Note

Counting hypercubes in hypercubes ${ }^{\text {T }}$

Sandi Klavžar
Department of Mathematics and Computer Science, PeF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia

Received 19 May 2004; accepted 3 October 2005
Available online 28 August 2006

Abstract

Subcubes of a hypercube are counted in three different ways, yielding a new graph theory interpretation of a known combinatorial identity. From this and the binomial inversion some additional combinatorial identities related to hypercubes are obtained. © 2006 Elsevier B.V. All rights reserved.

Keywords: Hypercubes; Binomial identities; Enumeration

1. Introduction

Symbolic computation offers powerful methods for proving combinatorial identities, in particular the hypergeometric ones [9]. On the other hand, a (proven) identity increases its meaning if we can assign to it an (apparently unrelated) interpretation. Double counting is one of the main sources for obtaining combinatorial identities. Garbano et al. [5] counted the edges of a hypercube in two ways to obtain the following identity

$$
\begin{equation*}
n 2^{n-1}=\sum_{k=1}^{n} k\binom{n}{k} . \tag{1}
\end{equation*}
$$

This identity can also be obtained in some other ways (cf., for instance, [3]), nevertheless, the approach from [5] is interesting since it gives an attractive graph theory interpretation of (1). In this note, we show that the above idea can be extended to double counting of arbitrary d-dimensional hypercubes of a given n-dimensional hypercube, yielding the identity

$$
\begin{equation*}
\binom{n}{d} 2^{n-d}=\sum_{k=d}^{n}\binom{n}{k}\binom{k}{d}, \tag{2}
\end{equation*}
$$

that holds for any $n \geqslant d \geqslant 0$, cf. [8, Review Exercise 3.8.8]. Note that for $d=1$ the identity (2) becomes (1). Of course, (2) can be proved by other methods, for instance by differentiating (d times) the binomial theorem, or by using the

[^0]

Fig. 1. The 4-cube Q_{4}.
identity

$$
\binom{n}{k}\binom{k}{d}=\binom{n}{d}\binom{n-d}{k-d}
$$

cf. [4, Theorem 8]. However, our approach yields a new combinatorial (graph theory) interpretation of (2).
In the rest of this section we formally introduce hypercubes and list those properties that are needed in our counting arguments. In the next section we count the number of induced d-dimensional hypercubes of a given n-dimensional hypercube in three different ways which in particular yields (2). In the final section we use the results of Section 2 combined with the binomial inversion to derive two additional identities for hypercubes.

For $d \geqslant 0$, the d-dimension hypercube Q_{d} is the graph on 2^{d} vertices representing all $0 / 1$ tuples of length d, where two vertices are adjacent whenever the tuples differ in exactly one position. We shortly say that Q_{d} is the d-cube. By definition, $Q_{0}=K_{1}$. Note also that the 1-cube is the complete graph on two vertices K_{2} and that the 2 -cube is the 4 -cycle C_{4}.

A useful way of representing hypercubes is in terms of their distance levels. For $k=0,1, \ldots, n$ set $L_{k}=\{u \in$ $V\left(Q_{n}\right) \mid u$ contains k ones $\}$. Then L_{k} is called the k th distance level of Q_{n} (with respect to $00 \ldots 0$) and the distance levels partition the vertex set of Q_{n}. Moreover, any edge of Q_{n} connects vertices of two consecutive distance levels. On Fig. 1 the 4-cube is drawn such that the vertices of a distance level lie on the same horizontal level.

Let u be a vertex of Q_{n}. Then the vertex v of Q_{n} that is obtained from u by interchanging zeros and ones is called the antipodal vertex of u (in Q_{n}). For instance, the antipodal vertex of 100111 is 011000 . Note that the antipodal vertex of u in Q_{n} is the unique vertex of Q_{n} that is on the shortest-path distance n from u.

2. Counting sub-hypercubes

In this section, we count the number of induced d-cubes in $Q_{n}(n \geqslant d \geqslant 0)$ in three different ways. For this sake let $\alpha_{d}(G)$ be the number of induced d-cubes of a graph G.

Symmetry approach: A graph G is called vertex-transitive is its automorphism group acts transitively on the vertex set of G. It is well-known and not difficult to see that hypercubes are vertex-transitive graphs, cf. [6, Lemma 3.1.1]. Let $n \geqslant d \geqslant 0$, and let u be an arbitrary vertex of Q_{n}. We may without loss of generality assume that $u=00 \ldots 0$ and consider an arbitrary induced subgraph H of Q_{n} isomorphic to Q_{d} that contains u. Then H necessarily contains a vertex v that contains d one's, that is, v is the antipodal vertex of u in Q_{d}. Moreover, any vertex with d one's give rise to a unique d-cube that contains u. It follows that Q_{n} contains $\binom{n}{d}$ copies of Q_{d} that contain u. Since Q_{n} has 2^{n} vertices (and Q_{d} has 2^{d} of them) and is vertex transitive, we conclude that

$$
\begin{equation*}
\alpha_{d}\left(Q_{n}\right)=\frac{2^{n}\binom{n}{d}}{2^{d}}=\binom{n}{d} 2^{n-d} \tag{3}
\end{equation*}
$$

Algebraic approach: The Cartesian product $G \square H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$ and $(a, x)(b, y) \in E(G \square H)$ whenever either $a b \in E(G)$ and $x=y$, or $a=b$ and $x y \in E(H)$. This graph product is commutative and associative. The simplest example of Cartesian product graphs are just hypercubes: the n-cube Q_{n} is the Cartesian product of n copies of the complete graph on two vertices K_{2}.

The cube polynomial $c(G, x)$ of G is introduced in [1] as

$$
c(G, x)=\sum_{d \geqslant 0} \alpha_{d}(G) x^{i}
$$

Moreover, in the same paper it is observed that for any graphs G and H,

$$
\begin{equation*}
c(G \square H, x)=c(G, x) c(H, x) \tag{4}
\end{equation*}
$$

Clearly, $c\left(K_{2}, x\right)=2+x$. Hence, having in mind that Q_{n} is the Cartesian product of n copies of K_{2}, equality (4) immediately implies that

$$
\alpha_{d}\left(Q_{n}\right)=\binom{n}{d} 2^{n-d}
$$

Metric approach: Let $1 \leqslant k \leqslant n$, then a vertex u of the distance level L_{k} has k neighbors in L_{k-1}.
Let H be an induced subgraph of Q_{n} isomorphic to Q_{d}. Then by [7, Proposition 1.23 (iii)], H is uniquely determined by an arbitrary pair of its diametrical vertices. Select a vertex u of H with the largest number of one's. Then u is unique, and we call it the top vertex of H. Now, every vertex u of L_{k} gives rise to $\binom{k}{d} d$-cubes for which u is the top vertex. Since in d neighbors in L_{k} there are $\binom{n}{k}$ vertices, they all together give $\binom{k}{d}\binom{n}{k}$ such d-cubes. Hence we conclude that

$$
\begin{equation*}
\alpha_{d}\left(Q_{n}\right)=\sum_{k=d}^{n}\binom{n}{k}\binom{k}{d} \tag{5}
\end{equation*}
$$

Hence (3) and (5) give (2).

3. More hypercube identities

The following identities also hold for hypercubes, see [4, Problem 59]:

$$
\begin{equation*}
1=\sum_{k \geqslant 0}(-1)^{k} \alpha_{k}\left(Q_{n}\right) \tag{6}
\end{equation*}
$$

On the other hand, Soltan and Chepoi [11] proved that (6) holds for all median graphs, where median graphs form an important metrically defined class of graphs that contains hypercubes. For the definition and more information on this concept see [7,10]. In addition, Škrekovski [10] proved that for any median graph G :

$$
t(G)=-\sum_{k \geqslant 0}(-1)^{k} k \alpha_{k}(G)
$$

where $t(G)$ is the number of the equivalence classes of the so called Djoković-Winkler relation Θ (see [7]) defined on the edge set of G. Since $t\left(Q_{n}\right)=n$, and Q_{n} is a median graph, we get

$$
\begin{equation*}
n=-\sum_{k \geqslant 0}(-1)^{k} k \alpha_{k}\left(Q_{n}\right) \tag{7}
\end{equation*}
$$

To conclude this note we show how (6) and (7) can be obtained from the counting results of Section 2. Let $\left(a_{n}\right)_{n} \geqslant 0$ and $\left(b_{n}\right)_{n \geqslant 0}$ be arbitrary real sequences. Then the binomial inversion, cf. [2, Corollary 5.2.4], asserts that

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k} b_{k} \quad(\forall n \geqslant 0)
$$

if and only if

$$
b_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} a_{k} \quad(\forall n \geqslant 0) .
$$

Since we have $\binom{n}{d} 2^{n-d}=\sum_{k=d}^{n}\binom{n}{k}\binom{k}{d}$ and hence also $\binom{n}{d} 2^{n-d}=\sum_{k=0}^{n}\binom{n}{k}\binom{k}{d}$, the binomial inversions yields, for any $n \geqslant 0$ and any $d \geqslant 0$:

$$
\begin{equation*}
\binom{n}{d}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{k}{d} 2^{k-d} \sum_{k=d}^{n}(-1)^{n-k}\binom{n}{k}\binom{k}{d} 2^{k-d} . \tag{8}
\end{equation*}
$$

For $d=0$ the identity (8) gives, using (3),

$$
1=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} 2^{k}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 2^{n-k}=\sum_{k \geqslant 0}(-1)^{k} \alpha_{k}\left(Q_{n}\right),
$$

and for $d=1$ the identity (8) gives

$$
\begin{equation*}
n=\sum_{k=1}^{n}(-1)^{n-k}\binom{n}{k} k 2^{k-1}=\frac{1}{2} \sum_{k=0}^{n-1}(-1)^{k}(n-k) \alpha_{k}\left(Q_{n}\right) \tag{9}
\end{equation*}
$$

which is an alternative form of (7).

References

[1] B. Brešar, S. Klavžar, R. Škrekovski, The cube polynomial and its derivatives: the case of median graphs, Electron. J. Combin. 10 (2003) \#R3.
[2] P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, Cambridge, 1996.
[3] D.S. Clark, On some abstract properties of binomial coefficients, Amer. Math. Monthly 89 (1982) 433-443.
[4] D.I.A. Cohen, Basic Techniques of Combinatorial Theory, Wiley, New York, 1978.
[5] M.L. Garbano, J.F. Malerba, M. Lewinter, Hypercubes and Pascal's triangle: a tale of two proofs, Math. Mag. 76 (2003) $216-217$.
[6] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[7] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
[8] L. Lovász, J. Pelikán, K. Vesztergombi, Discrete Mathematics, Springer, New York, 2003.
[9] M. Petkovšek, H.S. Wilf, D. Zeilberger, $A=B$, AK Peters, Ltd., Welleslay, 1996.
[10] R. Škrekovski, Two relations for median graphs, Discrete Math. 226 (2001) 351-353.
[11] P.S. Soltan, V. Chepoi, Solution of the Weber problem for discrete median metric spaces (Russian), Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 85 (1987) 52-76.

[^0]: ${ }^{4}$ Supported in part by the Ministry of Science of Slovenia under the Grant P1-0297-0101-01.
 E-mail address: sandi.klavzar@uni-mb.si.

