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Guarded subgraphs and the domination game
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1Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
2Institute of Mathematics, Physics and Mechanics, Ljubljana
3Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
4Department of Mathematics, Furman University, Greenville, SC, USA

received 8th June 2014, accepted 12th Feb. 2015.

We introduce the concept of guarded subgraph of a graph, which as a condition lies between convex and 2-isometric
subgraphs and is not comparable to isometric subgraphs. Some basic metric properties of guarded subgraphs are
obtained, and then this concept is applied to the domination game. In this game two players, Dominator and Staller,
alternate choosing vertices of a graph, one at a time, such that each chosen vertex enlarges the set of vertices dominated
so far. The aim of Dominator is that the graph is dominated in as few steps as possible, while the aim of Staller is
just the opposite. The game domination number is the number of vertices chosen when Dominator starts the game
and both players play optimally. The main result of this paper is that the game domination number of a graph is not
smaller than the game domination number of any guarded subgraph. Several applications of this result are presented.
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1 Introduction and preliminaries
Graph domination with its many variations is one of the most studied topics in graph theory; it has been
surveyed in a monograph in 1998 [8]. Recall that a set D ⊆ V (G) is dominating if every vertex from
V (G) − D has a neighbor in D. The minimum size of a dominating set of a graph G is called the
domination number of G, denoted γ(G). Note that the domination number of G can either be bigger or
smaller than the domination number of an induced subgraph. For the former consider for instance a clique
in a graph that has an arbitrarily large domination number. For the latter let H have large domination
number and construct G by adding a universal vertex.

In this paper we define a type of subgraph that we call guarded, for which the domination number is
hereditary. Moreover, this is also proven for the two game counterparts of domination, namely the game
domination number and the Staller-start game domination number. As it turns out, guarded subgraphs
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are interesting also from the metric point of view. Notably every convex subgraph is guarded, and every
guarded subgraph is 2-isometric. (See [9, 14] for more about metric concepts in graphs.)

The domination game was introduced in [2], and studied in several papers [1, 3, 4, 5, 6, 7, 10, 11, 12, 15].
We consider two games played by Dominator and Staller in a graph G, where, in addition we sometimes
assume that some subset S of vertices is already dominated (more precisely, the vertices of S may be
played during the game, but need not be dominated). We denote the graph G with S as described above
by G|S. In particular, if S = {x} we will write G|x, and if S = ∅ we will write G|∅ simply as G. By
Game 1 we mean a game in which Dominator has the first move, while Game 2 refers to a game in which
Staller begins. Recall that players alternate turns and may only choose a vertex v for which N [v] contains
a vertex that was not previously dominated (a move with this property is called legal). Assuming that both
players play optimally onG|S, the game domination number γg(G|S), respectively the Staller-start game
domination number γ′g(G|S), denotes the number of moves played, equivalently the number of vertices
chosen, in Game 1, respectively Game 2.

The Staller-pass game is the domination game in which, on each turn, Staller may pass her move. Let
γ̂g(G|S) be the number of moves in such a game played optimally on G|S when Dominator starts, and
γ̂′g(G|S) when Staller starts. The turns when Staller passes do not count as moves. With these concepts
in hand we now recall several very useful results due to Kinnersley, West, and Zamani [10].

Lemma 1.1 (Continuation Principle) [10, Lemma 2.1] Let G be a graph and A,B ⊆ V (G). If B ⊆ A,
then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).

Lemma 1.2 (Segmentation Lemma) [10, Lemma 2.4] Let G1|A1 and G2|A2 be partially-dominated
graphs. If G = G1 ∪ G2, then γ̂g(G|(A1 ∪ A2)) ≤ γ̂g(G1|A1) + γ̂′g(G2|A2) and γ̂′g(G|(A1 ∪ A2)) ≤
γ̂′g(G1|A1) + γ̂′g(G2|A2).

Theorem 1.3 [10, Theorem 4.6] If F is a forest and S ⊆ V (F ), then γg(F |S) ≤ γ′g(F |S).

Lemma 1.4 [10, Corollary 4.7] If F is a forest and S ⊆ V (F ), then γ̂g(F |S) = γg(F |S) and γ̂′g(F |S) =
γ′g(F |S).

In addition, we recall the following result from [11].

Theorem 1.5 For any n ≥ 3,

γg(Pn) = γg(Cn) =

{
dn2 e − 1; n ≡ 3 mod 4 ,
dn2 e; otherwise.

The paper is organized as follows. In Section 2 we introduce and study guarded subgraphs from the
metric point of view; we prove that every convex subgraph is guarded and every guarded subgraph is 2-
isometric. We also specify some conditions under which guarded and 2-isometric subgraphs coincide. In
Section 3 we prove our main results that connect guarded subgraphs and domination. Notably, the (game)
domination number of a graph is not smaller than the (game) domination number of a guarded subgraph.
Then in Section 4 we present several applications of these theorems in the domination game.

2 Guarded subgraphs
In this section we introduce the concept of a guarded subgraph and deduce some of its properties to be
used later.
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We say that a subgraph H of a graph G is guarded in G if for any vertex x in G there exists a vertex
y ∈ V (H) such that N [x] ∩ V (H) ⊆ N [y] ∩ V (H). Such a vertex y will be called a guard of x in H .
Note that if x ∈ V (H), then x is a guard of itself. Observe also that if x /∈ V (H) and |N [x]∩V (H)| = 1,
then the neighbor of x in H is a guard of x in H .

Guarded subgraphs are closely related to several central concepts from metric graph theory. Recall
that a subgraph H of G is isometric if dH(u, v) = dG(u, v) holds for every pair of vertices u and v of
H and that H is 2-isometric if for dG(u, v) = 2, u, v ∈ V (H), it follows that dH(u, v) = 2. Clearly,
an isometric subgraph is 2-isometric, but not the other way around. Recall also that a subgraph H of G
is convex if for every pair of vertices u and v of H , every shortest u, v-path in G lies in H . A convex
subgraph is necessarily isometric. The next result places guarded subgraphs into this framework.

Proposition 2.1 A convex subgraph is guarded, and a guarded subgraph is 2-isometric.

Proof: Let H be a convex subgraph of a graph G, let u ∈ V (G) \ V (H) and let S = N [u] ∩ V (H). If
x, y ∈ S, then dG(x, y) ≤ 2 and since H is convex x must be adjacent to y. It follows that S induces a
complete subgraph of H and thus any vertex of S is a guard of u in H . This proves the first implication.

Assume now that H is guarded in G and let u and v be vertices of H with dG(u, v) = 2. This means
there is a vertex x in G that is a common neighbor of u and v. If x ∈ V (H), then dH(u, v) = 2.
Otherwise, since H is guarded in G, there exists a vertex y in H such that N [x]∩V (H) ⊆ N [y]∩V (H).
Note that y 6= u and y 6= v or else dG(u, v) = 1. It then follows that y ∈ V (H) is a common neighbor of
u and v and hence dH(u, v) = 2. We conclude that H is 2-isometric. 2

In Fig. 1 relations between convex, isometric, guarded, and 2-isometric subgraphs are given. For each
of the possibilities an example subgraph is shown in bold.

2-isometric

isometric

guarded

convex

Fig. 1: Metric classes

In some special cases guarded subgraphs coincide with 2-isometric subgraphs. To make this more
precise we let

∆(G|H) = max{|N(x) ∩ V (H)| : x ∈ V (G) \ V (H)} .
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Then we have:

Proposition 2.2 Let H be a subgraph of G.

(i) If ∆(G|H) ≤ 2, then H is guarded in G if and only if H is 2-isometric in G.

(ii) If ∆(G|H) ≤ 3 and G is a {K3, C6}-free graph, then H is guarded in G if and only if H is
2-isometric in G.

Proof: (i) Suppose that ∆(G|H) ≤ 2 and thatH is 2-isometric inG. Let x be a vertex from V (G)\V (H)
that has two neighbors u and v in V (H). If uv ∈ E(G), then N [x] ∩ V (H) = {u, v} ⊆ N [u] ∩ V (H).
If uv 6∈ E(G), then because H is 2-isometric there exists a vertex y in H that is adjacent to both of u and
v. Hence, H is guarded in G. The converse follows by Proposition 2.1.

(ii) Let x ∈ V (G) \V (H). The case when x has at most two neighbors in H is covered by the first part
of the proposition. Hence let N(x) ∩ V (H) = {u, v, w}. Using the fact that H is a 2-isometric subgraph
of G and that G is K3-free, each pair of this triple has a common neighbor in H . If at least two of these
common neighbors are the same vertex, then this vertex is a guard for x. Otherwise, let u′, v′, and w′ be
the common neighbors of v, w, u,w, and u, v, respectively. Note that {u′, v′, w′} is an independent set
since G is K3-free. Moreover, u′, v′ and w′ are not adjacent to u, v and w, respectively. It follows that
u, v′, w, u′, v, w′ induce a C6 in G, the graph excluded with our assumption. Again, the converse follows
by Proposition 2.1. 2

3 Guarded subgraphs in domination
We begin with the following hereditary property of guarded subgraphs with respect to the domination
number.

Proposition 3.1 If H is guarded in G, then γ(H) ≤ γ(G).

Proof: Let DG be a minimum dominating set of G and let D′G = {x ∈ DG ∩ (V (G) \ V (H)) :
N(x) ∩ V (H) 6= ∅}. For each vertex x ∈ D′G, let g(x) be an arbitrary but fixed guard of x in H . Define
DH = (DG ∩ V (H)) ∪ {g(x) : x ∈ D′G}. Then DH is a dominating set and γ(H) ≤ |DH | ≤ |DG| =
γ(G). 2

Let H be a subgraph of a graph G. In general there is no relation between γg(H) and γg(G). Clearly,
γg(H) can be arbitrarily smaller than γg(G). On the other hand, consider the wheel Wn with n spokes.
It has a universal vertex x, hence γg(Wn) = 1. The subgraph H = G − x is isomorphic to Cn, hence
γg(H) can be also be arbitrarily larger than γg(G). However, the latter phenomenon cannot happen for
guarded subgraphs:

Theorem 3.2 If H is guarded in G, then γg(H) ≤ γg(G) and γ′g(H) ≤ γ′g(G).

Proof: Let Game 1 be played in a graph G. We present a strategy of Staller that will enforce at least
γg(H) moves in the game. Along with the real game in G, Staller will imagine another Game 1 is being
played in H . Each move of Dominator in the real game will be ‘copied’ by Staller into the imagined
game in H , where Staller will respond optimally, and copy her move into the real game (the details will
be presented along the way). The key property, ensured by the strategy, is the following:
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(P) After each move, made by either player, the set of vertices Sreal that belong to H and are dominated
in the real game, is a subset of Sim, the set of vertices from H , dominated in the imagined game.

Property (P) is clearly true in the beginning of the game, when Sreal = Sim = ∅. We proceed by induction
on the number of moves in the game. Let v be a vertex, chosen by Dominator at some point in the (real)
game, and let S′im be the set of vertices from H , dominated before that move in the imagined game
(similarly, S′real denotes the set of vertices from H , dominated before that move in the real game). If
N [v] ∩ (V (H) \ S′im) 6= ∅, then Staller imagines that Dominator played a guard of v with respect to G.
Note that this is a legal move of Dominator in the imagined game. In addition, Sreal is a subset of Sim,
since S′real ⊆ S′im, hence (P) is preserved after this move. On the other hand, ifN [v]∩ (V (H)\S′im) = ∅,
then an arbitrary vertex w from H is chosen by Staller for a move of Dominator in the imagined game, as
long it is a legal move in this game. Again it is obvious that property (P) is preserved after this move.

Now, when it is Staller’s turn, she responds in the imagined game according to her optimal strategy that
yields at least γg(H) moves in this game. She copies her move to the real game (i.e., if her choice in the
imagined game is to play a vertex x, then she plays x also in the real game). Note that by the property
(P) this move will be legal also in the real game, and it is clear that (P) is preserved after her move, since
the set N [x] ∩ V (H) is added (in the sense of set-union) to both sets Sreal and Sim. Now, since Staller
is playing optimally in the imagined game, it will last at least γg(H) steps. By (P), the real game will
not end before the imagined game is over, hence the real game will also last at least γg(H) steps. Since
Staller was not necessarily playing optimally in the real game and Dominator was, we infer that the real
game lasted at most γg(G) moves. Thus, γg(H) ≤ γg(G).

Finally, when Game 2 is played in a graph G, the same strategy as in Game 1 can be used by Staller,
from which we derive γ′g(G) ≤ γ′g(H). 2

Note that Theorem 3.2 cannot be extended by replacing the condition of H being a guarded subgraph
to the weaker condition of H being a 2-isometric subgraph. Indeed, consider any graph H with diameter
2 such that γg(H) > 1, and let G be obtained from H by adding a vertex and make it adjacent to all
vertices of H . Clearly, H is (2-)isometric subgraph of G, but γg(G) = 1 < γg(H). In fact, the difference
γg(H) − γg(G) can be arbitrarily large, as there are graphs H with diameter 2 and (game) domination
number arbitrarily large. For instance, lettingH be the Cartesian productKn �Kn of the complete graph
Kn by itself, one gets diam(H) = 2 and γg(H) ≥ γ(H) = n. (Recall that the Cartesian product G�H
of graphs G and H has V (G) × V (H) as the vertex set, and two vertices are adjacent, whenever they
coincide in one and are adjacent in the other coordinate.)

Theorem 3.2 can be applied when G has several subgraphs that are pairwise at distance at least 3, and
each of the subgraphs is guarded in G. For this sake we recall the following result stated as the first
assertion of Corollary 3.2 in [7].

Lemma 3.3 [7] If G1|S1 and G2|S2 are partially dominated graphs, then

γg((G1 ∪G2)|(S1 ∪ S2)) ≥ γg(G1|S1) + γg(G2|S2)− 1 .

Let now H1, . . . ,Hm be subgraphs of a graph G, each of which is guarded in G, such that d(Hi, Hj) =
min{d(x, y) : x ∈ V (Hi), y ∈ V (Hj)} ≥ 3 whenever 1 ≤ i < j ≤ m. By definition, the subgraph H
induced by V (H1) ∪ · · · ∪ V (Hm) is also a guarded subgraph of G. As H is the disjoint union of graphs
H1, . . . ,Hm, an inductive application of Lemma 3.3 (selecting S1 and S2 to be empty) yields

γg(H) ≥ γg(H1) + · · ·+ γg(Hm)−m+ 1.
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Combining this with Theorem 3.2 we derive the following bound.

Corollary 3.4 Let m ≥ 1. If H1, . . . ,Hm are guarded in G and for any i 6= j, d(Hi, Hj) ≥ 3, then

γg(G) ≥
m∑
i=1

γg(Hi)−m+ 1 .

To see that the bound of Corollary 3.4 is best possible let Gm, m ≥ 1, be the graph constructed as
follows. It consists of the disjoint union of Km and m copies of C6, denoted by Hi, 1 ≤ i ≤ m, where in
addition the ith vertex of Km is adjacent to three consecutive vertices of Hi. See Fig. 2 for G4. Clearly,
the subgraphs Hi are pairwise at distance 3 and are guarded in Gm. It is now not difficult to observe that
γg(Gm) = 2m+ 1 =

∑m
i=1 γg(C6)−m+ 1.

Fig. 2: The graph G4 that attains the bound from Corollary 3.4.

4 Applications
We start this section with some consequences of Theorem 3.2.

Corollary 4.1 If G is a connected graph, then

γg(G) ≥
⌊

diam(G) + 1

2

⌋
.

Proof: Let H be a subgraph of G induced by a diametrical path of G. Then H is an isometric path. Let
x ∈ V (G)\V (H) and let u and v be neighbors of x inH . Since dG(u, v) ≤ 2 we also have dH(u, v) ≤ 2.
If dH(u, v) = 2, then the vertex of H adjacent to u and v is a guard of x in H . It now readily follows that
H is guarded. Using Theorem 3.2 and Theorem 1.5 we get the result. 2

Corollary 4.1 should be compared with Theorem 2.24 from [8] asserting that γ(G) ≥
⌈
diam(G)+1

3

⌉
holds for any connected graph G.
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Corollary 4.2 If G is a connected graph and k is the length of a longest isometric cycle of G, then

γg(G) ≥
⌈
k

2

⌉
− 1 .

The lower bounds of Corollaries 4.1 and 4.2 are in general incomparable. We also note that both bounds
can be computed in polynomial time. This is a well-known fact for the diameter, while Lokshtanov [13]
proved that a longest isometric cycle of a graph can be computed in polynomial time.

Let H be a subgraph of G and let ∂H be the set of edges with one endpoint in V (H) and the other in
V (G) \ V (H). The next result follows immediately from Theorem 3.2.

Corollary 4.3 If H is a subgraph of G such that ∂H is a matching, then γg(H) ≤ γg(G).

We continue with an application to trees.

Proposition 4.4 If S is a tree and T is the tree obtained from S by adding a leaf adjacent to a vertex of
S, then γg(S) ≤ γg(T ) ≤ γg(S) + 1.

Proof: The first inequality follows from Corollary 4.3. To prove the other inequality, let y be the vertex
of S to which the leaf x has been attached. Set G1 = S and G2 be the edge induced by x and y. Then
T = G1 ∪G2 and by the Segmentation Lemma,

γ̂g(T ) ≤ γ̂g(G1) + γ̂g
′(G2) = γ̂g(S) + 1 .

However Lemma 1.4 implies that γ̂g(T ) = γg(T ) and γ̂g(S) = γg(S), which establishes the second
inequality. 2

A consequence of Proposition 4.4 is that given a tree T one can recursively remove leaves and the
resulting sequence of the game domination numbers is non-increasing and assumes all values between
γg(T ) and 1. This is not the case in general graphs. For instance consider the graph G from Fig. 3. The
game domination number of G is 5, but γg(G− u) = 3.

u

Fig. 3: The graph G.

Recall that the 2-packing number of a graph G is the size of a largest subset X of V (G) such that
dG(x, y) ≥ 3 holds for any different vertices x and y of X . Corollary 3.4 also gives an alternative proof
of the following result.

Theorem 4.5 [2, Theorem 11] If G and H are arbitrary graphs, then

γg(G�H) ≥ ρ(G)(γg(H)− 1) + 1 .

With respect to the Cartesian product of graphs we also have the following result, where G� ,n denotes
the n-tuple Cartesian product of G and Qn the n-cube.
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Corollary 4.6 If G is a connected graph and n ≥ 2, then γg(G� ,n) ≥ γg(G� ,n−1). In particular,
γg(Qn) ≥ γg(Qn−1).

Proof: Since G� ,n = G� ,n−1 �G, and G� ,n−1 is a convex subgraph of G� ,n (cf. [9, Lemma 6.5]),
the first assertion immediately follows from Theorem 3.2 and Proposition 2.1. For the second claim just
recall that Qn = K � ,n

2 . 2
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[4] B. Brešar, S. Klavžar, G. Košmrlj, D. F. Rall, Domination game: extremal families of graphs for the 3/5-

conjectures, Discrete Appl. Math. 161 (2013) 1308–1316.
[5] Cs. Bujtás, Domination game on trees without leaves at distance four, Proceedings of the 8th Japanese-

Hungarian Symposium on Discrete Mathematics and Its Applications (A. Frank, A. Recski, G. Wiener, eds.),
June 4–7, 2013, Veszprém, Hungary, 73–78.

[6] Cs. Bujtás, Domination game on forests, arXiv:1404.1382 [math.CO], 2014.
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