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Abstract

Subcubes of a hypercube are counted in three different ways, yielding a new graph theory interpretation of a known combinatorial
identity. From this and the binomial inversion some additional combinatorial identities related to hypercubes are obtained.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Symbolic computation offers powerful methods for proving combinatorial identities, in particular the hypergeomet-
ric ones [9]. On the other hand, a (proven) identity increases its meaning if we can assign to it an (apparently unrelated)
interpretation. Double counting is one of the main sources for obtaining combinatorial identities. Garbano et al. [5]
counted the edges of a hypercube in two ways to obtain the following identity

n2n−1 =
n∑

k=1

k
(n

k

)
. (1)

This identity can also be obtained in some other ways (cf., for instance, [3]), nevertheless, the approach from [5] is
interesting since it gives an attractive graph theory interpretation of (1). In this note, we show that the above idea can
be extended to double counting of arbitrary d-dimensional hypercubes of a given n-dimensional hypercube, yielding
the identity
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)
2n−d =

n∑
k=d

(n

k

) (
k

d

)
, (2)

that holds for any n�d �0, cf. [8, Review Exercise 3.8.8]. Note that for d = 1 the identity (2) becomes (1). Of course,
(2) can be proved by other methods, for instance by differentiating (d times) the binomial theorem, or by using the
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Fig. 1. The 4-cube Q4.

identity

(n

k

) (
k

d

)
=

(n

d

) (
n − d

k − d

)
,

cf. [4, Theorem 8]. However, our approach yields a new combinatorial (graph theory) interpretation of (2).
In the rest of this section we formally introduce hypercubes and list those properties that are needed in our counting

arguments. In the next section we count the number of induced d-dimensional hypercubes of a given n-dimensional
hypercube in three different ways which in particular yields (2). In the final section we use the results of Section 2
combined with the binomial inversion to derive two additional identities for hypercubes.

For d �0, the d-dimension hypercube Qd is the graph on 2d vertices representing all 0/1 tuples of length d, where
two vertices are adjacent whenever the tuples differ in exactly one position. We shortly say that Qd is the d-cube. By
definition, Q0 = K1. Note also that the 1-cube is the complete graph on two vertices K2 and that the 2-cube is the
4-cycle C4.

A useful way of representing hypercubes is in terms of their distance levels. For k = 0, 1, . . . , n set Lk = {u ∈
V (Qn) | u contains k ones}. Then Lk is called the kth distance level of Qn (with respect to 00 . . . 0) and the distance
levels partition the vertex set of Qn. Moreover, any edge of Qn connects vertices of two consecutive distance levels.
On Fig. 1 the 4-cube is drawn such that the vertices of a distance level lie on the same horizontal level.

Let u be a vertex of Qn. Then the vertex v of Qn that is obtained from u by interchanging zeros and ones is called
the antipodal vertex of u (in Qn). For instance, the antipodal vertex of 100111 is 011000. Note that the antipodal vertex
of u in Qn is the unique vertex of Qn that is on the shortest-path distance n from u.

2. Counting sub-hypercubes

In this section, we count the number of induced d-cubes in Qn (n�d �0) in three different ways. For this sake let
�d(G) be the number of induced d-cubes of a graph G.

Symmetry approach: A graph G is called vertex-transitive is its automorphism group acts transitively on the vertex
set of G. It is well-known and not difficult to see that hypercubes are vertex-transitive graphs, cf. [6, Lemma 3.1.1].
Let n�d �0, and let u be an arbitrary vertex of Qn. We may without loss of generality assume that u = 00 . . . 0 and
consider an arbitrary induced subgraph H of Qn isomorphic to Qd that contains u. Then H necessarily contains a vertex
v that contains d one’s, that is, v is the antipodal vertex of u in Qd . Moreover, any vertex with d one’s give rise to a
unique d-cube that contains u. It follows that Qn contains

(
n
d

)
copies of Qd that contain u. Since Qn has 2n vertices

(and Qd has 2d of them) and is vertex transitive, we conclude that

�d(Qn) = 2n
(

n
d

)
2d

=
(n

d

)
2n−d . (3)
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Algebraic approach: The Cartesian product G�H of two graphs G and H is the graph with vertex set V (G)×V (H)

and (a, x)(b, y) ∈ E(G�H) whenever either ab ∈ E(G) and x = y, or a = b and xy ∈ E(H). This graph product is
commutative and associative. The simplest example of Cartesian product graphs are just hypercubes: the n-cube Qn is
the Cartesian product of n copies of the complete graph on two vertices K2.

The cube polynomial c(G, x) of G is introduced in [1] as

c(G, x) =
∑
d �0

�d(G)xi .

Moreover, in the same paper it is observed that for any graphs G and H,

c(G�H, x) = c(G, x)c(H, x). (4)

Clearly, c(K2, x) = 2 + x. Hence, having in mind that Qn is the Cartesian product of n copies of K2, equality (4)
immediately implies that

�d(Qn) =
(n

d

)
2n−d .

Metric approach: Let 1�k�n, then a vertex u of the distance level Lk has k neighbors in Lk−1.
Let H be an induced subgraph of Qn isomorphic to Qd . Then by [7, Proposition 1.23 (iii)], H is uniquely determined

by an arbitrary pair of its diametrical vertices. Select a vertex u of H with the largest number of one’s. Then u is unique,

and we call it the top vertex of H. Now, every vertex u of Lk gives rise to
(

k
d

)
d-cubes for which u is the top vertex.

Since in d neighbors in Lk there are
(

n
k

)
vertices, they all together give

(
k
d

) (
n
k

)
such d-cubes. Hence we conclude that

�d(Qn) =
n∑

k=d

(n

k

) (
k

d

)
. (5)

Hence (3) and (5) give (2).

3. More hypercube identities

The following identities also hold for hypercubes, see [4, Problem 59]:

1 =
∑
k �0

(−1)k�k(Qn). (6)

On the other hand, Soltan and Chepoi [11] proved that (6) holds for all median graphs, where median graphs form an
important metrically defined class of graphs that contains hypercubes. For the definition and more information on this
concept see [7,10]. In addition, Škrekovski [10] proved that for any median graph G:

t (G) = −
∑
k �0

(−1)k k �k(G),

where t (G) is the number of the equivalence classes of the so called Djoković-Winkler relation � (see [7]) defined on
the edge set of G. Since t (Qn) = n, and Qn is a median graph, we get

n = −
∑
k �0

(−1)kk�k(Qn). (7)

To conclude this note we show how (6) and (7) can be obtained from the counting results of Section 2. Let (an)n�0
and (bn)n�0 be arbitrary real sequences. Then the binomial inversion, cf. [2, Corollary 5.2.4], asserts that

an =
n∑

k=0

(n

k

)
bk (∀n�0)
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if and only if

bn =
n∑

k=0

(−1)n−k
(n

k

)
ak (∀n�0).

Since we have
(
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d

)
2n−d = ∑n

k=d
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) (
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)
and hence also

(
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d

)
2n−d = ∑n

k=0

(
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k

) (
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d

)
, the binomial inversions yields,

for any n�0 and any d �0:
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)
=

n∑
k=0

(−1)n−k
(n

k

) (
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)
2k−d

n∑
k=d

(−1)n−k
(n

k

) (
k

d

)
2k−d . (8)

For d = 0 the identity (8) gives, using (3),

1 =
n∑

k=0

(−1)n−k
(n

k

)
2k =

n∑
k=0

(−1)k
(n

k

)
2n−k =

∑
k �0

(−1)k �k(Qn),

and for d = 1 the identity (8) gives

n =
n∑

k=1

(−1)n−k
(n

k

)
k2k−1 = 1

2

n−1∑
k=0

(−1)k(n − k)�k(Qn), (9)

which is an alternative form of (7).
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