and associative and hence, the
Cartesian product of more factors is well-defined. The simplest multiple Carte-
sian products �

d
i=1K2 are known as hypercubes Qd. The Cartesian product of

graphs is connected if and only if all of its factors are connected.

Recall that the k-wheel Wk, k ≥ 3, is the graph obtained from Ck by adding
a vertex and connecting it to every vertex of Ck. For k ≥ 3, the bipartite wheel

BWk is the graph obtained from the k-wheel Wk by subdividing each of the
edges of the outer cycle of Wk with one vertex. In particular, BW3 is the graph
obtained from Q3 be removing one of its vertices and BW4 = P3�P3.

The graph distance considered is the standard shortest paths distance. By
ecc(v) = max{dG(u, v) | u ∈ V (G)} we denote the eccentricity of a vertex v ∈
V (G). The diameter of G, diam(G), is the length of a longest shortest path, in
other words, diam(G) = max{ecc(v) | v ∈ V (G)}. Note that

diam(G) ≤ rc(G) ≤ src(G) .

The radius of G is defined as r(G) = min{ecc(v) | v ∈ V (G)}.

A subgraph H of connected graph G is isometric if dH(u, v) = dG(u, v) holds
for all u, v ∈ V (H). If additionally every shortest u, v-path lies completely in H,
we say that H is a convex subgraph of G. G is a partial cube if for some integer
d, G is an isometric subgraph of Qd. Edges uv and u′v′ of G are in relation Θ
if d(u, u′) + d(v, v′) 6= d(u, v′) + d(u′, v). Relation Θ is reflexive, symmetric, but
generally not transitive. Winkler [13] proved that a (connected) graph G is a
partial cube if and only G is a bipartite graph with transitive relation Θ. Hence
for partial cubes G, relation Θ partitions E(G) into equivalence classes that will
be referred as Θ-classes. The least number d needed for a partial cube G to
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isometrically embed into Qd is the isometric dimension idim(G) of G. Finally,
a graph is a median graph if, for any triple of its vertices u, v, w, there exists a
unique vertex that lies on a shortest u, v-path, on a shortest u,w-path and on a
shortest v, w-path. It is well-known that median graphs are partial cubes.

3. Cartesian Products and their Subgraphs

In this section we present two known upper bounds for the rainbow connection
number of Cartesian products, compare the two bounds, and address the prob-
lem if there is a relation between the rainbow connection number of a Cartesian
product and its subgraphs. We state all results for two factors since generaliza-
tions to more factors are straightforward due to the associativity of the Cartesian
product and since the distance in a product is just the sum of distances between
the projections onto factors.

Let ℓG and ℓH be edge colorings of graphs G and H, respectively. Then
the coloring ℓG�H defined with ℓG�H((g, h)(g′, h)) = ℓG(gg

′) if gg′ ∈ E(G) and
ℓG�H((g, h)(g, h′)) = ℓH(hh′) if hh′ ∈ E(H) will be called a product coloring (of
G�H with respect to ℓG and ℓH). In other words, a product coloring inherits
colorings of layers from the colorings of the corresponding factors.

Given graphs G and H equipped with disjoint optimal rainbow connected
colorings, Li and Sun [10] noticed that the product coloring of G�H gives

(1) rc(G�H) ≤ rc(G) + rc(H) .

They also observed that the bound is tight, we state this fact for the later refer-
ence.

Proposition 1 [10]. Let G and H be graphs with rc(G) = diam(G) and rc(H) =
diam(H). Then rc(G�H) = rc(G) + rc(H).

Proof. Using (1) and the fact that diam(G�H) = diam(G)+diam(H) we have:
diam(G) + diam(H) = diam(G�H)

≤ rc(G�H)≤ rc(G)+rc(H) = diam(G)+diam(H)
hence the assertion.

On the other hand, Basavaraju et al. [1] proved the following upper bound:

(2) rc(G�H) ≤ 2r(G�H) .

To prove (2), a construction more involved than the one to obtain (1) is required.
The next result demonstrates tightness of (2):

Proposition 2 [1]. Let G and H be graphs with diam(G) = 2r(G) and diam(H)=
2r(H). Then rc(G�H) = 2r(G�H).
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Proof. Similarly as in the proof of Proposition 1, the fact r(G�H) = r(G) +
r(H) and (2) yield:

diam(G) + diam(H) = diam(G�H) ≤ rc(G�H) ≤ 2r(G�H)

= 2r(G) + 2r(H) = diam(G) + diam(H) ,

and we are done.

Proposition 2 in particular implies that for any n,m ≥ 2,

rc(K1,n�K1,m) = 4.

This example shows that (2) can be arbitrarily better than (1). Indeed, inequal-
ity (1) asserts that rc(K1,n�K1,m) ≤ n+m.

On the other hand, (2) can also be worse than (1). To see this, consider
any graphs G and H with diam(G) = r(G) = rc(G) and diam(H) = r(H) =
rc(H). Then Proposition 1 implies that (1) gives the exact result rc(G�H) =
r(G)+r(H), while (2) asserts rc(G�H) ≤ 2r(G)+2r(H). For a simple concrete
example consider products of complete graphs for which rc(Kn�Km) = 2.

We turn now our attention to subgraphs of Cartesian products and pose a
question whether we can bound rc(X) in terms of rc(G�H), provided X is a
subgraph of G�H. Clearly, rc(X) can be arbitrarily smaller than rc(G�H).
But it can also be arbitrarily bigger, as the example of Figure 1 shows. There
P20 is a subgraph of P5�P4, rc(P20) = 19, and rc(P5�P4) = rc(P5)+rc(P4) = 7
by Proposition 1. Of course, the example easily generalizes to Pn�Pm for any n
and m.

Figure 1. The product P5 �P4.

Hence, not much can be said about general subgraphs of Cartesian products. But
what if X is an isometric subgraph of G�H? Also in this case, rc(X) can be
arbitrarily bigger than rc(G�H), see the next section.

Finally, note that considering convex subgraphs gives no new information
because convex subgraphs of Cartesian products are precisely subproducts that
project onto convex subgraphs of the factors [7].
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4. Isometric Subgraphs of Hypercubes

The message of the previous section was that not much can be said in gen-
eral about the rainbow connection number of (isometric) subgraphs of Cartesian
products. For the simplest Cartesian products—hypercubes—the situation is
different:

Proposition 3. Let G be an isometric subgraph of Qn. Then rc(G) ≤ rc(Qn) =
n.

Proof. Clearly, rc(Q1) = 1. For n ≥ 2 the assertion rc(Qn) = n follows by an
inductive use of Proposition 1.

Let now G be an isometric subgraph of Qn. Color Qn by the product coloring,
where each of its factors K2 is colored with a private color and let G be equipped
with the induced coloring. Let u, v ∈ V (G). Then, as G is isometric in Qn, there
exists a shortest u, v-path in G, say P , that lies completely in Qn. As P is a
geodesic, the product coloring of Qn assigns different colors to its edges. Hence
G is rainbow connected and we have used at most n colors.

Corollary 4. Let G be a partial cube with idim(G) = diam(G). Then rc(G) =
idim(G).

Proof. Combine the fact that rc(G) ≥ diam(G) with Proposition 3.

We continue with a specific class of partial cubes that will enable us to answer a
question raised in Section 3.

Lemma 5. For any k ≥ 4, rc(BWk) = 4.

Proof. Denote the central vertex of BWk with x. For i = 1, . . . , k let yi be a
neighbor of x (in ordered way through the cycle), and zi the vertex of degree
2 between yi and yi+1, where i + 1 is meant cyclically. It is easy to see, that
diam(BWk) = 4 for k ≥ 4. To complete the proof we thus need to construct a
rainbow connected coloring of BWk using four colors.

Suppose first k is even. Color the edges xyi with color 3 if i is odd, and with
color 4 otherwise. Edges yizi and yizi−1 get color 1 for odd i, for even i they get
color 2. Any of the non-neighbors (zi) of x can be reached from x using either
colors 4 and 2 or colors 3 and 1. Let 1 ≤ i < j ≤ k. Now find a rainbow path
between yi and yj . If i and j are of different parity, then we can take a path
via x using colors 3 and 4. Otherwise, take the path yi, x, yj−1, zj−1, yj (a path
of colors 3, 4, 2, 1 or 4, 3, 1, 2). Next, take zi and zj . Then zi, yi+1, x, yj+1, zj is
a rainbow path if i and j are of different parity, otherwise we can take the path
zi, yi+1, x, yj , zj . The only case left is when we take yi and zj , where 1 ≤ i, j ≤ k.
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Then the path yi, x, yt, zj is a rainbow path, where yt is the neighbor of zj with
t of different parity as i.

Let now k be odd. As above, edges yizi and yizi−1 get color 1 for odd i, for
even i they get color 2. For 1 ≤ i < k, edge xyi gets color 3 if i is odd, and
color 4 otherwise. We color the remaining edge xyk with color 2. With the same
arguments as in the case when k is even it follows that we have a rainbow path
between any two vertices in BWk−{zk−1, yk, zk}. The path zk−1, yk−1, x, y1, zk is
a rainbow path. Hence it remains to see, that there exists a rainbow path between
any vertex from BWk−{zk−1, yk, zk} and any vertex from {zk−1, yk, zk}. Clearly,
from yk we can achieve any vertex in BWk − {zk−1, yk, zk} by going to x (color
2) and then using the colors 3, 1 or 4. From zk−1 (resp. zk) we can reach yi with
colors 1, 2, 3 or 1, 2, 4 and we can reach zi with colors 2, 4, 3, 1 (resp. 1, 3, 4, 2).

Consider products BWk �BWk, k ≥ 4. Then Lemma 5 and Proposition 1 imply
that rc(BWk �BWk) = 8. On the other hand, K1,k is an isometric subgraph
of BWk �BWk with rc(K1,k) = k, which demonstrates that, in general Carte-
sian products the rainbow connection number of an isometric subgraph can be
arbitrarily bigger than the one of the product.

In view of Proposition 3 we now ask, how big can the difference between
rc(G) and rc(Qn) be, where G is isometric in Qn and idim(G) = n. (The answer
is trivial if we would not require idim(G) = n.) We have:

Theorem 6. For every d ≥ 4 and for every k ≥ d, there exists a median graph

G with diam(G) = d = rc(G) and idim(G) = k.

Proof. Lemma 5 gives rc(BWk−(d−4)) = 4. Connect an endvertex of a path
on d − 4 vertices with one of the vertices of degree two in BWk−(d−4) to con-
struct a graph G. By this operation G is still a median graph with idim(G) =
idim(BWk−(d−4)) + d − 4 = k and diam(G) = d. Now take any 4-coloring of
BWk−(d−4) that makes BWk−(d−4) rainbow connected and color the remaining
edges in G each with its own (new) color. By this way G obviously gets rainbow
connected where d colors are used.

Figure 2. Generators of median graphs of diameter 3.

The assumption d ≥ 4 in Theorem 6 is unavoidable. First note that the only me-
dian graphs with diam(G) = 2 are C4 and K1,n and that rc(K1,n) = idim(K1,n) =
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n− 1. For d = 3, it can be shown that all median graphs G of diameter 3 can be
constructed as follows. Either G = Q3 or G can be obtained from one of the left
three graphs from Figure 2 by attaching to the black vertices an arbitrary num-
ber of pendant vertices and by attaching to adjacent black vertices an arbitrary
number of pendant squares.

It is straightforward to see that, by attaching pendant vertices and pendant
squares, the rainbow connection number rises. So there is no infinite family (in
the sense that we can move isometric dimension arbitrary far away from diameter)
of median graphs with diameter and with rainbow connection number equal to
3.

5. Strong Rainbow Connected Colorings

We now turn to strong rainbow connected colorings and consider the example
from Figure 3. The factors C4 and K2 are equipped with strong rainbow con-
nected colorings, however the product coloring produces an isometric subgraph
of C4�K2 that is not (strong) rainbow connected.

1

1

1

1

1

1

1

1

1

2

2

2

3 3 3 3 3

Figure 3. The product C4 �K2.

This example motivates us to introduce the following concepts. A coloring of
the edges of a graph G is a complete strong rainbow connected coloring, c-strong
rainbow connected coloring for short, if every shortest path is a rainbow path.
Having a c-strong rainbow connected coloring of G we say that G is c-strong

rainbow connected. The smallest number of colors needed to make G c-strong
rainbow connected is the c-strong rainbow connection number src(G) of G. Note
that defining an analogous concept for the rainbow connection is not interesting,
as then only the coloring where every edge has its own color would make a graph
completely rainbow connected. Clearly,

diam(G) ≤ rc(G) ≤ src(G) ≤ src(G) .
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The appropriateness of the c-strong rainbow connected colorings for Cartesian
product is demonstrated with the following:

Proposition 7. For any (connected) graphs G and H and any isometric subgraph

X of G�H,

src(X) ≤ src(G�H) ≤ src(G) + src(H) .

Proof. Let G and H be c-strong rainbow connected colored with r and s disjoint
colors, respectively. Then the product coloring is a c-strong rainbow connected
coloring of G�H using r + s colors. Indeed, this follows from the fact that a
shortest path in G�H projects (under the projection on G) onto a shortest path
in G and projects (under the projection on H) onto a shortest path in H, cf. [7].
Moreover, the same argument also implies that src(X) ≤ src(G�H) because the
induced coloring of X (being embedded into G�H) is also a c-strong rainbow
connected coloring using at most r + s colors.

Just as for rainbow connection, we can also say more about c-strong rainbow
connected colorings for isometric subgraph of hypercubes. Before we state the
result, let us introduce some related notation.

For an edge ab of a partial cube G we will denote with Θ(ab) the Θ-class of G
containing ab. Removing the edges Θ(ab) from G, two connected componentsWab

(containing the vertices that are closer to a than to b) and Wba (containing the
vertices that are closer to b than to a) are obtained. The subgraphs of Wab and
Wba containing the vertices that have a neighbor in Wba and Wab are denoted
with Uab and Uba, respectively. Given a partial cube G, the Θ-coloring is the
coloring of the edges of G with Θ-classes.

Theorem 8. Let G be a partial cube. Then src(G) = idim(G). Moreover, the

Θ-coloring is a unique optimal c-strong rainbow connected coloring of G.

Proof. Since no two edges on a shortest path belong to the same Θ-class of G,
the Θ-coloring yields src(G) ≤ idim(G).

Let c be an arbitrary c-strong rainbow connected coloring of G using src(G)
colors. Fix ab ∈ E(G). Let xy be an arbitrary edge in Wab. The latter graph
is a convex subgraph in G, hence every shortest x, a-path (y, a-path, resp.) lies
completely in Wab (it may happen that, for instance, x = a). The equality
d(x, a) = d(y, a) is not possible, as then we would have an odd cycle in G which
cannot happen in a partial cube. Thus, without loss of generality, we may assume
d(x, a) < d(y, a). Denote with P a shortest x, a-path. Then y, x, P, b is a shortest
y, b-path since Uab

∼= Uba, Uab (Uba, resp.) is a convex subgraph in Wab (Wba,
resp.) and the edges between Uab and Uba form a perfect matching representing
exactly the edges of Θ(ab). It follows that c(xy) 6= c(ab). The case when xy
is an edge in Wba is analogous. Therefore, no two edges of different Θ-classes
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can have the same color in any c-strong rainbow connected coloring. Hence,
src(G) ≥ idim(G).
For the uniqueness just observe that, if we would have used in some Θ-class more
than one color, then we would need, for the whole graph, strictly more than
idim(G) colors.

As already mentioned, the difference between diam(G) and rc(G) can be arbi-
trarily large. We now show that the same is true for src(G) and src(G).

Proposition 9. For any n ≥ 4, src(Wn) = ⌈n/2⌉.

Proof. Denote the central vertex of Wn with x and the vertices of the outer cycle
consecutively with y1, y2, . . . , yn. Any two nonadjacent vertices yi and yj are at
distance 2 (which is the diameter of Wn), hence in this case the edges xyi and
xyj must have different colors. In other words, the only pairs of edges incident to
x that can have the same color are of the form xyi and xyj , where yi is adjacent
to yj . Thus, src(Wn) ≥ ⌈n/2⌉. Now we need to find a coloring that attains this
bound.

The edge yiyi+1 gets color 1 for odd i < n, for even i < n it gets color 2
and the remaining edge yny1 gets color 3. For all i, the edge xyi gets color ⌈i/2⌉.
Checking that this is a c-strong rainbow connected coloring is straightforward.

Recall from [4] that src(Wn) = ⌈n/3⌉. Hence the difference src(Wn) − src(Wn)
can be arbitrarily large. In fact, the same is true also in the class of partial cubes.
To see this, consider again the bipartite wheels. Then

src(BWn) = idim(BWn) = n and ⌈n/2⌉ ≤ src(BWn) ≤ ⌈n/2⌉+ 2 .

The first inequality follows from the proof of Proposition 9. For the second one
consider the following coloring. Using the notations from Lemma 5, color xyi
with ⌈i/2⌉ and color the edges around the cycle alternatively with the remaining
two colors. Checking the rainbow connectedness is easy.
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