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Abstract

A labeling of a graph G is distinguishing if it is only preserved by the trivial
automorphism of G. The distinguishing chromatic number of G is the smallest
integer k such that G has a distinguishing labeling that is at the same time a
proper vertex coloring. The distinguishing chromatic number of the Cartesian
product Kk �Kn is determined for all k and n. In most of the cases it is equal
to the chromatic number, thus answering a question of Choi, Hartke and Kaul
whether there are some other graphs for which this equality holds.
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1 Introduction

The distinguishing number of a graph, introduced in 1996 by Albertson and Collins [2],
is by today an established and well-studied graph invariant. See [4, 5, 11, 13, 19] for
some of the recent results. Ten years later Collins and Trenk [7] followed with a natural
variation of the distinguishing number, the distinguishing chromatic number of a graph
G, denoted by χD(G). Here not only vertices are distinguished but the corresponding
labelings must be proper vertex colorings. Among other results Collins and Trenk
determined the distinguishing chromatic number for some basic families of graphs,
characterized trees T with χD(T ) = 2, and obtained an analogue of Brooks theorem
proving that χD(G) ≤ 2∆(G) with a list of the corresponding extremal graphs. (They
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also proved a Brooks-type theorem for the distinguishing number, a result obtained
independently in [14].)

Distinguishing numbers of hypercubes were determined in [3]. This result was su-
perceded with a series of papers [1, 15, 11] in which the distinguishing number was
determined for all powers of graphs with respect to the Cartesian product. (We note
that the paper [11] is the final paper in this series, although it was eventually pub-
lished before [15].) Moreover, the distinguishing number of Cartesian products of two
complete graphs were independently determined in [8, 12].

Choi, Hartke and Kaul [6] studied the distinguishing chromatic number of Cartesian
product graphs. They proved that for every graph G there exists a constant dG such
that χD(Gd) ≤ χ(G) + 1 for d ≥ dG. For hypercubes they proved χD(Q3) = 4,
3 ≤ χD(Q4) ≤ 4, and χD(Qn) = 3, n ≥ 5. The remaining case Q4 was settled
by Klöckl [16] by showing that χD(Q4) = 4. Choi et al. [6] also showed that the
distinguishing chromatic number of the Cartesian product of five or more complete
graphs is at most one more than its chromatic number.

Clearly, χD(G) = χ(G) for any asymmetric graph. This equality holds also for
complete graphs and large enough Kneser graphs (due to a personal communication of
Füredi to the authors). Choi et al. finish their paper with the following question: Are
there some other graphs for which this equality holds? In this paper we prove that this
equality holds for almost all graphs Kk �Kn. More precisely, we prove the following
result.

Theorem 1.1 Let 1 ≤ k ≤ n. Then

χD(Kk �Kn) =


n = χ(Kk �Kn); k = n = 1, k = n ≥ 5, k < n ,
n+ 1 = χ(Kk �Kn) + 1; k = n = 4 ,
n+ 2 = χ(Kk �Kn) + 2; k = n = 2, k = n = 3 .

In the next section we give concepts needed in this paper and prove the case k < n of
the theorem. Then, in Section 3, the distinguishing chromatic number is determined
for K3 �K3 and K4 �K4, while in the last two sections Kn �Kn is considered for even
n ≥ 6 and odd n ≥ 5, respectively.

2 Preliminaries and the case k < n

Let G be a graph. A labeling (sometimes also called coloring) ` : V (G) → {0, 1, . . . , d−
1} is d-distinguishing if it is invariant only under the trivial automorphism. The dis-
tinguishing number of a graph G, D(G), is the least integer d such that G has a
d-distinguishing labeling. A d-distinguishing labeling ` : V (G) → {0, 1, . . . , d − 1} is
a proper d-distinguishing labeling if it is a proper d-coloring of G. The distinguishing
chromatic number of a graph G, χD(G), is the least integer d such that G has a proper
d-distinguishing labeling. Clearly, χD(G) ≥ max{χ(G), D(G)} for any graph G.

The Cartesian product G�H of graphs G and H has the vertex set V (G)× V (H),
vertices (g, h) and (g′, h′) are adjacent if they are equal in one coordinate and adjacent
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in the other. The subgraph of G�H induced by {g} × V (H) is isomorphic to H and
called an H-fiber. G-fibers are defined analogously.

It is well-known that χ(G�H) = max{χ(G), χ(H)} for any graphs G and H [18],
see [10]. In particular, χ(Kk �Kn) = max{k, n}. It is also well-known that the auto-
morphism group of a Cartesian product graph is generated by automorphisms of the
factors and transpositions of isomorphic factors [9], see [10].

Let V (Kk) = {x1, x2, . . . , xk} and V (Kn) = {y1, y2, . . . , yn}. A d-coloring of the
vertices of the graph Kk �Kn corresponds to a n by k matrix L with entries from
{0, 1, . . . , d − 1}. The i, j entry of the matrix L is m whenever the vertex (xi, yj) in
Kk �Kn is colored with m. For k 6= n every automorphism of Kk �Kn preserves the
set of Kk-fibers and the set of Kn-fibers. In this case every automorphism ϕ of Kk �Kn

is determined by a permutation π ∈ Sn of Kk-fibers and a permutation ψ ∈ Sk of Kn-
fibers. Let Pπ be the permutation matrix representing permutation π ∈ Sn and Pψ the
permutation matrix representing permutation ψ ∈ Sk. Then ϕ preserves the coloring L
if L = PπLPψ. Moreover, L is a d-distinguishing coloring if L = PπLPψ implies π = id
and ψ = id. If k = n, every automorphism of Kk �Kn = Kn �Kn is generated by the
automorphisms of the factors and the transpositions of isomorphic factors. In this case
ϕ preserves the coloring L if L = PπLPψ or L = PπL

TPψ, where Pπ and Pψ are defined
as before.

In the rest of this section we will determine χD(Kk �Kn) for k < n. We may
assume that k ≥ 2, since it is already known [7] that χD(K1 �Kn) = χD(Kn) = n.

Suppose that n = χ(H) ≤ χ(G) = m, g : V (G) → {0, 1, . . . ,m − 1} is a proper
m-coloring of G and h : V (H) → {0, 1, . . . , n − 1} is a proper n-coloring of H. Then
the coloring f : V (G�H) → {0, 1, . . . ,m− 1} defined as:

f(a, x) = g(a) + h(x) (mod m)

is a proper m-coloring of G�H. We call such a coloring the canonical coloring. We
claim that the canonical n-coloring of Kk �Kn is a distinguishing labeling. Since
k < n, an automorphism φ of Kk �Kn can only map a Kk-fiber onto a Kk-fiber by a
color preserving automorphism φ. Moreover (since k < n), the labeling of Kk-fibers is
pairwise different and hence they must be stabilized by φ. But then φ stabilizes the
Kn-fibers as well.

3 K3 �K3 and K4 � K4

In the rest of the paper we thus need to treat products Kn �Kn. Since K1 �K1 = K1,
χD(K1 �K1) = 1. Moreover, K2 �K2 = C4 and hence by [7], χD(K2 �K2) = 4. In
this section we determine χD for n = 3 and n = 4.

The matrix

L =

 0 1 2
2 0 1
1 2 0

 .
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represents the unique 3-coloring (up to color classes) of K3 �K3. But it is not a
distinguishing labeling since PπLTPψ = L, where

Pπ = Pψ =

 1 0 0
0 0 1
0 1 0

 .
Hence χD(K3 �K3) ≥ 4. Consider next proper 4-colorings ofK3 �K3. Since |V (K3 �K3)| =
9, at least one color must appear exactly 3 times. We may assume without loss of gen-
erality that the coloring has the form

L =

 0 1 2
− 0 −
− − 0

 .
The first possibility is that colors 1, 2 and 3 each appears exactly twice. Then there
are three possibilities for color 3: 0 1 2

3 0 −
− 3 0

 ,
 0 1 2
− 0 3
3 − 0

 or

 0 1 2
− 0 3
− 3 0


and hence we get the following possible colorings:

L1 =

 0 1 2
3 0 1
2 3 0

 , L2 =

 0 1 2
1 0 3
3 2 0

 , L3 =

 0 1 2
1 0 3
2 3 0

 , L3′ =

 0 1 2
2 0 3
1 3 0

 .

The reflection of L3′ over the antidiagonal gives the same (up to color classes) coloring
as L2.

The second possibility is that one of the colors 1 and 2 appear three times. We may
without loss of generality assume it is color 1. This leads to the following colorings:

L4 =

 0 1 2
3 0 1
1 3 0

 , L5 =

 0 1 2
2 0 1
1 3 0

 , L6 =

 0 1 2
3 0 1
1 2 0

 .
But none of the matrices Li, 1 ≤ i ≤ 6, presents a distinguishing labeling of K3 �K3

because L3 is symmetric, L1 and L4 are symmetric with respect to the antidiagonal,
while for i = 2, 5, 6 we have PπiL

T
i Pψi

= Li, where

Pπ2 = Pψ2 = Pπ6 = Pψ6 =

 0 1 0
1 0 0
0 0 1

 and Pπ5 = Pψ5 =

 1 0 0
0 0 1
0 1 0

 .

Hence χD(K3 �K3) ≥ 5. Finally, it is straightforward to verify that the matrix 0 1 2
1 0 3
2 4 0
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gives a proper 5-distinguishing labeling.
The productK4 �K4 is considered similarly. Among the different proper 4-colorings

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

 ,


0 1 2 3
1 0 3 2
3 2 0 1
2 3 1 0

 ,


0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

 ,


0 1 2 3
2 0 3 1
1 3 0 2
3 2 1 0

 ,
the first three are symmetric over the antidiagonal (the first is also symmetric), while
for the last one, denote it with L, we infer that PπLTPψ = L, where

Pπ = Pψ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Therefore χD(K4 �K4) ≥ 5. To conclude that χD(K4 �K4) ≤ 5 verify that

0 1 2 3
1 0 3 4
2 4 0 1
3 2 4 0


represents a proper 5-distinguishing labeling.

4 Labelings for even n ≥ 6

In this section we prove that χD(Kn �Kn) = χ(Kn �Kn) = n for every even integer
n ≥ 6. Let V (Kn) = {x1, x2, . . . , xn} and define `e : V (Kn �Kn) → {0, 1, . . . , n − 1}
as follows:

`e(xi, xj) =



n− 1; i = j ,
i− 2; j = 1, i 6= 1 ,
j − 2; i = 1, j 6= 1 ,
(j + i− 3) mod (n− 1); i < j, i 6= 1, j 6= 2, n ,
(j + i− 4) mod (n− 1); i > j, j 6= 1, 2 ,
(2i− 4) mod (n− 1); j = 2, i ≥ 3 ,
(2i− 3) mod (n− 1); j = n, 2 ≤ i ≤ n− 1 .

In the rest of the section we prove that `e is a proper n-distinguishing labeling of
Kn �Kn.

Let Le be the n × n matrix which corresponds to the coloring `e. For i = 1, . . . , n
let Ri be the set of labels from the i’th row of Le and Cj the set of labels from the
j’th column of Le. Denoting (Le)ij = ai,j we thus have Ri = {ai,1, . . . , ai,n} and
Cj = {a1,j , . . . , an,j}.

In the next two lemmas we prove that `e is a proper vertex coloring.
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Lemma 4.1 Ri = {0, 1, . . . , n− 1} for every 1 ≤ i ≤ n .

Proof. Let i = 1. Then a1,1 = n − 1 and a1,j = j − 2, 2 ≤ j ≤ n. For 2 ≤ j ≤ n
we have 0 ≤ j − 2 ≤ n − 2. It follows that lemma is true for i = 1. Consider now the
set R2. Note that a2,1 = 0, a2,2 = n − 1, a2,n = 1 and a2,j = (j − 1) mod(n − 1) for
3 ≤ j ≤ n − 1. Last condition implies that 2 ≤ j − 1 ≤ n − 2 and hence lemma holds
also for i = 2.

Suppose now that 3 ≤ i ≤ n− 1. Then

ai,1 = i− 2,
ai,2 = (2i− 4) mod (n− 1),
ai,j = (j + i− 4) mod (n− 1) for 3 ≤ j ≤ i− 1,
ai,i = n− 1,
ai,j = (j + i− 3) mod (n− 1) for i+ 1 ≤ j ≤ n− 1,
ai,n = (2i− 3) mod (n− 1).

The sequence of numbers j+ i−4 for 3 ≤ j ≤ i−1 is a sequence of consecutive integers
from i − 1 to 2i − 5. Similarly, the numbers j + i − 3 for i + 1 ≤ j ≤ n − 1 form a
sequence of consecutive integers from 2i− 2 to n+ i− 4. Consequently,

Ri \ {ai,i} = {ai,1, ai,3, . . . , ai,i−1, ai,2, ai,n, ai,i+1, . . . , ai,n−1}
= {i− 2, i− 1, . . . , 2i− 5, 2i− 4, 2i− 3, 2i− 2, . . . , n+ i− 4}
= {0, 1, . . . , n− 2},

where the elements of the third set are taken modulo (n− 1). The last equality holds
because i− 2, i− 1, . . . , 2i− 5, 2i− 4, 2i− 3, 2i− 2, . . . , n+ i− 4 is a sequence of n− 1
consecutive integers. Since ai,i = n−1 we conclude that Ri = {0, 1, . . . , n−1} for every
3 ≤ i ≤ n− 1.

It remains to show that Rn = {0, 1, . . . , n − 1}. In this case we have an,1 = n − 2,
an,2 = (2n − 4) mod (n − 1), an,j = (j + n − 4) mod (n − 1) for 3 ≤ j ≤ n − 1
and an,n = n − 1. The numbers j + n − 4 for 3 ≤ j ≤ n − 1 form a sequence of
consecutive integers from n−1 to 2n−5. By adding n−2 and 2n−4 we get a sequence
of n − 1 consecutive integers and consequently Rn \ {an,n} = {0, 1, . . . , n − 2} and
Rn = {0, 1, . . . , n− 1}. �

Lemma 4.2 Cj = {0, 1, . . . , n− 1} for every 1 ≤ j ≤ n .

Proof. Consider first C1. By definition of `e we have a1,1 = n− 1 and ai,1 = i− 2 for
2 ≤ i ≤ n which implies that C1 = {0, 1, . . . , n− 1}. C2 consist of a1,2 = 0, a2,2 = n− 1
and ai,2 = (2i− 4) mod (n− 1) for 3 ≤ i ≤ n. From the last condition we deduce that
{2i − 4 ; 3 ≤ i ≤ n} is the set of all even numbers between 2 and 2n − 4 and hence
{ai,2 ; 3 ≤ i ≤ n} = {1, 2, . . . , n− 2}. It follows that C2 = {0, 1, . . . , n− 1}.

For 3 ≤ j ≤ n− 1 we have
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a1,j = j − 2,
ai,j = (j + i− 3) mod (n− 1) for 2 ≤ i ≤ j − 1,
aj,j = n− 1,
ai,j = (j + i− 4) mod (n− 1) for j + 1 ≤ i ≤ n.

The sequence of numbers j+ i−3 for 2 ≤ i ≤ j−1 is a sequence of consecutive integers
from j−1 to 2j−4. Similarly, the numbers j+i−4 for j+1 ≤ i ≤ n form a sequence of
consecutive integers from 2j − 3 to n+ j − 4. Putting all of this numbers together and
adding j − 2 gives us a sequence of n − 1 consecutive integers which are consequently
pairwise different by modulo (n − 1). Since aj,j = n − 1 we can conclude that lemma
holds for every 3 ≤ j ≤ n− 1.

Finally, let j = n. Then a1,n = n− 2, ai,n = (2i− 3) mod (n− 1) for 2 ≤ i ≤ n− 1
and an,n = n−1. The set {2i−3 ; 2 ≤ i ≤ n−1} is the set of all odd numbers between
1 and 2n − 5 and hence {ai,n ; 2 ≤ i ≤ n − 1} = {0, 1, . . . , n − 3}. After adding a1,n

and an,n to this set we get Cn = {0, 1, . . . , n− 1}. �

To complete the proof for even n ≥ 6, we need to prove that `e is a distinguishing
labeling.

Let ϕ be an automorphism of Kn �Kn that preserves `e. Suppose first that the
factors of the product do not interchange, then ϕ is determined by a permutation of
rows and a permutation of columns of Le. Let π ∈ Sn be the corresponding permutation
of rows. Then the permutation of columns is uniquely determined because the diagonal
elements are the only elements labeled with n− 1 and must hence be mapped onto the
diagonal elements. In other words, the permutation of columns is the same as π. The
matrix

Le =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n


changes to 

aπ−1(1),π−1(1) aπ−1(1),π−1(2) . . . aπ−1(1),π−1(n)

aπ−1(2),π−1(1) aπ−1(2),π−1(2) . . . aπ−1(2),π−1(n)
...

...
. . .

...
aπ−1(n),π−1(1) aπ−1(n),π−1(2) . . . aπ−1(n),π−1(n)

 ,

after the action of π onto rows and onto columns. Since ϕ is label preserving, the new
matrix equals to Le. Since the first row and the first column of Le are equal, we have:

aπ−1(1),π−1(1) = aπ−1(1),π−1(1) = a1,1 = a1,1 = n− 1
aπ−1(2),π−1(1) = aπ−1(1),π−1(2) = a2,1 = a1,2 = 0
aπ−1(3),π−1(1) = aπ−1(1),π−1(3) = a3,1 = a1,3 = 1

...
aπ−1(n),π−1(1) = aπ−1(1),π−1(n) = an,1 = a1,n = n− 2.
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Since {π−1(1), π−1(2), . . . , π−1(n)} = {1, 2, . . . , n} and π−1(1) = i for some fixed i ∈
{1, . . . , n}, it follows that the i’th column of Le is equal to the i’th row of Le. However,
we claim that this holds only for i = 1. Note first that since a4,2 = 4 and a2,4 = 3
we have i 6= 2. For 3 ≤ i ≤ n − 2 we note that ai+1,i = (2i − 3) mod (n − 1) and
ai,i+1 = (2i− 2) mod (n− 1), therefore ai+1,i 6= ai,i+1. Finally, because

(2n− 6) mod (n− 1) = an−2,n−1 6= an−1,n−2 = (2n− 7) mod (n− 1)

and
(2n− 7) mod (n− 1) = an−2,n 6= an,n−2 = (2n− 6) mod (n− 1)

we also have i 6= n− 1, n. Therefore,

aπ−1(1),1 = a1,π−1(1) = a1,1 = a1,1 = n− 1
aπ−1(2),1 = a1,π−1(2) = a2,1 = a1,2 = 0
aπ−1(3),1 = a1,π−1(3) = a3,1 = a1,3 = 1
...
aπ−1(n),1 = a1,π−1(n) = an,1 = a1,n = n− 2.

It follows that π−1(2) = 2 because a2,1 is the only element from the first column of Le
that is 0. Similarly we infer that π−1(i) = i for all 3 ≤ i ≤ n. But this means that π is
the identity and so is ϕ.

The second case is when ϕ also exchanges the fibers. This corresponds to the
transposition of Le. The transposition does not preserve `e because the label of the
vertex (xn/2, x(n+2)/2) is n − 2 while the label of (x(n+2)/2, xn/2) is n − 3. Since the
transposition does not preserves the labeling, it will also not be preserved by analogous
arguments as above additional permutation of rows and columns. Hence ϕ is the
identity automorphism.

5 Labelings for odd n ≥ 5

The proof of Theorem 1.1 will be complete by proving that χD(Kn �Kn) = n for every
odd integer n ≥ 5. Again let V (Kn) = {x1, x2, . . . , xn} and define `o : V (Kn �Kn) →
{0, 1, . . . , n− 1} as follows:

`o(xi, xj) =



n− 1; i = j,
i− 2; j = 1, i 6= 1 ,
j − 2; i = 1, j 6= 1 ,
(j + i− 3) mod (n− 1); i < j, i 6= 1, j 6= 2, n ,
(j + i− 4) mod (n− 1); i > j, j 6= 1, 2 ,
(2i− 4) mod (n− 1); 3 ≤ i ≤ (n− 1)/2, j = 2 or i = n, j = 2 or

(n+ 1)/2 ≤ i ≤ n− 1, j = n ,
(2i− 3) mod (n− 1); (n+ 1)/2 ≤ i ≤ n− 1, j = 2 or

2 ≤ i ≤ (n− 1)/2, j = n .
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We proceed similarly as in the previous section. Let Lo be the n × n matrix which
corresponds to the coloring `o, let Ri be the set of labels from the i’th row of Lo, let
Cj be the set of labels from the j’th column of Lo, and let (Lo)ij = ai,j . The next two
lemmas take care for proper vertex coloring.

Lemma 5.1 Ri = {0, 1, . . . , n− 1} for every 1 ≤ i ≤ n .

Proof. Note first that the cases for i = 1, i = 2 and i = n are the same as in the
proof of Lemma 4.1. Next, according to the definition of `o, it remains to consider two
cases. First one for 3 ≤ i ≤ n−1

2 and the second one for n+1
2 ≤ i ≤ n − 1. The values

for ai,j in the first case are exactly the same as the values for ai,j in Lemma 4.1 for
3 ≤ i ≤ n − 1. Switching the values of ai,2 and ai,n in the first case and keeping the
rest, gives us the values of ai,j for the second case. Since Ri = {0, 1, . . . , n− 1} in the
first case (see Lemma 4.1), this holds also in the second case. �

Lemma 5.2 Cj = {0, 1, . . . , n− 1} for every 1 ≤ j ≤ n .

Proof. The proof differs from the one of the Lemma 4.2 only for j = 2 and j = n.
In the case of j = 2 we have

a1,2 = 0,
a2,2 = n− 1,
ai,2 = (2i− 4) mod (n− 1) for 3 ≤ i ≤ n−1

2 and i = n,
ai,2 = (2i− 3) mod (n− 1) for n+1

2 ≤ i ≤ n− 1.

The set {2i − 4 ; 3 ≤ i ≤ n−1
2 } = {(2i − 4) mod (n − 1) ; 3 ≤ i ≤ n−1

2 } is the
set of all even numbers from 2 to n − 5, (2n − 4) ≡ (n − 3) mod (n − 1) and {2i −
3 ; n+1

2 ≤ i ≤ n− 1} is the set of all odd integers from n− 2 to 2n− 5. It follows that
{(2i− 3) mod (n− 1) ; n+1

2 ≤ i ≤ n− 1} is the set of all odd numbers from 1 to n− 2.
Hence C2 = {0, 1, . . . , n− 1}.

Let j = n. Then

a1,n = n− 2,
ai,n = (2i− 3) mod (n− 1) for 2 ≤ i ≤ n−1

2 ,
ai,n = (2i− 4) mod (n− 1) for n+1

2 ≤ i ≤ n− 1,
an,n = n− 1.

The set {2i−3 ; 2 ≤ i ≤ n−1
2 } = {(2i−3) mod (n−1) ; 2 ≤ i ≤ n−1

2 } is the set of all odd
numbers from 1 to n−4 and {2i−4 ; n+1

2 ≤ i ≤ n−1} is the set of all even numbers from
n− 3 to 2n− 6. Last observation implies that {(2i− 4) mod (n− 1) ; n+1

2 ≤ i ≤ n− 1}
is the set of all even numbers from 0 to n− 3: Hence Cn = {0, 1, . . . , n− 1}. �

To complete the argument we need to prove that `o is a distinguishing labeling.
Since the proof goes along the same lines as the corresponding proof from Section 4
we only point out the differences and leave the details to the reader. We first show
that the i’th column of Lo is equal to the i’th row of Lo if and only if i = 1. For
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i = 2 we have an,2 = n − 3 and a2,n = 1. In addition, ai+1,i = (2i − 3) mod (n − 1)
and ai,i+1 = (2i − 2) mod (n − 1) for 3 ≤ i ≤ n − 2, hence ai+1,i 6= ai,i+1. Finally,
(2n−6) mod (n−1) = an−2,n−1 6= an−1,n−2 = (2n−7) mod (n−1) and (2n−6) mod (n−
1) = an−1,n 6= an,n−1 = (2n− 5) mod (n− 1).

To show that the reflection does not preserve the labeling note that (x(n−1)/2, x(n+1)/2)
is labeled n− 3 while (x(n+1)/2, x(n−1)/2) with n− 4.
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