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2 B. Brešar, Cs. Bujtás, T. Gologranc, S. Klavžar, et al.
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Abstract

A longest sequence (v1, . . . , vk) of vertices of a graph G is a Grundy

total dominating sequence of G if for all i, N(vi) \
⋃i−1

j=1
N(vj) 6= ∅. The

length k of the sequence is called the Grundy total domination number of
G and denoted γt

gr(G). In this paper, the Grundy total domination number
is studied on four standard graph products. For the direct product we show
that γt

gr(G×H) ≥ γt
gr(G)γt

gr(H), conjecture that the equality always holds,
and prove the conjecture in several special cases. For the lexicographic
product we express γt

gr(G ◦ H) in terms of related invariant of the factors
and find some explicit formulas for it. For the strong product, lower bounds
on γt

gr(G⊠H) are proved as well as upper bounds for products of paths and
cycles. For the Cartesian product we prove lower and upper bounds on the
Grundy total domination number when factors are paths or cycles.

Keywords: total domination, Grundy total domination number, graph
product.

2010 Mathematics Subject Classification: 05C69, 05C76.

1. Introduction

In [10] the Grundy domination number of a graph was introduced as the largest
value obtained by a greedy domination procedure. When domination is replaced
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by total domination (i.e., instead of closed neighborhoods, one considers open
ones) the Grundy total domination number arises. The latter was introduced
recently in [11], and was further studied in [9].

Let S = (v1, . . . , vk) be a sequence of distinct vertices of G. The correspond-
ing set {v1, . . . , vk} of vertices from the sequence S will be denoted by Ŝ. The ini-
tial segment (v1, . . . , vi) of S will be denoted by Si. A sequence S = (v1, . . . , vk),
where vi ∈ V (G), is a (legal) open neighborhood sequence if, for each i,

(1) N(vi) \
i−1⋃

j=1

N(vj) 6= ∅ .

Note that if G is without isolated vertices and S is a maximal open neighborhood
sequence of G, then Ŝ is a total dominating set of G (initially, total dominating
sequences were introduced just for graphs with no isolated vertices).

If (1) holds, each vi is said to be a legal choice for Grundy total domination.
We will say that vi totally footprints the vertices from N(vi) \

⋃i−1
j=1N(vj), and

that vi is the total footprinter of any u ∈ N(vi) \
⋃i−1

j=1N(vj). Any maximal legal
open neigborhood sequence is called a total dominating sequence. For a total
dominating sequence S any vertex in V (G) has a unique total footprinter in Ŝ.
An open neighborhood sequence S in G of maximum length is called a Grundy

total dominating sequence or γtgr-sequence, and the corresponding invariant the
Grundy total domination number of G, denoted γtgr(G).

If condition (1) is replaced with

(2) N [vi] \
i−1⋃

j=1

N [vj ] 6= ∅ ,

then one speaks of a legal choice for Grundy domination. All the definitions from
the above paragraph can now be restated just by omitting “total” everywhere.
In particular, the maximum length of a legal dominating sequence in G is the
Grundy domination number of G and denote it by γgr(G). This invariant was
studied for the first time in [10].

In [6] the Grundy domination number of grid-like, cylindrical and toroidal
graphs was studied. More precisely, the four standard graph products of paths
and/or cycles were considered, and exact formulas for the Grundy domination
numbers were obtained for most of the products with two path/cycle factors.
In this paper we follow this work and investigate the Grundy total domination
number on the standard graph products. The main difference in proving the
results for the Grundy total domination number comparing to related results
from [6] is that the analogue of [6, Lemma 1] does not hold for Grundy total
dominating sequences, therefore other techniques are required. In particular, as
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in the case of total domination (cf. the monograph [14]), also in the Grundy total
domination natural connections with hypergraphs are applicable.

In [7] a strong connection between the Grundy domination number and the
zero forcing number of a graph was established. (The zero forcing number is
in turn very useful in determining the minimum rank of a graph [2].) Lin [17]
noticed a similar connection between the Grundy total domination number and
the skew zero forcing number of graphs, where the skew zero forcing number was
introduced in [15] and is denoted by Z−(G). (For some recent related results
see [1, 3–5, 12, 16, 18].) More precisely, Lin proved that if G is a graph, then
γtgr(G) = |V (G)| − Z−(G). As a consequence, γtgr(G) ≤mr0(G), where mr0 is a
variation of the minimum rank.

The vertex set of each of the four standard graph products of graphs G and
H is equal to V (G) × V (H). In the direct product G ×H, vertices (g1, h1) and
(g2, h2) are adjacent when g1g2 ∈ E(G) and h1h2 ∈ E(H). In the lexicographic

product G ◦ H (also denoted in the literature by G[H]), vertices (g1, h1) and
(g2, h2) are adjacent if either g1g2 ∈ E(G), or g1 = g2 and h1h2 ∈ E(H). In
the strong product G ⊠ H, vertices (g1, h1) and (g2, h2) are adjacent whenever
either g1g2 ∈ E(G) and h1 = h2, or g1 = g2 and h1h2 ∈ E(H), or g1g2 ∈ E(G)
and h1h2 ∈ E(H). Finally, in the Cartesian product G�H, vertices (g1, h1)
and (g2, h2) are adjacent if either g1g2 ∈ E(G) and h1 = h2, or g1 = g2 and
h1h2 ∈ E(H). All these products are associative and, with the exception of the
lexicographic product, also commutative. For more on the products see [13].

Let G and H be graphs and ∗ be one of the four graph products under
consideration. If h ∈ V (H), then the set Gh = {(g, h) ∈ V (G ∗H) : g ∈ V (G)}
is a G-layer. By abuse of notation we will also consider Gh as the corresponding
induced subgraph. Clearly Gh is isomorphic to G unless ∗ is the direct product
in which case it is an edgeless graph of order |V (G)|. For g ∈ V (G), the H-layer
gH is defined as gH = {(g, h) ∈ V (G ∗H) : h ∈ V (H)}. We may again consider
gH as an induced subgraph when appropriate.

The rest of the paper is organized as follows. In the next section we first ob-
serve that γtgr(G ×H) ≥ γtgr(G)γtgr(H) holds for arbitrary graphs G and H and
conjecture that actually the equality always holds. In the rest of the section we
prove the conjecture for several special cases. In Section 3 we consider the lexico-
graphic product and express γtgr(G◦H) in terms of related invariant of the factors
G and H. As a consequence, formulas for the Grundy total domination number
of several special lexicographic products are obtained. In Section 4 lower bounds
on γtgr(G⊠H) are proved, while upper bounds are obtained for strong products
of paths and cycles. The Cartesian product seems to be the most demanding
with respect to the Grundy total domination number, a typical situation when
domination problems are investigated on graph products, cf. [8]. In Section 5 we
then give upper and lower bounds for Cartesian products of paths and cycles. In
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the concluding section we briefly discuss two related invariants, L-Grundy domi-
nation number and Z-Grundy domination number and observe that some of the
results derived in this paper extend to these two invariants.

2. Direct Product

We start this section with the following general bound on the Grundy total dom-
ination number of the direct product of graphs.

Lemma 2.1. If G and H are graphs, then γtgr(G×H) ≥ γtgr(G)γtgr(H).

Proof. Let S = (x1, . . . , xk) be a Grundy total dominating sequence in G, let
S′ = (y1, . . . , yℓ) be a Grundy total dominating sequence in H, and let xi and
yi totally footprint x′i and y′i, respectively. Then (x1, y1), (x1, y2), . . . , (x1, yℓ),
(x2, y1), . . . , (xk, yℓ) is a total dominating sequence in G×H since (xi, yj) totally
footprints (x′i, y

′

j). In fact, (x′i, y
′

j) ∈ N(xi, yj), since x′i ∈ NG(xi) and y′j ∈
NH(yj), and if (x′i, y

′

j) ∈ N((xm, yn)) for some m,n, then m ≥ i and n ≥ j.

We conjecture that the inequality in Lemma 2.1 is in fact equality.

Conjecture 2.2. If G and H are graphs, then γtgr(G×H) = γtgr(G)γtgr(H).

In [11] a correspondence between total dominating sequences in graphs and
edge covering sequences in hypergraphs was established. In the latter we are given
sets (hyperedges) E1, . . . , Ek that cover the ground set V and we are looking for
a maximum length ρgr of a sequence Ei1 , . . . , Eiℓ such that Eim 6⊆

⋃
n<mEin .

This problem clearly generalizes the problem of total dominating sequences and
dominating sequences in graphs when sets E1, . . . , Ek are the open or the closed
neighborhoods of vertices, respectively.

For sets X1, X2 of hyperedges covering V1, V2, respectively, consider the
product of H1 = (V1, X1), H2 = (V2, X2) as H1 × H2 with hyperedges {E1 ×
E2 : E1 ∈ X1, E2 ∈ X2} covering V1 × V2. Seemingly stronger conjecture in
this setting is that ρgr(H1 × H2) = ρgr(H1)ρgr(H2). To see that the conjec-
tures are in fact equivalent, for each of the given H1, H2 construct the bipar-
tite (incidence) graph Bi whose vertices are Vi ∪ Xi and two vertices u, v are
adjacent if v ∈ Vi, u ∈ Xi and v ∈ u. It is not hard to see that since for
(v1, v2) ∈ B1 × B2 we have N((v1, v2)) = N(v1) ×N(v2), γ

t
gr(B1 × B2) includes

the questions of calculating ρgr on four independent product structures, namely
N(V1)×N(V2), N(V1)×N(X2), N(X1)×N(V2) and N(X1)×N(X2), where N(U)
denotes the set of all the open neighborhoods of the vertices in a set U . The first
product structure corresponds to H1 × H2. If γtgr(B1 × B2) = γtgr(B1)γ

t
gr(B2),

then the conjecture holds for all the four subproblems. In particular, it holds
that ρgr(H1 ×H2) = ρgr(H1)ρgr(H2).
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In [10] a similar conjecture was posed stating that γgr(G⊠H) = γgr(G)γgr(H)
and a construction connecting γgr and ρgr was introduced. Using the construction
from the paper it can be shown that this conjecture is in fact equivalent to both of
the above conjectures. Moreover, examining the arguments used above, it suffices
to prove Conjecture 2.2 by only considering that both factors are bipartite graphs.
In fact, the conjecture holds for all pairs of bipartite graphs on at most 10 vertices,
which was checked using a computer.

Lemma 2.3. Let E1, . . . , Ek be subsets of the edge set E(G) of a graph G such

that E1 ∪ · · · ∪ Ek = E(G). Let G1, . . . , Gk be the isolate-free graphs with edge

sets E1, . . . , Ek, respectively. Then γtgr(G) ≤ γtgr(G1) + · · ·+ γtgr(Gk).

Proof. Let S = (x1, . . . , xℓ) be a Grundy total dominating sequence in G. For
each xi ∈ S choose yi such that xi totally footprints yi. Each pair xi, yi induces
an edge, thus it is in (at least) one of the graphs G1, . . . , Gk. If it is in more
than one of them, choose one arbitrarily. We claim that for each 1 ≤ j ≤ k,
the subsequence Sj of those vertices xi ∈ Ŝ that are (chosen) in Gj , is a legal
open neighborhood sequence in Gj . Indeed, when xi is chosen in Gj , it totally
footprints yi, if yi was totally dominated in Gj by xr, r < i, then yi would be

totally dominated also in G by xr, a contradiction. Hence, γtgr(G) =
∣∣Ŝ

∣∣ =∣∣Ŝ1

∣∣+ · · ·+
∣∣Ŝk

∣∣ ≤ γtgr(G1) + · · ·+ γtgr(Gk).

Let bc(G) be the smallest size of a covering of edges of G with complete
bipartite graphs.

Corollary 2.4. If G is a graph, then γtgr(G) ≤ 2bc(G).

Proof. The result follows from Lemma 2.3 by using the fact that the Grundy
total domination number of complete bipartite graphs is 2.

Lemma 2.5. Let v ∈ V (H), and let S be a Grundy total dominating sequence

in G×H. Then
∣∣Ŝ ∩Gv

∣∣ ≤ γtgr(G).

Proof. Note that the subsequence of vertices in S that lie in Gv forms a legal
open neighborhood sequence of G ×H, and consequently, its projection to G is
a legal open neighborhood sequence of G. Thus,

∣∣Ŝ ∩Gv
∣∣ ≤ γtgr(G).

It is known (see [9]) and easy to see that for any vertices v1, v2 with N(v1) =
N(v2) in G, we have γtgr(G) = γtgr(G− v2).

Lemma 2.6. If G is a graph and k1, k2 are positive integers, then we have

γtgr(G×Kk1,k2) = 2γtgr(G).
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Proof. Note that any two vertices u and v in Kk1,k2 that are in the same biparti-
tion set have the same open neighborhoods in Kk1,k2 . Moreover, as NG×H(u, v) =
NG(u) × NH(v), we infer that for any g ∈ V (G), the vertices (g, u) and (g, v)
have the same open neighborhoods in G × H. By applying several times the
observation before the lemma, we derive that γtgr(G×Kk1,k2) = γtgr(G×K2). By
Lemma 2.1, γtgr(G×K2) ≥ 2γtgr(G), and by Lemma 2.5 the equality holds, that
is, γtgr

(
G×Kk1,k2

)
= γtgr(G×K2) = 2γtgr(G).

Theorem 2.7. If G is a graph for which γtgr(G) = 2bc(G), then γtgr(G ×H) =
γtgr(G)γtgr(H).

Proof. Let E1, . . . , Ek be a covering of the edge set of G with complete bipartite
graphs, such that k = bc(G). Then for i ∈ [k] let Fi be the subgraph of G spanned
by the edge set Ei. Then E(F1×H), . . . , E(Fk×H) is a covering of the edge set of
G×H such that the corresponding graphs G1, . . . , Gk are isomorphic to the direct
product of complete bipartite graphs with H. By Lemma 2.6, γtgr(Gi) = 2γtgr(H),
thus by Lemma 2.3, γtgr(G × H) ≤ 2bc(G)γtgr(H) = γtgr(G)γtgr(H). By Lemma
2.1, the equality holds.

Corollary 2.8. If T is a tree, then γtgr(T ×H) = γtgr(T )γ
t
gr(H).

Proof. By Theorem 2.7, it suffices to show that γtgr(T ) = 2bc(T ). By the result
in [9], γtgr(T ) = 2β(T ), where β(T ) is the vertex cover number of T . Since the
vertex cover can be interpreted as covering edges with stars, and stars are the
only complete bipartite graphs in trees, it holds β(T ) = bc(T ).

To find more graphs for which Theorem 2.7 applies, we first consider the
following lemma, which is a straightforward consequence of definitions.

Lemma 2.9. The direct product Kk1,k2 ×Kℓ1,ℓ2 of two complete bipartite graphs

is isomorphic to the disjoint union Kk1ℓ1,k2ℓ2 +Kk1ℓ2,k2ℓ1.

Lemma 2.10. If G1, G2 are such that γtgr(Gi) = 2bc(Gi) for i ∈ {1, 2}, then

γtgr(G1 ×G2) = 2bc(G1 ×G2).

Proof. On one hand, 2bc(G1 × G2) ≥ γtgr(G1 × G2) ≥ γtgr(G1)γ
t
gr(G2) =

2bc(G1)2bc(G2). On the other hand, if G1,1, . . . , G1,k1 are complete bipartite
graphs with bc(G1) = k1 and E(G1,1), . . . , E(G1,k1) is a covering of E(G1) and
G2,1, . . . , G2,k2 are complete bipartite graphs with bc(G2) = k2 and E(G2,1), . . . ,
E(G2,k2) is a covering of E(G2), then by Lemma 2.9, each G1,i × G2,j is a dis-
joint union of two complete bipartite graphs. Thus G1 × G2 has a partition of
edges into 2bc(G1)bc(G2) complete bipartite graphs. This proves that the first
inequality is in fact equality.
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Notice that γtgr(Pℓ) = ℓ, γtgr(Cℓ) = ℓ − 2 if ℓ is even, and γtgr(Pℓ) = ℓ − 1,
γtgr(Cℓ) = ℓ − 1 otherwise. Hence, by applying Corollary 2.8, we derive the
following result.

Corollary 2.11. If k, ℓ > 1, then

γtgr(Pk × Pℓ) =





k · ℓ, k, ℓ even,

k · (ℓ− 1), k even, ℓ odd,

(k − 1) · (ℓ− 1), k, ℓ odd.

If k > 1, ℓ > 2, then

γtgr(Pk × Cℓ) =





k · (ℓ− 2), k, ℓ even,

k · (ℓ− 1), k even, ℓ odd,

(k − 1) · (ℓ− 2), k odd, ℓ even,

(k − 1) · (ℓ− 1), k, ℓ odd.

Theorem 2.12. γtgr(Cn1
× Cn2

) = γtgr(Cn1
)γtgr(Cn2

).

Proof. Notice that with a permutation of vertices, open neighborhoods of Cℓ

can be presented as {0, 1}, {1, 2}, {2, 3}, . . . , {ℓ − 1, 0} in the case ℓ is odd and
as a disjoint union of two such presentations in the case ℓ is even. For the
sake of convenience, assume that both n1 and n2 are odd, we will deal with
the other cases at the end of the proof. In this case the open neighborhoods
of the product Cn1

× Cn2
are in the above presentation quadruples of the form

{(0, 0), (1, 0), (0, 1), (1, 1)}, {(1, 0), (2, 0), (1, 1), (2, 1)}, . . . , {(n1−1, n2−1), (0, n2−
1), (n1 − 1, 0), (0, 0)}. We will call a set of vertices {(i, 0), (i, 1), . . . , (i, n2 − 1)} a
row and similarly a set of vertices {(0, i), (1, i), . . . , (n1 − 1, i)} a column.

Let S = (v1, . . . , vn) be an optimal total dominating sequence in Cn1
×Cn2

of
length n. For each i ∈ [n] = {1, . . . , n} let ki =

∣∣⋃i
j=1N(vj)

∣∣−
∣∣⋃i−1

j=1N(vj)
∣∣−1.

By definition of the total dominating sequence, ki ≥ 0. To prove that γtgr(Cn1
×

Cn2
) ≤ γtgr(Cn1

)γtgr(Cn2
) = n1n2 − n1 − n2 + 1 holds, we need to prove that∑n

j=1 kj ≥ n1 + n2 − 1. By Lemma 2.1, this suffices to prove the statement.

For the convenience denote Di =
⋃i

j=1N(vj) for each i ∈ [n]. Let vi ∈
{v2, . . . , vn} be such that it totally dominates a vertex which is in a row or a
column such that no vertex in this row or a column is in Di−1. We will say that
this row or column is newly dominated by vi. Let the number of columns or rows
newly dominated by vi be ndi

For each Dj , let Gj be a graph on vertices Dj such that two vertices in Dj

are adjacent if they lie in the same column or the same row in Cn1
×Cn2

. Notice
that for n ≥ j1 > j2 ≥ 1, graph Gj2 is an induced subgraph of Gj1 . Let cj be the
number of connected components of Gj (with c0 = 0). We would like to prove
the following
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Lemma 2.13. For i ≥ 1 we have

ki + (ci − ci−1)− ndi ≥ 0.

Proof. First let us suppose that ci − ci−1 ≥ 0.

If vi newly dominates one column and no row, it totally dominates at least
two vertices not in Di−1, therefore ki ≥ 1. The same holds if vi newly dominates
one row and not any column, implying that in this two cases the sum is non-
negative.

If vi newly dominates one column and newly dominates one row, it totally
dominates at least three vertices not in Di−1, therefore ki ≥ 2. Similarly, if vi
newly dominates two columns (or rows) and one or zero rows (or columns), it
totally dominates at least four vertices not in Di−1, therefore ki = 3. In all of
the above cases when a row or a column is newly dominated, the corresponding
ki contributes a positive value for each row and column to the sum, making it
non-negative.

What remains is to analyze the situation where there exists vi that newly
dominates two columns and two rows. Such vertex dominates four new vertices,
hence ki = 3. Moreover vertices in N(vi) form a new connected component
implying ci − ci−1 = 1. Thus the sum is non-negative.

Now we turn to the case when we have ci′ − ci′−1 < 0. By definition of the
graphs, ci−1 − ci can be at most 3 since vertices of N(vi) lie in two columns and
two rows, thus they can join at most four components into one.

First, suppose ci−1 − ci = 3. In this case each of the four components has
a vertex in exactly one distinct row or column that vertices of N(vi) lie in. In
particular, this implies that vi does not newly dominate any row or column.
Moreover, no vertex in N(vi) is in Di−1 since otherwise the component of such a
vertex would lie in a column and a row that vertices of N(vi) lie in, hence there
could not be four components in Gi−1 that are joined into one in Gi. Hence vi
must totally dominate four vertices not in Di−1 and ki = 3.

In the case that ci−1−ci = 2 it is not hard to see by a simple check that either
ki = 2, and vi does not dominate any new column or row or vi newly dominates
exactly one row or exactly one column, but in this case ki = 3.

Finally if ci−1 − ci = 1, then similarly the possible situations are: either
ki = 1, and vi does not dominate any new column or row; or ki = 2 and vi
newly dominates one column or one row; or ki = 3, and vi newly dominates two
columns, two rows or a column and a row.

We conclude the proof of Theorem 2.12 with the following: By Lemma 2.13
we know that

n∑

i=1

ki + (ci − ci−1)− ndi ≥ 0.
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Since we have cn = 1, c0 = 0 and
∑n

i=1 ndi = n1+n2, we have that
∑n

j=1 kj ≥
n1 + n2 − 1 which as stated proves the Theorem 2.12, when n1, n2 are odd.

To conclude the proof we need to cover the cases when at least one of the
n1, n2 is even.

If, say, n1 is odd and n2 is even, then the open neighborhoods of the product
Cn1

× Cn2
can be presented as a disjoint union of two copies of quadruples of

the form {(0, 0), (1, 0), (0, 1), (1, 1)}, {(1, 0), (2, 0), (1, 1), (2, 1)}, . . . ,
{(

n1−1, n2

2 −
1
)
,
(
0, n2

2 − 1
)
, (n1 − 1, 0), (0, 0)

}
. Hence by similar arguments as above,

γtgr(Cn1
× Cn2

) ≤ 2(n1 − 1)
(n2

2
− 1

)
= (n1 − 1)(n2 − 2) = γtgr(Cn1

)γtgr(Cn2
).

Moreover, if both n1 and n2 are even, we have four disjoint copies of quadruples of
the form {(0, 0), (1, 0), (0, 1), (1, 1)}, {(1, 0), (2, 0), (1, 1), (2, 1)}, . . . ,

{(
n1

2 −1, n2

2 −
1
)
,
(
0, n2

2 − 1
)
,
(
n1

2 − 1, 0
)
, (0, 0)

}
and get

γtgr(Cn1
× Cn2

) ≤ 4
(n1

2
− 1

)(n2

2
− 1

)
= (n1 − 2)(n2 − 2) = γtgr(Cn1

)γtgr(Cn2
).

Similar techniques (but more direct) can be used to show that Conjecture 2.2
holds if one of the factors is a cycle and one of them is a complete graph or both
being complete graphs. This could possibly indicate why the conjecture holds
for small graphs, since most of them could probably be partitioned into cycles,
cliques, trees and complete bipartite graphs in the way of Lemma 2.3.

3. Lexicographic Product

As it turns out, the formula for γtgr(G ◦H) a bit surprisingly relies on (Grundy)
dominating sequences of G. The results are very similar to the formula for γgr(G◦
H) which was obtained in [6].

Given a dominating sequence D = (d1, . . . , dk) in a graph G, let a(D) denote
the cardinality of the set of vertices di from D, which are not adjacent to any
vertex from {d1, . . . , di−1}.

Theorem 3.1. For any graphs G and H, where H has no isolated vertices,

γtgr(G ◦H) = max
{
a(D)

(
γtgr(H)− 1

)
+ |D̂| :D is a dominating sequence of G

}
.

Proof. Let D = (d1, . . . , dm) be a dominating sequence of G, and let
(
d′1, . . . , d

′

k

)

be a Grundy total dominating sequence of H. Then one can find a sequence S
in G ◦ H of length a(D)

(
γtgr(H) − 1

)
+ |D̂| as follows. Let S be the sequence

that corresponds to D, and those vertices di ∈ D̂ which are not adjacent to
any vertex from {d1, . . . , di−1} are repeated γtgr(H) times in a row, so that the
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corresponding subsequence is of the form
((
di, d

′

1

)
, . . . ,

(
di, d

′

k

))
. On the other

hand, the vertices di ∈ D̂ which are adjacent to some vertex from {d1, . . . , di−1}
are projected only once from the vertices of S, i.e., there is a unique vertex (di, h)
that belongs to S. It is easy to see that in either case the vertices in S are
legally chosen. In the first case this is true because no vertex of diH is totally
dominated yet at the point when

(
di, d

′

1

)
is chosen, thus

((
di, d

′

1

)
, . . . ,

(
di, d

′

k

))
is

a legal open neighborhood subsequence. In the second case this is true because
D is a legal closed neighborhood sequence in G, and so when di is chosen, there
exists another vertex t ∈ V (G), distinct from di, that di footprints. Hence,
when (di, h) is chosen in S, it totally footprints vertices from tH. Note that
the length of S is a(D)

(
γtgr(H) − 1

)
+ |D̂|. This implies that γtgr(G ◦ H) ≥

max
{
a(D)

(
γtgr(H)− 1

)
+ |D̂| : D is a dominating sequence of G

}
.

For the converse, let S be an arbitrary open neighborhood sequence in G◦H.
Let S′ =

(
(x1, y1), . . . , (xn, yn)

)
be the subsequence of S, where (x, y) ∈ S′ if and

only if (x, y) is the first vertex in S that belongs to xH. We claim that the
corresponding sequence of the first coordinates T = (x1, . . . , xn) is a legal closed
neighborhood sequence in G. Firstly, if xi is not adjacent to any of {x1, . . . , xi−1},
then clearly xi footprints itself. Otherwise, if xi is adjacent to xj , where j ∈
{1, . . . , i− 1}, then there exists a vertex (xj , h) ∈ S that appears in S before
any vertex from xiH. Thus when (xi, yi) is added to S, all vertices from xiH
are already totally dominated. Hence, since (xi, yi) must totally footprint some
vertex, it can only be a vertex in xH, where x ∈ NG(xi). We infer that xi
footprints x with respect to T . Thus T is a legal closed neighborhood sequence.

Let A(T ) be the set of all vertices xi in T , such that xi is not adjacent to any
vertex from {x1, . . . , xi−1}. (Note that |A(T )| = a(T ) by definition.) Two cases
for a vertex xj ∈ T̂ appear, which give different bounds on the number of vertices

in xjH ∩ Ŝ. If xj /∈ A(T ), then |xjH ∩ Ŝ| = 1, because (xj , yj) totally dominates
all neighboring H-layers, and xjH is already totally dominated before (xj , yj) is

added to S. On the other hand, if xj ∈ A(T ), then clearly
∣∣xjH ∩ Ŝ

∣∣ ≤ γtgr(G).

We infer that |Ŝ| ≤ (|T̂ |−a(T ))+a(T )γtgr(H), where T is a closed neighborhood
sequence.

Since any independent set of vertices yields a legal closed neighborhood se-
quence, we infer the following

Corollary 3.2. For any graphs G and H with no isolated vertices,

γtgr(G ◦H) ≥ α(G)γtgr(H).

To see that the inequality in Corollary 3.2 is not always equality, consider
P4◦H, where H is a graph with no isolated vertices. The bound in the corollary is
α(P4)γ

t
gr(H) = 2γtgr(H), but γtgr(P4 ◦H) ≥ 2γtgr(H)+1. Indeed, let u1, u2, u3, u4
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be the vertices of P4 with the natural adjacencies, and let S be the sequence
that starts in the layer u1H, by legally picking γtgr(H) vertices. Then select an
arbitrary vertex from u2H. Finally select γtgr(H) vertices in the layer u4H. This
yields a legal sequence of the desired length.

Following the same arguments as in [6, Corollary 10], and using the fact that
γtgr(H) ≥ 2 for any graph H with no isolated vertices, we derive the following
results.

Corollary 3.3. If H is a graph with no isolated vertices, then

γtgr(Pk ◦H) =

{
k
2 · γtgr(H) + 1, k is even, k 6= 2,⌈
k
2

⌉
· γtgr(H), k is odd.

Corollary 3.4. Let k, ℓ > 2. If ℓ is even, then

γtgr(Pk ◦ Pℓ) =

{
k
2 · ℓ+ 1, k is even,⌈
k
2

⌉
· ℓ, k is odd.

If ℓ is odd, then

γtgr(Pk ◦ Pℓ) =

{
k
2 · (ℓ− 1) + 1, k is even,⌈
k
2

⌉
· (ℓ− 1), k is odd.

Corollary 3.5. Let k, ℓ > 2. If ℓ is even, then

γtgr(Pk ◦ Cℓ) =

{
k
2 · (ℓ− 2) + 1, k is even,⌈
k
2

⌉
· (ℓ− 2), k is odd.

If ℓ is odd, then

γtgr(Pk ◦ Cℓ) =

{
k
2 · (ℓ− 1) + 1, k is even,⌈
k
2

⌉
· (ℓ− 1), k is odd.

Using Theorem 3.1 we also obtain the following result.

Corollary 3.6. Let H be a graph without isolated vertices, and k ≥ 3. Then

γtgr(Ck ◦H) =

{
k
2 · γtgr(H), k is even,⌊
k
2

⌋
· γtgr(H) + 1, k is odd.

The value for Grundy total domination numbers of Ck◦Cℓ easily follows from
the above corollary.
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4. Strong Product

Given a (closed neighborhood) dominating sequence D = (d1, . . . , dk) in a graph
G, let

• C(D) denote the set of vertices di from D that footprints itself and at least
one of its neighbors and let c(D) = |C(D)|;

• B(D) denote the set of vertices di from D that does not footprint itself and
footprint at least one of its neighbors and let b(D) = |B(D)|;

• A(D) denote the set of vertices di from D that are not adjacent to any vertex
from {d1, . . . , di−1} and let a(D) = |A(D)|.

Theorem 4.1. If G and H are graphs, where G has no isolated vertices, then

γtgr(G⊠H) ≥ max
{
(γgr(G) + 1) · c(D) + γgr(G) · b(D) + (|D̂| − b(D)

− c(D))γtgr(G) : D is a dominating sequence of H
}
.

Proof. Let D = (y1, . . . , yk) be an arbitrary legal closed neighborhood sequence
of H. Let (x1, . . . , xℓ) be a γgr-sequence of G and (g1, . . . , gj) a γtgr-sequence of G.
Let x ∈ V (G) be a vertex that is footprinted by xℓ (note that xℓ can be chosen in
such a way that x 6= xℓ, sinceG has no isolated vertices). Now we construct a legal
total dominating sequence S = Sk of G⊠H. First let S0 be the empty sequence.
For each i ∈ [k] let Si = Si−1 ⊕ ((x1, yi), (x2, yi), . . . , (xℓ−1, yi), (x, yi), (xℓ, yi))
if yi ∈ C(D), where ⊕ means the concatenation operation on sequences. If
yi ∈ B(D), let Si = Si−1 ⊕ ((x1, yi), (x2, yi), . . . , (xℓ−1, yi), (xℓ, yi)) otherwise
Si = Si−1 ⊕ ((g1, yi), (g2, yi), . . . , (gj , yi)).

By symmetry we get the following.

Theorem 4.2. If G and H are graphs, where H has no isolated vertices, then

γtgr(G⊠H) ≥ max
{
(γgr(H) + 1) · c(D) + γgr(H) · b(D) + (|D̂| − b(D)

− c(D))γtgr(H) : D is a dominating sequence of G
}
.

Theorem 4.3. If G and H are graphs, then

γtgr(G⊠H) ≥ max
{
γtgr(G) · a(D) + (|D̂| − a(D))γgr(G) :

D is a dominating sequence of H
}
.

Proof. Let D = (y1, . . . , yk) be an arbitrary legal closed neighborhood sequence
of H. Let (x1, . . . , xℓ) be a γgr-sequence of G and (g1, . . . , gj) a γtgr-sequence of
G. Now we construct a legal total dominating sequence S = Sk of G ⊠H. Let
S0 = ∅. For each i ∈ [k] let Si = Si−1⊕((g1, yi), (g2, yi), . . . , (gj , yi)) if yi ∈ A(D),
otherwise Si = Si−1 ⊕ ((x1, yi), (x2, yi), . . . , (xℓ, yi)).
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By symmetry we also get the following.

Theorem 4.4. If G and H are graphs, then

γtgr(G⊠H) ≥ max
{
γtgr(H) · a(D) + (|D̂| − a(D))γgr(H) :

D is a dominating sequence of G
}
.

For the strong product of paths and/or cycles the above theorems imply the
following lower bounds.

Corollary 4.5. For any pair k, ℓ ≥ 3 of integers we have

(i)

γtgr(Pk ⊠ Pℓ) ≥

{
kℓ− k − ℓ+ 2, k, ℓ are odd,

kℓ− k − ℓ+ 3, otherwise.

(ii)

γtgr(Pk ⊠ Cℓ) ≥

{
kℓ− 2k − ℓ+ 3, k is odd, ℓ is even,

kℓ− 2k − ℓ+ 4, otherwise.

(iii)

γtgr(Ck ⊠ Cℓ) ≥

{
kℓ− 2k − 2ℓ+ 5, k, ℓ are even,

kℓ− 2k − 2ℓ+ 6, otherwise.

Let V (Pk) = [k], E(Pk) = {12, 23, . . . , (k − 1)k}. A subset I of consecutive
elements of [k] with |I| ≥ 2 is called an interval. Let P 2

k denote the graph with
vertex set [k] and edge set {(i, j) : |i − j| ≤ 2}. Strong components of a subset
U ⊆ [k] are components of P 2

k [U ].

Proposition 4.6. For k ≥ 3 let U be a non-empty subset of [k] with |U | < k.
Then the number d of totally dominated vertices by U in Pk is either

(i) at least |U |+ 1, or

(ii) d = |U | − 1 and k is odd and U consists of all odd numbers of [k], or

(iii) d = |U | and for the number i of intervals in U we have either

1. i = 0 and U = {1, 3, 5, . . . , 2l−1 : 2l−1 < k}, or U = {k−2m, k−2m+
2, . . . , k : k − 2m > 1}, or U = {1, 3, 5, . . . , 2l − 1} ∪ {k − 2m, k − 2m+
2, . . . , k} with 2l + 1 < k − 2m, or

2. i = 1 and U consists of one single strong component and 1, k ∈ U .

Proof. We proceed by induction on k. If k = 3, then U is (isomorphic) either
(to) {1}, {2}, {1, 2} or {1, 3} and the cases covered by the statement.

Suppose now k ≥ 4 and the statement is proved for 3, 4, . . . , k − 1. Assume
first U contains at least two strong components. Then there exists an m ∈ [k]
such m,m+ 1 /∈ U but there are elements l, r ∈ U with l < m, m+ 1 < r. Then
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let [a + 1, b − 1] be the largest interval containing m that is disjoint with U (so
a, b ∈ U and a+1 and b− 1 are totally dominated by U). If a ≥ 3 and b ≤ k− 2,
then by induction applied to Pa and Pk−b+1 we obtain that the number of vertices
totally dominated by U ∩ [a] is at least |U ∩ [a]| − 1 + 1 (the plus 1 stands for
dominating a+1) and that the number of vertices totally dominated by U ∩ [b, k]
is at least |U∩ [b, k]|−1+1 (the plus 1 stands for dominating b−1). Therefore the
total number of vertices dominated by U is at least |U | and equality holds (again
by induction) if U = {1, 3, . . . , a} ∪ {b, . . . , k − 2, k} as stated in the proposition.
The cases when a ≤ 2 or b ≥ k − 1 can be covered similarly.

So from now on, we assume that U consists of a single strong component. If
i = 0, then U = {j, j+2, j+4, . . . , j+2l} for some j and l. If j 6= 1 and j+2l 6= k,
then d = |U |+1, while the other possibilities are included in the statement of the
proposition. If i = 1 and 1 or k does not belong to U , then d = |U |+1, while the
case 1, k ∈ U is included in the statement of the proposition. Finally, if i ≥ 2,
then consider two maximal intervals [a, b] and [u, v] of U such that [b+1, u−1]∩U
does not contain any intervals. Then the number of totally dominated vertices in
[a, v] is |U ∩ [a, v]|+ 1. Furthermore, by induction we obtain that the number of
totally dominated vertices in [1, a− 1] is at least |U ∩ [1, a− 1]| and the number
of totally dominated vertices in [v + 1, k] is at least |U ∩ [v − 1, k]|. Therefore
d ≥ |U |+ 1 holds as claimed.

Proposition 4.7. Let k ≥ 3 and U be a subset of [2] × [k], with 0 < n1 :=
|U∩({1}×[k])| < k and 0 < n2 := |U∩({2}×[k])| < k. Let us denote by D the set

of vertices totally dominated by U in P2⊠Pk, and let d1 := |D∩({1}× [k])|, d2 :=
|D ∩ ({2} × [k])|. Then we have

(a) d1 + d2 ≥ n1 + n2 + 2,

(b) 2d1 + d2 ≥ 2n1 + n2 + 3, unless U = {(i, j) : i ∈ [2] , j ≤ k − 2} ∪ {(1, k)} or

U = {(i, j) : i ∈ [2] , j ≥ 3}∪{(1, 1)} in which cases 2d1+ d2 = 2n1+n2+2.

Proof. The proof of (a) follows from the observation that if a layer contains
1 ≤ x < k vertices, then these vertices totally dominate at least x+ 1 vertices in
the neighboring layer.

To prove (b) we consider different cases. If n2 ≥ n1, then again we are done
by the above observation as 2d1+d2 ≥ 2(n2+1)+(n1+1) ≥ 2n1+n2+3. So we
may assume that n2 < n1. If d1 ≥ n1 + 1, then we are done as using the above
observation we have 2d1 + d2 ≥ 2(n1 + 1) + (n1 + 1) > 2n1 + n2 + 3.

Observe that if we have d1 = n1 − 1, then by Proposition 4.6 we know
the structure of U ∩ ({1} × [k]), and we also know that none of the vertices of
U∩({1}×[k]) is dominated by any vertex of U∩({2}×[k]). But then U∩({2}×[k])
is an empty set. This cannot be the case as we assumed that n2 > 0.

Finally, if d1 = n1, then according to Proposition 4.6 we either have d2 = 2n1

or d2 = k. In the former case we have 2d1 + d2 = 4n1 ≥ 2n1 + n2 + 3 as
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n1 > n2 ≥ 1 implies n1 ≥ 2 and n1 ≥ n2 + 1. In the latter case we have
2d1 + d2 ≥ 2n1 + k ≥ 2n1 + n2 + 2 as k > n1 > n2 with equality if and only if
n2 = k − 2, n1 = k − 1. Using Proposition 4.6 it is easy to see that this happens
only if U is as stated.

With very similar proofs to those of Proposition 4.6 and Proposition 4.7 one
can obtain the following statements.

Proposition 4.8. For k ≥ 3 let U be a non-empty subset of [k] with |U | ≤ k−2.
Then the number d of totally dominated vertices by U in Ck is either

(i) at least |U |+ 2, or

(ii) d = |U | and k is even and U is either the set of even numbers in [k] or the

set of odd numbers in [k], or

(iii) d = |U |+ 1 and we have either

1. U = {j, j+2, j+4, . . . , j+2l}, for some j and l with 2l < k and addition

is modulo k, or

2. U = [a, b]∪{b+2, b+4, . . . , b+(k− b+ a− 2)} for some a < b, k− b+ a
even and addition is again modulo k.

Proposition 4.9. Let k ≥ 3 and U be a subset of [2] × [k], with 0 < n1 :=
|U ∩ ({1} × [k])| ≤ k − 2 and 0 < n2 := |U ∩ ({2} × [k])| ≤ k − 2. Let us

denote by D the set of vertices totally dominated by U in P2 ⊠ Ck, and let d1 :=
|D ∩ ({1} × [k])|, d2 := |D ∩ ({2} × [k])|. Then we have

(a) d1 + d2 ≥ n1 + n2 + 4,

(b) 2d1 + d2 ≥ 2n1 + n2 + 6 unless U = {(i, j) : i ∈ [2] , j 6= j∗ − 1, j∗, j∗ + 1} ∪
{(1, j∗)} for some j∗ ∈ [k] and addition is modulo k.

With the above auxiliary results, we can prove the following upper bound on
the strong product of paths and cycles.

Theorem 4.10. For any pair k, ℓ ≥ 3 of integers we have

(i) γtgr(Pk ⊠ Pℓ) ≤ kℓ−min{k, ℓ}+ 1,

(ii) γtgr(Ck ⊠ Cℓ) ≤ kℓ−min{2k, 2ℓ}+ 1,

(iii) γtgr(Pk ⊠ Cℓ) ≤ kℓ−min{2k, ℓ}+ 1.

Proof. First we prove (i). Note that if an open neighborhood sequence intersects
every Pk-layer in less than k vertices and every Pℓ-layer in less than ℓ vertices,
then the length of the sequence is at most kℓ−max{k, ℓ}.

Consider now the smallest m such that D = (x1, . . . , xm) contains all vertices
from a Pk-layer or all vertices from a Pℓ-layer. If x1, . . . , xm would contain one
complete Pk-layer and one complete Pℓ-layer, then we would have N(xm) ⊆⋃m−1

i=1 N(xi), a contradiction.
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Assume without loss of generality that the sequence x1, . . . , xm contains all
vertices of a Pℓ-layer

jPℓ. Let ni, i ∈ [ℓ], be the number of vertices from the ith

Pk-layer that are in x1, . . . , xm and let di be the number of vertices from the ith

Pk-layer that are totally dominated by D. Note that 0 < ni < k for all i ∈ [ℓ].
Adding up lower bounds of Proposition 4.7(a) on di + di+1 for i = 2, 3, . . . , ℓ− 1
and lower bounds of Proposition 4.7(b) on 2d1 + d2 and dl−1 + 2dl we obtain

2
l∑

i=1

di ≥ 2ℓ− 2 + 2
l∑

i=1

ni = 2m+ 2ℓ− 2.

So D totally dominates at least ℓ − 1 more vertices than its size. As this differ-
ence cannot decrease throughout the open neighborhood sequence and therefore
γtgr(Pk ⊠ Pℓ) ≤ kℓ− ℓ+ 1. This finishes the proof of (i).

The proof of (ii) and (iii) are similar too that of (i), so we just sketch them.
To see (ii) observe first that if an open neighborhood sequence intersects every
Ck-layer in less than k − 1 vertices and every Pℓ-layer in less than ℓ− 1 vertices,
then the length of the sequence is at most kℓ− 2max{k, ℓ}. So we can consider
the smallest m such that D = (x1, x2, . . . , xm) contains k − 1 vertices from a
Ck-layer or ℓ − 1 vertices from a Cℓ-layer. The assumption k, ℓ ≥ 3 implies that
if {x1, x2, . . . , xm} contains all but one vertex from both a Ck and a Cℓ-layer,
then N(xm) ⊆ ∪m−1

i=1 N(xi) holds. Therefore, we may assume that {x1, . . . , xm}
contains all but one vertex from a Ck-layer, at most one Cℓ-layer is empty and
for the number nj of vertices of D in the jth Cℓ-layer we have nj ≤ ℓ−2. If every
Cℓ-layer is non-empty, then we can apply Proposition 4.9(a) to all pairs of the
jth and (j+1)st Cℓ-layers to obtain (writing dj for the number of vertices totally

dominated by D in the jth Cℓ-layer) 2
∑k

j=1 dj ≥ 4k + 2
∑k

j=1 nj = 2m + 4k.
If the ith Cℓ-layer is empty, then we apply Proposition 4.9(b) to the pair of the
(i+ 1)st, (i+ 2)nd and (i− 2)nd, (i− 1)st Cℓ-layer, while we apply Proposition
4.9(a) to all pairs of jth and (j + 1)st Cℓ-layers for j = i + 2, i + 3, . . . , i − 3 to
obtain

2
k∑

j=1

dj ≥ 4k − 2 + 2
k∑

j=1

nj = 2m+ 4k − 2.

In both cases we obtained that the total number d of vertices totally dominated
by D is at least 2k−1 more than the size of D. As this difference cannot decrease
throughout the open neighborhood sequence, its length is at most kℓ − 2k + 1.
This proves (ii).

In the proof of (iii) one needs to consider the smallest integer m such that
the open neighborhood sequence D = (x1, x2, . . . , xm) either contains a Pk-layer
completely or all but one vertices of a Cℓ-layer. Depending on these two possibil-
ities, the counting argument applies Proposition 4.9 or Proposition 4.7. Details
are left to the reader.
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5. Cartesian Product

Theorem 5.1. For any pair k, ℓ ≥ 3 of integers we have

(i) γtgr(Ck �Cℓ) ≤ kℓ−min{k, ℓ},

(ii) γtgr(Pk �Pℓ) ≤ kℓ−min{⌊k/2⌋, ⌊ℓ/2⌋},

(iii) γtgr(Pk �Cℓ) ≤ kℓ−min{k, ⌈ℓ/2⌉}.

Proof. (i) Consider the directed graph G obtained from Ck �Cℓ by replacing
every edge with two opposite arcs. We interpret the arc from u to v in G as a
certificate that u can be added to an open neighborhood sequence x1, . . . , xm as
v /∈ ∪m

i=1N(xi). As the open neighborhood sequence grows, we remove those arcs
of G for which the above statement is no longer valid (see Figure 1). The number
of arcs in G is 4kℓ out of which 2kℓ are in Ck-layers and the same number in
Cℓ-layers. We claim that whenever we add a vertex to an open neighborhood
sequence, we have to remove at least two arcs in Ck-layers and at least two arcs
in Cℓ-layers. Indeed, since u is added to the open neighborhood sequence because
it dominates a neighbor v that was not dominated before, then the arcs from all
four neighbors of v to v should be removed.

u v
vu

Figure 1. The left part of the figure presents the situation before u is added to the
sequence, the right part presents the situation after u is added to the sequence.

Note that if an open neighborhood sequence intersects every Ck-layer in less
than k vertices and every Cℓ-layer in less than ℓ vertices, then the length of the
sequence is at most kℓ−max{k, ℓ}. Moreover, if x1, . . . , xm would intersect one
complete Ck-layer and one complete Cℓ-layer with xm being the intersection of
these layers, then since k, ℓ ≥ 3 we would have N(xm) ⊆ ∪m−1

i=1 N(xi), a contra-
diction.

Consider now the first moment m when x1, . . . , xm contains either all vertices
from a Ck-layer or all vertices from a Cℓ-layer. Assume without loss of generality
that the former occurs and the sequence x1, . . . , xm contains all vertices of the
jth Ck-layer. Let ni, i ∈ [k], be the number of vertices from the ith Cℓ-layer that
are in x1, . . . , xm. Note that all 2ni arcs outgoing from these ni vertices in the
ith Cℓ-layer have been removed. Moreover, if (vi, us), . . . , (vi, up) is a maximal
sequence of consecutive vertices from the ith Cℓ-layer such that all of them are
contained in {x1, . . . , xm} and either s 6= p or s = j = p holds, then also the arcs



On Grundy Total Domination Number in Product Graphs 19

incoming to (vi, us) and (vi, up) have been deleted. As at least one vertex of this
Cℓ-layer is not in x1, . . . , xm, the number of arcs removed in the layer is at least
2ni + 2. Summing up we obtain that the number of arcs removed in Cℓ-layers is
at least

∑k
i=1(2ni +2) = 2(m+ k). According to our observation above, in every

later step at least two arcs of Cℓ-layers will be removed, therefore the length of
the complete open neighborhood sequence is at most

m+
2kℓ− 2(m+ k)

2
= kℓ− k

and we are done with the proof of (i).

(ii) and (iii) We modify the proof above a little. We introduce the weighted
directed graphs G′ and G′′ obtained from Pk �Pℓ and Pk �Cℓ respectively, by
replacing every edge with two opposite arcs. All arcs have weight 1 except
((v2, uj), (v1, uj)) and ((vk−1, uj), (vk, uj)) for all j ∈ [ℓ] in both G′ and G′′, and
in G′ also ((vi, u2), (vi, u1)) and ((vi, uℓ−1), (vi, uℓ)) for all i ∈ [k]. These arcs
have weight 2. In this way, the total weight of the arcs in Pk-layers and Pℓ-layers
(respectively Cℓ-layers) is 2kℓ both in G′ and G′′. It remains also true that when
adding a vertex to an open neighborhood sequence then both the arcs removed
in Pk-layers and Pℓ-layers (respectively Cℓ-layers) have total weight at least 2.

The rest of the proof is very similar to that of part (i). Let m be the first
moment when a complete Pk-layer or Pℓ-layer (respectively Cℓ-layer) of Pk �Pℓ

or Pk �Cℓ belongs to the open neighborhood sequence x1, . . . , xm. Note that this
time it is possible that the sequence x1, . . . , xm contains both a Pk-layer and a
Pℓ-layer (respectively Cℓ-layer).

Case I. x1, . . . , xm contains only a Pk-layer or a Pℓ-layer (respectively Cℓ-
layer). If in Pk �Cℓ the sequence x1, . . . , xm contains a Pk-layer, then with the
same proof as in (i) we obtain γtgr(Pk �Cℓ) ≤ kℓ − k. So we can assume that
the sequence x1, . . . , xm contains a Cℓ-layer and we will prove γtgr(Pk �Cℓ) ≤
kℓ− ⌈ℓ/2⌉. (The case of Pℓ-layer for Pk �Pℓ is analogous.)

If the number of vertices in the jth Pk-layer is mj , then we have 1 ≤ mj < k
for all 1 ≤ j ≤ ℓ. Therefore the total weight of arcs removed in Pℓ-layers from
G′ or G′′ is at least 2mj + 1 with equality if and only if the mj vertices form a
subpath of the path containing one of its endpoints. Summing up for all Pk-layers
we obtain that the total weight of removed arcs in Pk-layers is at least 2m + ℓ.
Therefore the length of the complete open neighborhood sequence is at most

m+
2kℓ− (2m+ ℓ)

2
.

Case II. x1, . . . , xm contains both a Pk-layer and a Pℓ-layer (respectively Cℓ-
layer). We consider the open neighborhood sequence x1, . . . , xm−1. As x1, . . . , xm
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contains both a Pk-layer and a Pℓ-layer (respectively Cℓ-layer), we know that
every Pk-layer and Pℓ-layer (respectively Cℓ-layer) contains at least one vertex
from x1, . . . , xm−1 and one vertex not from x1, . . . , xm−1. Therefore the argument
can be finished as in the previous case.

Theorem 5.2. For any pair k, ℓ ≥ 3 we have

1. γtgr(Pk�Pℓ) ≥ kℓ−min {k, ℓ},

2. γtgr(Pk�Cℓ) ≥ kℓ−min {2k, ℓ},

3. γtgr(Ck�Cℓ) ≥ kℓ−min {2k, 2ℓ}.

Proof. Let the vertex set of X �Y be the following:

V (X �Y ) := {(a, b) : 0 ≤ a ≤ k − 1, 0 ≤ b ≤ ℓ− 1},

and let the edge set be

E(X �Y ) := {((a, b), (c, d)) ∈ V (X �Y )× V (X �Y ) :

(a = c± 1 (a ≡ c± 1 (mod k) if X = Ck) and b = d) or

(a = c and b = d± 1 (b ≡ d± 1 (mod ℓ) if Y = Cℓ))}.

We also define the lexicographic and antilexicographic ordering on V (X �Y ).
For any (a, b), (c, d) ∈ V (X �Y ) let

(a, b) ≺lex (c, d) if and only if a < c or (a = c and b < d),

(a, b) ≺alex (c, d) if and only if b < d or (b = d and a < c).

Let v1, . . . , vkℓ be the lexicographic ordering of vertices of X �Y , with
|V (X)| = k, |V (Y )| = ℓ. Furthermore, let u1, u2, . . . , ukℓ be the antilexicographic
ordering of vertices of X �Y . Then

(
v1, v2, . . . , v(k−1)ℓ

)
and

(
u1, u2, . . . , u(ℓ−1)k

)

are legal total dominating sequences of Pk �Pℓ. Thus γtgr(Pk �Pℓ) ≥ kℓ −
min {k, ℓ}.

On the other hand (v1, . . . , v(k−1)ℓ) and (u1, . . . , u(ℓ−2)k) are legal total dom-
inating sequences of Pk �Cℓ. Thus γ

t
gr(Pk �Cℓ) ≥ kℓ−min {2k, ℓ}.

Finally, (v1, . . . , v(k−2)ℓ) and (u1, . . . , u(ℓ−2)k) are legal total dominating se-
quences of Ck �Cℓ. Thus γ

t
gr(Ck �Cℓ) ≥ kℓ−min {2k, 2ℓ}.

We note that the following is known [12,15] for the Grundy total domination
number of the Cartesian product of two paths of the same length: for k ≥ 1 we
have

γtgr(Pk �Pk) = k2 − k.

On the other hand, for an odd k it holds that Ck × Ck
∼= Ck �Ck, hence by

Theorem 2.12 it holds γtgr(Ck × Ck) = k2 − 2k + 1.
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6. Concluding Remarks

In [7] two additional versions of dominating sequences were introduced and stud-
ied. When the definition (1) is modified to read as

(3) N(vi) \
i−1⋃

j=1

N [vj ] 6= ∅ ,

we get the so-called Z-sequences, and when

(4) N [vi] \
i−1⋃

j=1

N(vj) 6= ∅ ,

the so-called L-sequences are defined provided that vertices in such a sequence
are distinct. The corresponding invariants obtained from the longest possible (Z-
or L-) sequences are denoted by γZgr(G) and γLgr(G), respectively. As it turns
out, these two invariants have natural counterparts also in the zero-forcing and
minimum-rank world, see [17].

With a little effort, by using almost the same proofs as in this paper, one can
prove some of the results for the remaining two invariants.

• Version of Theorem 3.1 holds also for Z- and L-Grundy domination numbers
of lexicographic products,

Theorem 6.1. For any i ∈ {Z,L} and graphs G and H with no isolated vertices,

γigr(G ◦H) = max
{
a(D)

(
γigr(H)− 1

)
+ |D̂| : D is a dominating sequence of G

}
.

Clearly, one can also derive exact values of these invariants in lexicographic
products of paths and/or cycles.

• Lemma 2.1 (and its proof) holds also if Grundy total dominaton number is
replaced with the Z-Grundy domination number, i.e.,

γZgr(G×H) ≥ γZgr(G)γZgr(H)

holds for any graphs G and H. However, for γZgr the left-hand side can be strictly

greater, as demonstrated by K3×K3, where γ
Z
gr(K3) = 1 while γzgr(K3×K3) = 4.

• Also, Lemma 2.3 can be proved in the setting of any of the four Grundy domi-
nation invariants.

Lemma 6.2. Let E1, . . . , Ek be the subsets of the edge set of a graph G. Let

G1, . . . , Gk be graphs on E1, . . . , Ek, respectively. Then γxgr(G) ≤ γxgr(G1) + · · ·+
γxgr(Gk) for x ∈ {Z, t, L, ∅}.
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