The distinguishing chromatic number of Cartesian products of two complete graphs*

Janja Jerebic ${ }^{a, b} \quad$ Sandi Klavžara ${ }^{a, b}$
${ }^{a}$ Department of Mathematics and Computer Science
University of Maribor, Koroška 160, 2000 Maribor, Slovenia
${ }^{b}$ Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana

Abstract

A labeling of a graph G is distinguishing if it is only preserved by the trivial automorphism of G. The distinguishing chromatic number of G is the smallest integer k such that G has a distinguishing labeling that is at the same time a proper vertex coloring. The distinguishing chromatic number of the Cartesian product $K_{k} \square K_{n}$ is determined for all k and n. In most of the cases it is equal to the chromatic number, thus answering a question of Choi, Hartke and Kaul whether there are some other graphs for which this equality holds.

Key words: distinguishing chromatic number; graph automorphism; Cartesian product of graphs

AMS subject classification (2000): 05C15, 05C25

1 Introduction

The distinguishing number of a graph, introduced in 1996 by Albertson and Collins [2], is by today an established and well-studied graph invariant. See $[4,5,11,13,19]$ for some of the recent results. Ten years later Collins and Trenk [7] followed with a natural variation of the distinguishing number, the distinguishing chromatic number of a graph G, denoted by $\chi_{D}(G)$. Here not only vertices are distinguished but the corresponding labelings must be proper vertex colorings. Among other results Collins and Trenk determined the distinguishing chromatic number for some basic families of graphs, characterized trees T with $\chi_{D}(T)=2$, and obtained an analogue of Brooks theorem proving that $\chi_{D}(G) \leq 2 \Delta(G)$ with a list of the corresponding extremal graphs. (They

[^0]also proved a Brooks-type theorem for the distinguishing number, a result obtained independently in [14].)

Distinguishing numbers of hypercubes were determined in [3]. This result was superceded with a series of papers $[1,15,11]$ in which the distinguishing number was determined for all powers of graphs with respect to the Cartesian product. (We note that the paper [11] is the final paper in this series, although it was eventually published before [15].) Moreover, the distinguishing number of Cartesian products of two complete graphs were independently determined in $[8,12]$.

Choi, Hartke and Kaul [6] studied the distinguishing chromatic number of Cartesian product graphs. They proved that for every graph G there exists a constant d_{G} such that $\chi_{D}\left(G^{d}\right) \leq \chi(G)+1$ for $d \geq d_{G}$. For hypercubes they proved $\chi_{D}\left(Q_{3}\right)=4$, $3 \leq \chi_{D}\left(Q_{4}\right) \leq 4$, and $\chi_{D}\left(Q_{n}\right)=3, n \geq 5$. The remaining case Q_{4} was settled by Klöckl [16] by showing that $\chi_{D}\left(Q_{4}\right)=4$. Choi et al. [6] also showed that the distinguishing chromatic number of the Cartesian product of five or more complete graphs is at most one more than its chromatic number.

Clearly, $\chi_{D}(G)=\chi(G)$ for any asymmetric graph. This equality holds also for complete graphs and large enough Kneser graphs (due to a personal communication of Füredi to the authors). Choi et al. finish their paper with the following question: Are there some other graphs for which this equality holds? In this paper we prove that this equality holds for almost all graphs $K_{k} \square K_{n}$. More precisely, we prove the following result.

Theorem 1.1 Let $1 \leq k \leq n$. Then

$$
\chi_{D}\left(K_{k} \square K_{n}\right)= \begin{cases}n=\chi\left(K_{k} \square K_{n}\right) ; & k=n=1, k=n \geq 5, k<n, \\ n+1=\chi\left(K_{k} \square K_{n}\right)+1 ; & k=n=4, \\ n+2=\chi\left(K_{k} \square K_{n}\right)+2 ; & k=n=2, k=n=3 .\end{cases}
$$

In the next section we give concepts needed in this paper and prove the case $k<n$ of the theorem. Then, in Section 3, the distinguishing chromatic number is determined for $K_{3} \square K_{3}$ and $K_{4} \square K_{4}$, while in the last two sections $K_{n} \square K_{n}$ is considered for even $n \geq 6$ and odd $n \geq 5$, respectively.

2 Preliminaries and the case $k<n$

Let G be a graph. A labeling (sometimes also called coloring) $\ell: V(G) \rightarrow\{0,1, \ldots, d-$ $1\}$ is d-distinguishing if it is invariant only under the trivial automorphism. The distinguishing number of a graph $G, D(G)$, is the least integer d such that G has a d-distinguishing labeling. A d-distinguishing labeling $\ell: V(G) \rightarrow\{0,1, \ldots, d-1\}$ is a proper d-distinguishing labeling if it is a proper d-coloring of G. The distinguishing chromatic number of a graph $G, \chi_{D}(G)$, is the least integer d such that G has a proper d-distinguishing labeling. Clearly, $\chi_{D}(G) \geq \max \{\chi(G), D(G)\}$ for any graph G.

The Cartesian product $G \square H$ of graphs G and H has the vertex set $V(G) \times V(H)$, vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent if they are equal in one coordinate and adjacent
in the other. The subgraph of $G \square H$ induced by $\{g\} \times V(H)$ is isomorphic to H and called an H-fiber. G-fibers are defined analogously.

It is well-known that $\chi(G \square H)=\max \{\chi(G), \chi(H)\}$ for any graphs G and H [18], see [10]. In particular, $\chi\left(K_{k} \square K_{n}\right)=\max \{k, n\}$. It is also well-known that the automorphism group of a Cartesian product graph is generated by automorphisms of the factors and transpositions of isomorphic factors [9], see [10].

Let $V\left(K_{k}\right)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $V\left(K_{n}\right)=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. A d-coloring of the vertices of the graph $K_{k} \square K_{n}$ corresponds to a n by k matrix L with entries from $\{0,1, \ldots, d-1\}$. The i, j entry of the matrix L is m whenever the vertex $\left(x_{i}, y_{j}\right)$ in $K_{k} \square K_{n}$ is colored with m. For $k \neq n$ every automorphism of $K_{k} \square K_{n}$ preserves the set of K_{k}-fibers and the set of K_{n}-fibers. In this case every automorphism φ of $K_{k} \square K_{n}$ is determined by a permutation $\pi \in S_{n}$ of K_{k}-fibers and a permutation $\psi \in S_{k}$ of $K_{n}{ }^{-}$ fibers. Let P_{π} be the permutation matrix representing permutation $\pi \in S_{n}$ and P_{ψ} the permutation matrix representing permutation $\psi \in S_{k}$. Then φ preserves the coloring L if $L=P_{\pi} L P_{\psi}$. Moreover, L is a d-distinguishing coloring if $L=P_{\pi} L P_{\psi}$ implies $\pi=i d$ and $\psi=i d$. If $k=n$, every automorphism of $K_{k} \square K_{n}=K_{n} \square K_{n}$ is generated by the automorphisms of the factors and the transpositions of isomorphic factors. In this case φ preserves the coloring L if $L=P_{\pi} L P_{\psi}$ or $L=P_{\pi} L^{T} P_{\psi}$, where P_{π} and P_{ψ} are defined as before.

In the rest of this section we will determine $\chi_{D}\left(K_{k} \square K_{n}\right)$ for $k<n$. We may assume that $k \geq 2$, since it is already known [7] that $\chi_{D}\left(K_{1} \square K_{n}\right)=\chi_{D}\left(K_{n}\right)=n$.

Suppose that $n=\chi(H) \leq \chi(G)=m, g: V(G) \rightarrow\{0,1, \ldots, m-1\}$ is a proper m-coloring of G and $h: V(H) \rightarrow\{0,1, \ldots, n-1\}$ is a proper n-coloring of H. Then the coloring $f: V(G \square H) \rightarrow\{0,1, \ldots, m-1\}$ defined as:

$$
f(a, x)=g(a)+h(x)(\bmod m)
$$

is a proper m-coloring of $G \square H$. We call such a coloring the canonical coloring. We claim that the canonical n-coloring of $K_{k} \square K_{n}$ is a distinguishing labeling. Since $k<n$, an automorphism ϕ of $K_{k} \square K_{n}$ can only map a K_{k}-fiber onto a K_{k}-fiber by a color preserving automorphism ϕ. Moreover (since $k<n$), the labeling of K_{k}-fibers is pairwise different and hence they must be stabilized by ϕ. But then ϕ stabilizes the K_{n}-fibers as well.

$3 \quad K_{3} \square K_{3}$ and $K_{4} \square K_{4}$

In the rest of the paper we thus need to treat products $K_{n} \square K_{n}$. Since $K_{1} \square K_{1}=K_{1}$, $\chi_{D}\left(K_{1} \square K_{1}\right)=1$. Moreover, $K_{2} \square K_{2}=C_{4}$ and hence by $[7]$, $\chi_{D}\left(K_{2} \square K_{2}\right)=4$. In this section we determine χ_{D} for $n=3$ and $n=4$.

The matrix

$$
L=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right] .
$$

represents the unique 3-coloring (up to color classes) of $K_{3} \square K_{3}$. But it is not a distinguishing labeling since $P_{\pi} L^{T} P_{\psi}=L$, where

$$
P_{\pi}=P_{\psi}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

Hence $\chi_{D}\left(K_{3} \square K_{3}\right) \geq 4$. Consider next proper 4-colorings of $K_{3} \square K_{3}$. Since $\left|V\left(K_{3} \square K_{3}\right)\right|=$ 9 , at least one color must appear exactly 3 times. We may assume without loss of generality that the coloring has the form

$$
L=\left[\begin{array}{ccc}
0 & 1 & 2 \\
- & 0 & - \\
- & - & 0
\end{array}\right]
$$

The first possibility is that colors 1,2 and 3 each appears exactly twice. Then there are three possibilities for color 3:

$$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
3 & 0 & - \\
- & 3 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 1 & 2 \\
- & 0 & 3 \\
3 & - & 0
\end{array}\right] \text { or }\left[\begin{array}{ccc}
0 & 1 & 2 \\
- & 0 & 3 \\
- & 3 & 0
\end{array}\right]
$$

and hence we get the following possible colorings:

$$
L_{1}=\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 0 & 1 \\
2 & 3 & 0
\end{array}\right], \quad L_{2}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 3 \\
3 & 2 & 0
\end{array}\right], \quad L_{3}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 3 \\
2 & 3 & 0
\end{array}\right], \quad L_{3^{\prime}}=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 3 \\
1 & 3 & 0
\end{array}\right] .
$$

The reflection of $L_{3^{\prime}}$ over the antidiagonal gives the same (up to color classes) coloring as L_{2}.

The second possibility is that one of the colors 1 and 2 appear three times. We may without loss of generality assume it is color 1 . This leads to the following colorings:

$$
L_{4}=\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 0 & 1 \\
1 & 3 & 0
\end{array}\right], \quad L_{5}=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 3 & 0
\end{array}\right], \quad L_{6}=\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 0 & 1 \\
1 & 2 & 0
\end{array}\right] .
$$

But none of the matrices $L_{i}, 1 \leq i \leq 6$, presents a distinguishing labeling of $K_{3} \square K_{3}$ because L_{3} is symmetric, L_{1} and L_{4} are symmetric with respect to the antidiagonal, while for $i=2,5,6$ we have $P_{\pi_{i}} L_{i}^{T} P_{\psi_{i}}=L_{i}$, where

$$
P_{\pi_{2}}=P_{\psi_{2}}=P_{\pi_{6}}=P_{\psi_{6}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } P_{\pi_{5}}=P_{\psi_{5}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

Hence $\chi_{D}\left(K_{3} \square K_{3}\right) \geq 5$. Finally, it is straightforward to verify that the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 3 \\
2 & 4 & 0
\end{array}\right]
$$

gives a proper 5 -distinguishing labeling.
The product $K_{4} \square K_{4}$ is considered similarly. Among the different proper 4-colorings

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
3 & 2 & 0 & 1 \\
2 & 3 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 0 & 1 & 2 \\
2 & 3 & 0 & 1 \\
1 & 2 & 3 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
2 & 0 & 3 & 1 \\
1 & 3 & 0 & 2 \\
3 & 2 & 1 & 0
\end{array}\right],
$$

the first three are symmetric over the antidiagonal (the first is also symmetric), while for the last one, denote it with L, we infer that $P_{\pi} L^{T} P_{\psi}=L$, where

$$
P_{\pi}=P_{\psi}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Therefore $\chi_{D}\left(K_{4} \square K_{4}\right) \geq 5$. To conclude that $\chi_{D}\left(K_{4} \square K_{4}\right) \leq 5$ verify that

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 4 \\
2 & 4 & 0 & 1 \\
3 & 2 & 4 & 0
\end{array}\right]
$$

represents a proper 5-distinguishing labeling.

4 Labelings for even $n \geq 6$

In this section we prove that $\chi_{D}\left(K_{n} \square K_{n}\right)=\chi\left(K_{n} \square K_{n}\right)=n$ for every even integer $n \geq 6$. Let $V\left(K_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and define $\ell_{e}: V\left(K_{n} \square K_{n}\right) \rightarrow\{0,1, \ldots, n-1\}$ as follows:

$$
\ell_{e}\left(x_{i}, x_{j}\right)= \begin{cases}n-1 ; & i=j, \\ i-2 ; & j=1, i \neq 1, \\ j-2 ; & i=1, j \neq 1, \\ (j+i-3) \bmod (n-1) ; & i<j, i \neq 1, j \neq 2, n, \\ (j+i-4) \bmod (n-1) ; & i>j, j \neq 1,2, \\ (2 i-4) \bmod (n-1) ; & j=2, i \geq 3, \\ (2 i-3) \bmod (n-1) ; & j=n, 2 \leq i \leq n-1 .\end{cases}
$$

In the rest of the section we prove that ℓ_{e} is a proper n-distinguishing labeling of $K_{n} \square K_{n}$.

Let L_{e} be the $n \times n$ matrix which corresponds to the coloring ℓ_{e}. For $i=1, \ldots, n$ let R_{i} be the set of labels from the i 'th row of L_{e} and C_{j} the set of labels from the j 'th column of L_{e}. Denoting $\left(L_{e}\right)_{i j}=a_{i, j}$ we thus have $R_{i}=\left\{a_{i, 1}, \ldots, a_{i, n}\right\}$ and $C_{j}=\left\{a_{1, j}, \ldots, a_{n, j}\right\}$.

In the next two lemmas we prove that ℓ_{e} is a proper vertex coloring.

Lemma 4.1 $R_{i}=\{0,1, \ldots, n-1\}$ for every $1 \leq i \leq n$.
Proof. Let $i=1$. Then $a_{1,1}=n-1$ and $a_{1, j}=j-2,2 \leq j \leq n$. For $2 \leq j \leq n$ we have $0 \leq j-2 \leq n-2$. It follows that lemma is true for $i=1$. Consider now the set R_{2}. Note that $a_{2,1}=0, a_{2,2}=n-1, a_{2, n}=1$ and $a_{2, j}=(j-1) \bmod (n-1)$ for $3 \leq j \leq n-1$. Last condition implies that $2 \leq j-1 \leq n-2$ and hence lemma holds also for $i=2$.

Suppose now that $3 \leq i \leq n-1$. Then

$$
\begin{aligned}
& a_{i, 1}=i-2, \\
& a_{i, 2}=(2 i-4) \bmod (n-1), \\
& a_{i, j}=(j+i-4) \bmod (n-1) \text { for } 3 \leq j \leq i-1, \\
& a_{i, i}=n-1, \\
& a_{i, j}=(j+i-3) \bmod (n-1) \text { for } i+1 \leq j \leq n-1, \\
& a_{i, n}=(2 i-3) \bmod (n-1) .
\end{aligned}
$$

The sequence of numbers $j+i-4$ for $3 \leq j \leq i-1$ is a sequence of consecutive integers from $i-1$ to $2 i-5$. Similarly, the numbers $j+i-3$ for $i+1 \leq j \leq n-1$ form a sequence of consecutive integers from $2 i-2$ to $n+i-4$. Consequently,

$$
\begin{aligned}
R_{i} \backslash\left\{a_{i, i}\right\} & =\left\{a_{i, 1}, a_{i, 3}, \ldots, a_{i, i-1}, a_{i, 2}, a_{i, n}, a_{i, i+1}, \ldots, a_{i, n-1}\right\} \\
& =\{i-2, i-1, \ldots, 2 i-5,2 i-4,2 i-3,2 i-2, \ldots, n+i-4\} \\
& =\{0,1, \ldots, n-2\}
\end{aligned}
$$

where the elements of the third set are taken modulo $(n-1)$. The last equality holds because $i-2, i-1, \ldots, 2 i-5,2 i-4,2 i-3,2 i-2, \ldots, n+i-4$ is a sequence of $n-1$ consecutive integers. Since $a_{i, i}=n-1$ we conclude that $R_{i}=\{0,1, \ldots, n-1\}$ for every $3 \leq i \leq n-1$.

It remains to show that $R_{n}=\{0,1, \ldots, n-1\}$. In this case we have $a_{n, 1}=n-2$, $a_{n, 2}=(2 n-4) \bmod (n-1), a_{n, j}=(j+n-4) \bmod (n-1)$ for $3 \leq j \leq n-1$ and $a_{n, n}=n-1$. The numbers $j+n-4$ for $3 \leq j \leq n-1$ form a sequence of consecutive integers from $n-1$ to $2 n-5$. By adding $n-2$ and $2 n-4$ we get a sequence of $n-1$ consecutive integers and consequently $R_{n} \backslash\left\{a_{n, n}\right\}=\{0,1, \ldots, n-2\}$ and $R_{n}=\{0,1, \ldots, n-1\}$.

Lemma 4.2 $C_{j}=\{0,1, \ldots, n-1\}$ for every $1 \leq j \leq n$.
Proof. Consider first C_{1}. By definition of ℓ_{e} we have $a_{1,1}=n-1$ and $a_{i, 1}=i-2$ for $2 \leq i \leq n$ which implies that $C_{1}=\{0,1, \ldots, n-1\} . C_{2}$ consist of $a_{1,2}=0, a_{2,2}=n-1$ and $a_{i, 2}=(2 i-4) \bmod (n-1)$ for $3 \leq i \leq n$. From the last condition we deduce that $\{2 i-4 ; 3 \leq i \leq n\}$ is the set of all even numbers between 2 and $2 n-4$ and hence $\left\{a_{i, 2} ; 3 \leq i \leq n\right\}=\{1,2, \ldots, n-2\}$. It follows that $C_{2}=\{0,1, \ldots, n-1\}$.

For $3 \leq j \leq n-1$ we have

$$
\begin{aligned}
& a_{1, j}=j-2 \\
& a_{i, j}=(j+i-3) \bmod (n-1) \text { for } 2 \leq i \leq j-1, \\
& a_{j, j}=n-1 \\
& a_{i, j}=(j+i-4) \bmod (n-1) \text { for } j+1 \leq i \leq n
\end{aligned}
$$

The sequence of numbers $j+i-3$ for $2 \leq i \leq j-1$ is a sequence of consecutive integers from $j-1$ to $2 j-4$. Similarly, the numbers $j+i-4$ for $j+1 \leq i \leq n$ form a sequence of consecutive integers from $2 j-3$ to $n+j-4$. Putting all of this numbers together and adding $j-2$ gives us a sequence of $n-1$ consecutive integers which are consequently pairwise different by modulo $(n-1)$. Since $a_{j, j}=n-1$ we can conclude that lemma holds for every $3 \leq j \leq n-1$.

Finally, let $j=n$. Then $a_{1, n}=n-2, a_{i, n}=(2 i-3) \bmod (n-1)$ for $2 \leq i \leq n-1$ and $a_{n, n}=n-1$. The set $\{2 i-3 ; 2 \leq i \leq n-1\}$ is the set of all odd numbers between 1 and $2 n-5$ and hence $\left\{a_{i, n} ; 2 \leq i \leq n-1\right\}=\{0,1, \ldots, n-3\}$. After adding $a_{1, n}$ and $a_{n, n}$ to this set we get $C_{n}=\{0,1, \ldots, n-1\}$.

To complete the proof for even $n \geq 6$, we need to prove that ℓ_{e} is a distinguishing labeling.

Let φ be an automorphism of $K_{n} \square K_{n}$ that preserves ℓ_{e}. Suppose first that the factors of the product do not interchange, then φ is determined by a permutation of rows and a permutation of columns of L_{e}. Let $\pi \in S_{n}$ be the corresponding permutation of rows. Then the permutation of columns is uniquely determined because the diagonal elements are the only elements labeled with $n-1$ and must hence be mapped onto the diagonal elements. In other words, the permutation of columns is the same as π. The matrix

$$
L_{e}=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right]
$$

changes to

$$
\left[\begin{array}{cccc}
a_{\pi^{-1}(1), \pi^{-1}(1)} & a_{\pi^{-1}(1), \pi^{-1}(2)} & \cdots & a_{\pi^{-1}(1), \pi^{-1}(n)} \\
a_{\pi^{-1}(2), \pi^{-1}(1)} & a_{\pi^{-1}(2), \pi^{-1}(2)} & \cdots & a_{\pi^{-1}(2), \pi^{-1}(n)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{\pi^{-1}(n), \pi^{-1}(1)} & a_{\pi^{-1}(n), \pi^{-1}(2)} & \cdots & a_{\pi^{-1}(n), \pi^{-1}(n)}
\end{array}\right]
$$

after the action of π onto rows and onto columns. Since φ is label preserving, the new matrix equals to L_{e}. Since the first row and the first column of L_{e} are equal, we have:

$$
\begin{aligned}
& a_{\pi^{-1}(1), \pi^{-1}(1)}=a_{\pi^{-1}(1), \pi^{-1}(1)}=a_{1,1}=a_{1,1}=n-1 \\
& a_{\pi^{-1}(2), \pi^{-1}(1)}=a_{\pi^{-1}(1), \pi^{-1}(2)}=a_{2,1}=a_{1,2}=0 \\
& a_{\pi^{-1}(3), \pi^{-1}(1)}=a_{\pi^{-1}(1), \pi^{-1}(3)}=a_{3,1}=a_{1,3}=1 \\
& \quad \vdots \\
& a_{\pi^{-1}(n), \pi^{-1}(1)}=a_{\pi^{-1}(1), \pi^{-1}(n)}=a_{n, 1}=a_{1, n}=n-2 .
\end{aligned}
$$

Since $\left\{\pi^{-1}(1), \pi^{-1}(2), \ldots, \pi^{-1}(n)\right\}=\{1,2, \ldots, n\}$ and $\pi^{-1}(1)=i$ for some fixed $i \in$ $\{1, \ldots, n\}$, it follows that the i 'th column of L_{e} is equal to the i 'th row of L_{e}. However, we claim that this holds only for $i=1$. Note first that since $a_{4,2}=4$ and $a_{2,4}=3$ we have $i \neq 2$. For $3 \leq i \leq n-2$ we note that $a_{i+1, i}=(2 i-3) \bmod (n-1)$ and $a_{i, i+1}=(2 i-2) \bmod (n-1)$, therefore $a_{i+1, i} \neq a_{i, i+1}$. Finally, because

$$
(2 n-6) \bmod (n-1)=a_{n-2, n-1} \neq a_{n-1, n-2}=(2 n-7) \bmod (n-1)
$$

and

$$
(2 n-7) \bmod (n-1)=a_{n-2, n} \neq a_{n, n-2}=(2 n-6) \bmod (n-1)
$$

we also have $i \neq n-1, n$. Therefore,

$$
\begin{aligned}
& a_{\pi^{-1}(1), 1}=a_{1, \pi^{-1}(1)}=a_{1,1}=a_{1,1}=n-1 \\
& a_{\pi^{-1}(2), 1}=a_{1, \pi^{-1}(2)}=a_{2,1}=a_{1,2}=0 \\
& a_{\pi^{-1}(3), 1}=a_{1, \pi^{-1}(3)}=a_{3,1}=a_{1,3}=1 \\
& \vdots \\
& a_{\pi^{-1}(n), 1}=a_{1, \pi^{-1}(n)}=a_{n, 1}=a_{1, n}=n-2 .
\end{aligned}
$$

It follows that $\pi^{-1}(2)=2$ because $a_{2,1}$ is the only element from the first column of L_{e} that is 0 . Similarly we infer that $\pi^{-1}(i)=i$ for all $3 \leq i \leq n$. But this means that π is the identity and so is φ.

The second case is when φ also exchanges the fibers. This corresponds to the transposition of L_{e}. The transposition does not preserve ℓ_{e} because the label of the vertex $\left(x_{n / 2}, x_{(n+2) / 2}\right)$ is $n-2$ while the label of $\left(x_{(n+2) / 2}, x_{n / 2}\right)$ is $n-3$. Since the transposition does not preserves the labeling, it will also not be preserved by analogous arguments as above additional permutation of rows and columns. Hence φ is the identity automorphism.

5 Labelings for odd $n \geq 5$

The proof of Theorem 1.1 will be complete by proving that $\chi_{D}\left(K_{n} \square K_{n}\right)=n$ for every odd integer $n \geq 5$. Again let $V\left(K_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and define $\ell_{o}: V\left(K_{n} \square K_{n}\right) \rightarrow$ $\{0,1, \ldots, n-1\}$ as follows:

$$
\ell_{o}\left(x_{i}, x_{j}\right)= \begin{cases}n-1 ; & i=j, \\ i-2 ; & j=1, i \neq 1, \\ j-2 ; & i=1, j \neq 1, \\ (j+i-3) \bmod (n-1) ; & i<j, i \neq 1, j \neq 2, n, \\ (j+i-4) \bmod (n-1) ; & i>j, j \neq 1,2, \\ (2 i-4) \bmod (n-1) ; & 3 \leq i \leq(n-1) / 2, j=2 \text { or } i=n, j=2 \text { or } \\ & (n+1) / 2 \leq i \leq n-1, j=n, \\ (2 i-3) \bmod (n-1) ; & (n+1) / 2 \leq i \leq n-1, j=2 \text { or } \\ & 2 \leq i \leq(n-1) / 2, j=n .\end{cases}
$$

We proceed similarly as in the previous section. Let L_{o} be the $n \times n$ matrix which corresponds to the coloring ℓ_{o}, let R_{i} be the set of labels from the i 'th row of L_{o}, let C_{j} be the set of labels from the j 'th column of L_{o}, and let $\left(L_{o}\right)_{i j}=a_{i, j}$. The next two lemmas take care for proper vertex coloring.

Lemma 5.1 $R_{i}=\{0,1, \ldots, n-1\}$ for every $1 \leq i \leq n$.
Proof. Note first that the cases for $i=1, i=2$ and $i=n$ are the same as in the proof of Lemma 4.1. Next, according to the definition of ℓ_{o}, it remains to consider two cases. First one for $3 \leq i \leq \frac{n-1}{2}$ and the second one for $\frac{n+1}{2} \leq i \leq n-1$. The values for $a_{i, j}$ in the first case are exactly the same as the values for $a_{i, j}$ in Lemma 4.1 for $3 \leq i \leq n-1$. Switching the values of $a_{i, 2}$ and $a_{i, n}$ in the first case and keeping the rest, gives us the values of $a_{i, j}$ for the second case. Since $R_{i}=\{0,1, \ldots, n-1\}$ in the first case (see Lemma 4.1), this holds also in the second case.

Lemma 5.2 $C_{j}=\{0,1, \ldots, n-1\}$ for every $1 \leq j \leq n$.
Proof. The proof differs from the one of the Lemma 4.2 only for $j=2$ and $j=n$.
In the case of $j=2$ we have

$$
\begin{aligned}
& a_{1,2}=0 \\
& a_{2,2}=n-1 \\
& a_{i, 2}=(2 i-4) \bmod (n-1) \text { for } 3 \leq i \leq \frac{n-1}{2} \text { and } i=n \\
& a_{i, 2}=(2 i-3) \bmod (n-1) \text { for } \frac{n+1}{2} \leq i \leq n-1
\end{aligned}
$$

The set $\left\{2 i-4 ; 3 \leq i \leq \frac{n-1}{2}\right\}=\left\{(2 i-4) \bmod (n-1) ; 3 \leq i \leq \frac{n-1}{2}\right\}$ is the set of all even numbers from 2 to $n-5,(2 n-4) \equiv(n-3) \bmod (n-1)$ and $\{2 i-$ $\left.3 ; \frac{n+1}{2} \leq i \leq n-1\right\}$ is the set of all odd integers from $n-2$ to $2 n-5$. It follows that $\left\{(2 i-3) \bmod (n-1) ; \frac{n+1}{2} \leq i \leq n-1\right\}$ is the set of all odd numbers from 1 to $n-2$. Hence $C_{2}=\{0,1, \ldots, n-1\}$.

Let $j=n$. Then

$$
\begin{aligned}
& a_{1, n}=n-2 \\
& a_{i, n}=(2 i-3) \bmod (n-1) \text { for } 2 \leq i \leq \frac{n-1}{2} \\
& a_{i, n}=(2 i-4) \bmod (n-1) \text { for } \frac{n+1}{2} \leq i \leq n-1, \\
& a_{n, n}=n-1
\end{aligned}
$$

The set $\left\{2 i-3 ; 2 \leq i \leq \frac{n-1}{2}\right\}=\left\{(2 i-3) \bmod (n-1) ; 2 \leq i \leq \frac{n-1}{2}\right\}$ is the set of all odd numbers from 1 to $n-4$ and $\left\{2 i-4 ; \frac{n+1}{2} \leq i \leq n-1\right\}$ is the set of all even numbers from $n-3$ to $2 n-6$. Last observation implies that $\left\{(2 i-4) \bmod (n-1) ; \frac{n+1}{2} \leq i \leq n-1\right\}$ is the set of all even numbers from 0 to $n-3$: Hence $C_{n}=\{0,1, \ldots, n-1\}$.

To complete the argument we need to prove that ℓ_{o} is a distinguishing labeling. Since the proof goes along the same lines as the corresponding proof from Section 4 we only point out the differences and leave the details to the reader. We first show that the i 'th column of L_{o} is equal to the i 'th row of L_{o} if and only if $i=1$. For
$i=2$ we have $a_{n, 2}=n-3$ and $a_{2, n}=1$. In addition, $a_{i+1, i}=(2 i-3) \bmod (n-1)$ and $a_{i, i+1}=(2 i-2) \bmod (n-1)$ for $3 \leq i \leq n-2$, hence $a_{i+1, i} \neq a_{i, i+1}$. Finally, $(2 n-6) \bmod (n-1)=a_{n-2, n-1} \neq a_{n-1, n-2}=(2 n-7) \bmod (n-1)$ and $(2 n-6) \bmod (n-$ 1) $=a_{n-1, n} \neq a_{n, n-1}=(2 n-5) \bmod (n-1)$.

To show that the reflection does not preserve the labeling note that $\left(x_{(n-1) / 2}, x_{(n+1) / 2}\right)$ is labeled $n-3$ while $\left(x_{(n+1) / 2}, x_{(n-1) / 2}\right)$ with $n-4$.

References

[1] M. O. Albertson, Distinguishing Cartesian powers of graphs, Electron. J. Combin. 12 (2005) \#N17.
[2] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996) \#R18.
[3] B. Bogstad and L. Cowen, The distinguishing number of hypercubes, Discrete Math. 283 (2004) 29-35.
[4] M. Chan, The distinguishing number of the direct and wreath product action, J. Algebraic Combin. 24 (2006) 331-345.
[5] C. T. Cheng, On computing the distinguishing numbers of trees and forests, Electron. J. Combin. 13 (2006) \#R11.
[6] J. Choi, S. Hartke and H. Kaul, Distinguishing chromatic number of Cartesian products of graphs, SIAM J. Discrete Math., to appear.
[7] K. L. Collins and A. N. Trenk, The distinguishing chromatic number, Electron. J. Combin. 13 (2006) \#R16.
[8] M. J. Fisher and G. Isaak, Distinguishing colorings of Cartesian products of complete graphs, Discrete Math., to appear.
[9] W. Imrich, Automorphismen und das kartesische Produkt von Graphen, Osterreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II" 177 (1969) 203-214.
[10] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, John Wiley \& Sons, New York, 2000.
[11] W. Imrich and S. Klavžar, Distinguishing Cartesian powers of graphs, J. Graph Theory 53 (2006) 250-260.
[12] W. Imrich, J. Jerebic and S. Klavžar, The distinguishing number of Cartesian products of complete graphs, European J. Combin., to appear.
[13] W. Imrich, S. Klavžar and V. Trofimov, Distinguishing infinite graphs, Electron. J. Combin. 14 (2007) \#R36.
[14] S. Klavžar, T.-L. Wong and X. Zhu, Distinguishing labelings of group action on vector spaces and graphs, J. Algebra 303 (2006) 626-641.
[15] S. Klavžar and X. Zhu, Cartesian powers of graphs can be distinguished by two labels, European J. Combin. 28 (2007) 303-310.
[16] W. Klöckl, On distinguishing numbers, manuscript.
[17] D. J. Miller, The automorphism group of a product of graphs, Proc. Amer. Math. Soc. 25 (1970) 24-28.
[18] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515-525.
[19] M. E. Watkins and X. Zhou, Distinguishability of locally finite trees, Electron. J. Combin. 14 (2007) \#R29.

[^0]: *This work was supported in part by the Ministry of Science of Slovenia under the grant P1-0297.

