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Abstract

Distance-balanced graphs are introduced as graphs in which every edge uv
has the following property: the number of vertices closer to u than to v is equal
to the number of vertices closer to v than to u. Basic properties of these graphs
are obtained. The new concept is connected with symmetry conditions in graphs
and local operations on graphs are studied with respect to it. Distance-balanced
Cartesian and lexicographic products of graphs are also characterized. Several
open problems are posed along the way.
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1 Introduction

For an edge ab of a graph G let WG
ab be the set of vertices closer to a than to b. That

is,
WG

ab = {u ∈ G | d(u, a) < d(u, b)} .

In addition, let aW
G
b be the set of vertices with equal distances to a and b;

aW
G
b = {u ∈ G | d(u, a) = d(u, b)} .

If the graph G is clear from the context, we write simply Wab and aWb. Note that
WG

ab and WG
ba form a partition of the vertex set of a connected, bipartite graph G.

The sets Wab (and aWb) play an important role in metric graph theory. A
classical result of this theory due to Djoković [3] asserts that a bipartite graph is a
partial cube (a graph that admits an isometric embedding into a hypercube) if and
only if for any edge ab of G the sets Wab and Wba are convex. Chepoi [2] generalized
this result by proving that G isometrically embeds into a Hamming graph if and
only if the sets Wab, Wba, Wab ∪ aWb, and Wba ∪ aWb are convex for all edges ab of
G. For more information on the research in this direction see [1].

We also note that the sets Wab appear in chemical graph theory as well: The
well-investigated Szeged index of a graph G is defined as

∑
ab∈E(G) |Wab| · |Wba|,

cf. [6, 7].
Here is our key definition. We call a graph G distance-balanced, if

|Wab| = |Wba|

holds for any edge ab of G.
Motivated by the results of [5], Handa considered distance-balanced partial cubes

and proved that they are 3-connected, with the exception of cycles and the complete
graph of order two. In general, any distance-balanced graph having at least two edges
is 2-connected.

In this paper we do not restrict ourselves to the bipartite case but consider
distance-balanced graphs in general. In the second section we consider several ex-
amples of distance-balanced graphs and derive some of their properties. In particular
we characterize distance-balanced graphs of a given diameter and connect the con-
cept with symmetry conditions in graphs. In the subsequent section we show that
a removal of an edge always destroys the property of being distance-balanced. The
same also holds in almost all the cases when an edge of a distance-balanced graph
is subdivided. Then, in Section 4, we determine which Cartesian and lexicographic
products are distance-balanced and show that this property is not preserved by
direct and strong products of graphs. We conclude the paper suggesting several
research topics and posing some open problems.
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2 Examples and basic properties

We begin with some examples of distance-balanced graphs.
Note first that cycles and complete graphs are distance-balanced. In fact, com-

plete graphs are the only distance-balanced chordal graphs. This follows easily by
considering an edge e = uv where u is the first vertex in a perfect elimination scheme
and v is any neighbor of u that is not simplicial.

It is also easy to verify that hypercubes are distance-balanced. This time hyper-
cubes are the only median distance-balanced graphs. (One way to prove this fact is
to use Lemma 2.41 from [9].) On the other hand the variety of distance-balanced
partial cubes is much richer, cf. Fig. 1, but a characterization of such graphs seems
to be a difficult problem.

Our first result gives a slightly different view to the definition of distance-
balanced graphs. For a vertex x of a connected graph G and k ≥ 0 let Nk(x) = {y ∈
G | d(x, y) = k} and Nk[x] = {y ∈ G | d(x, y) ≤ k}. For k = 1 we shorten these to
N(x) and N [x]. Then we have:

Proposition 2.1 A graph G of diameter d is distance-balanced if and only if

|N [a] \N [b]|+
d−1∑

k=2

|Nk(a) \Nk−1(b)| = |N [b] \N [a]|+
d−1∑

k=2

|Nk(b) \Nk−1(a)|

holds for every edge ab ∈ E(G).

Proof. For k ≥ 1, let Dk(ab) = {u ∈ G | d(u, a) = k, d(u, b) = k + 1}. Then Wab

can be written as

Wab = {a} ∪
d−1⋃

k=1

Dk(ab) .

Note that for any k ≥ 1, Dk(ab) = (Nk(a) \Nk[b]) and observe that N(a) \N [b] =
N [a] \N [b]. For k ≥ 2 we can further compute Dk(ab) = (Nk(a) \Nk[b]) = [Nk(a) \
Nk−1(b)] \ [Nk(a) ∩Nk(b)]. Therefore,

Wab = {a} ∪ (N [a] \N [b]) ∪
d−1⋃

k=2

(
[Nk(a) \Nk−1(b)] \ [Nk(a) ∩Nk(b)]

)
.

and

Wba = {b} ∪ (N [b] \N [a]) ∪
d−1⋃

k=2

(
[Nk(b) \Nk−1(a)] \ [Nk(a) ∩Nk(b)]

)
.

Since Nk(a) ∩ Nk(b) is a subset of both Nk(a) \ Nk−1(b) and Nk(b) \ Nk−1(a), we
have |Wab| = |Wba| if and only if

|N [a] \N [b]|+
d−1∑

k=2

|Nk(a) \Nk−1(b)| = |N [b] \N [a]|+
d−1∑

k=2

|Nk(b) \Nk−1(a)|
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which completes the argument. ¤

Corollary 2.2 Let G be a regular graph of diameter d. Then G is distance-balanced
if and only if

d−1∑

k=2

|Nk(a) \Nk−1(b)| =
d−1∑

k=2

|Nk(b) \Nk−1(a)|

holds for every edge ab ∈ E(G).

The following result yields many distance-balanced graphs. In particular it im-
plies that the Petersen graph is such.

Corollary 2.3 Let G be a graph of diameter two. Then G is distance-balanced if
and only if G is regular.

The study of distance-balanced graphs was initiated because of the importance of
the sets Wab and aWb in metric graph theory. However, there is also a strong link to
symmetry conditions in graphs. The following proposition suggests this connection.

Proposition 2.4 Let G be a graph. If for any edge ab of G there exists an auto-
morphism ϕ of G such that ϕ(a) = b and ϕ(b) = a, then G is distance-balanced.

Proof. Let ab ∈ E(G) and let ϕ be an automorphism of G for which ϕ(a) = b
and ϕ(b) = a. Let x ∈ Wab and let d(a, x) = k. Then d(b, x) = k + 1. Since
automorphisms preserve distances, k = d(a, x) = d(ϕ(a), ϕ(x)) = d(b, ϕ(x)) and
k + 1 = d(b, x) = d(ϕ(b), ϕ(x)) = d(a, ϕ(x)). It follows that ϕ(x) ∈ Wba. Likewise,
if y ∈ Wba then ϕ(y) ∈ Wab. Hence |Wab| = |Wba|. ¤

Circulant graphs and all vertex-transitive, generalized Petersen graphs have au-
tomorphisms as described in Proposition 2.4 [4, 10]. We know of no graph that is
vertex-transitive and not distance-balanced. However, there are many more gen-
eralized Petersen graphs that are distance-balanced but not vertex-transitive. For
example, P (7, 3) is such a graph. Evidence generated by computer algorithm sug-
gests that there are distance-balanced generalized Petersen graphs P (n, k) for almost
all n. On the other hand, we suspect the following is true.

Conjecture 2.5 For any k ≥ 2 there exists an n0 such that P (n, k) is not distance-
balanced for every n ≥ n0.
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3 Local operations

In this section we consider local operations on graphs and show that they typically
destroy the property of being distance-balanced.

Proposition 3.1 Let G be a distance-balanced graph that has at least two edges and
let e ∈ E(G). Then G− e is not distance-balanced.

Proof. Let e = ab. Let H = G− e and let P be a shortest a, b-path in H. (P exists
because G is distance-balanced and hence 2-connected, cf. [8, Lemma 2.1].) Let x
be the neighbor of a on P and consider the edge ax of H. Let y ∈ WG

xa. Since e
does not lie on any shortest y, x-path in G (for otherwise we would have y ∈ WG

ax),
we have dH(y, x) = dG(y, x). It follows that

dH(y, a) ≥ dG(y, a) > dG(y, x) = dH(y, x) ,

and hence y ∈ WH
xa. Therefore WG

xa ⊆ WH
xa. Consider now the vertex b and note

that b ∈ WG
ax ∪ aW

G
x . Since x lies on a shortest a, b-path, we have b ∈ WH

xa and
hence |WH

xa| ≥ |WG
xa|+ 1. We now have

|WH
xa| ≥ |WG

xa|+ 1 = |WG
ax|+ 1 ≥ |WH

ax|+ 1 ,

where the last inequality holds since a shortest u, x-path in G that traverses the
edge e contains a shortest u, a-path (of shorter length). We conclude that H is not
distance-balanced. ¤

For a graph G and an edge e of G let Ge be the graph obtained from G by
subdividing e. An arbitrary cycle shows that both G and Ge can be distance-
balanced. However, this cannot happen if G is 3-connected as our next result asserts.

Theorem 3.2 Let G be a 3-connected, distance-balanced graph and let e be any edge
of G. Then Ge is not distance-balanced.

Proof. Let e = ab, H = Ge, and let x be the vertex added in the subdivision of e.
Suppose first that |aWG

b | > 1. Let y ∈ V (H), y 6= x. Since N(x) = {a, b}, we can
reach x only from a or b and hence dH(y, x) = min{dG(y, a), dG(y, b)}+1. Consider
now the edge ax of H. For y ∈ WG

ab ∪ aW
G
b we have dH(y, a) = dG(y, a) (since e

does not lie on any shortest y, a-path in G) and dH(y, x) = dG(y, a) + 1. It follows
that y ∈ WH

ax. This in particular implies that WH
xa can (besides x) contain only the

vertices from WG
ba and hence |WH

xa| ≤ |WG
ba|+1 = |WG

ab|+1 < |WG
ab∪ aW

G
b | ≤ |WH

ax|.
We conclude that H is not distance-balanced if |aWG

b | > 1.
Assume next that |aWG

b | = 1. Let aW
G
b = {y}. Since {a, y} does not separate

WG
ab and WG

ba in G, there exists an edge uv 6= ab in G with u ∈ WG
ab and v ∈ WG

ba.
By the definition of WG

ab, u 6= a and similarly v 6= b. Then dG(a, u) = dG(b, v) by [8,
Lemma 2.2] and it follows that v ∈ aW

H
x . Since y ∈ WH

ax and WG
ab ⊆ WH

ax, this
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implies that |WH
xa| ≤ |WG

ba| < |WH
ax|, and hence H is not distance-balanced in this

case.
Finally, assume that aW

G
b = ∅. Since G is 2-connected, there is uv ∈ E(G) such

that uv 6= ab, u ∈ WG
ab and v ∈ WG

ba. As above we note that u 6= a and v 6= b. For
each such edge uv we obtain as above that v ∈ aW

H
x . The fact that G is 3-connected

implies that there must be at least one additional vertex like v. Since WG
ab ⊆ WH

ax,
it follows that H is not distance-balanced. ¤

We observe in the above that G need not be 3-connected if it has an edge ab with
|aWb| > 1. The connectivity assumption is also not needed in case G is bipartite.

Proposition 3.3 Let G be a bipartite, distance-balanced graph that has at least two
edges and let e ∈ E(G). Then Ge is distance-balanced if and only if G is a cycle.

Proof. Let e = ab. Let H and x be as in the proof of Theorem 3.2. Consider the edge
ax of H. Then WG

ab ⊆ WH
ax. Let uv be an edge where u ∈ WG

ab and v ∈ WG
ba. Then

dG(a, u) = dG(b, v) by [8, Lemma 2.2] and hence dH(a, v) = dH(x, v) = dG(a, u)+1.
Since |H| = 2|WG

ab|+1 and v ∈ aW
H
x it follows that |WH

ax| = |WH
xa| = |WG

ab|. This in
particular implies that the set of edges between WG

ab and WG
ba contains exactly two

edges. By [8, Lemma 2.3.(ii)] this is only possible if G is a cycle. ¤

4 Distance-balanced product graphs

In this section we study the conditions under which the standard graph products
produce a distance-balanced graph. All of the graph products constructed from two
graphs G and H have vertex set V (G)× V (H). Let (a, u) and (b, v) be two vertices
in V (G)×V (H). They are adjacent in the Cartesian product G ¤H if they are equal
in one coordinate and adjacent in the other and are adjacent in the direct product
G×H if they are adjacent in both coordinates. The edge set of the strong product
G £ H is E(G¤H) ∪ E(G × H). These vertices are adjacent in the lexicographic
product G ◦H if ab ∈ E(G) or if a = b and uv ∈ E(H). See [9] for a more complete
treatment of graph products.

Proposition 4.1 Let G and H be connected graphs. Then G¤H is distance-
balanced if and only if both G and H are distance-balanced.

Proof. Set X = G¤H. Assume X is distance-balanced and let e be an edge of
X. We may assume without loss of generality that e ∈ Gu, so that e = (a, u)(b, u)
for ab ∈ E(G). Then the sets Wab × V (H), Wba × V (H), and aWb × V (H) form a
partition of V (X). For (x, y) ∈ Wab × V (H) we have

dX((x, y), (a, u)) = dG(x, a) + dH(y, u) < dG(x, b) + dH(y, u) = dX((x, y), (b, u)) .
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Hence (x, y) ∈ W(a,u)(b,u). For (x, y) ∈ Wba × V (H) (resp. (x, y) ∈ aWb × V (H))
we similarly get (x, y) ∈ W(b,u)(a,u) (resp. (x, y) ∈ (a,u)W(b,u)). It follows that
W(a,u)(b,u) = Wab × V (H) and W(b,u)(a,u) = Wba × V (H). Since G¤H is distance-
balanced, we have |W(a,u)(b,u)| = |W(b,u)(a,u)| and hence |Wab| = |Wba|. We conclude
that G is distance-balanced.

Conversely, let G be distance-balanced and ab ∈ E(G). Then |Wab × V (H)| =
|Wba × V (H)| and hence |W(a,u)(b,u)| = |W(b,u)(a,u)|. The same argument applies for
edges from the fibers aH, and so G¤H is distance-balanced. ¤

Theorem 4.2 Let G and H be connected graphs. Then G ◦H is distance-balanced
if and only if G is distance-balanced and H is regular.

Proof. Assume that G is distance-balanced and H is regular. Let e ∈ E(G ◦ H).
Consider first the case where e = (a, x)(a, y). Then xy ∈ E(H). Let (u, v) be a
vertex not incident with e. Note that for u 6= a, dG◦H((a, x), (u, v)) = dG(a, u) =
dG◦H((a, y), (u, v)). That is, every vertex of uH belongs to (a,x)W(a,y). On the
other hand, for u = a the distance in G ◦H between (a, x) and (a, v) is two unless
xv ∈ E(H) in which case this distance is one. Similarly, dG◦H((a, y), (a, v)) = 1 if
yv ∈ E(H), and dG◦H((a, y), (a, v)) = 2 if yv 6∈ E(H). It follows that in this case
W(a,x)(a,y) = {(a, v) | xv ∈ E(H) and yv 6∈ E(H)}, and W(a,y)(a,x) = {(a, v) | yv ∈
E(H) and xv 6∈ E(H)}. Since H is regular we see that |W(a,x)(a,y)| = |W(a,y)(a,x)|.
Now assume that e = (a, x)(b, y) where a 6= b. Then ab ∈ E(G). It follows from
the edge structure of G ◦H that (u, v) ∈ W(a,x)(b,y) if and only if either u 6∈ {a, b}
and dG(a, u) < dG(b, u), or u = b and dH(v, y) ≥ 2. In a similar way we see
that (u, v) ∈ W(b,y)(a,x) if and only if either u 6∈ {a, b} and dG(b, u) < dG(a, u), or
u = a and dH(v, x) ≥ 2. Since G is distance-balanced |Wab| = |Wba| and because
H is regular it follows that |{v | dH(v, y) ≥ 2}| = |{v | dH(v, x) ≥ 2}|. Therefore,
|W(a,x)(b,y)| = |W(b,y)(a,x)| in this case as well, and thus G ◦H is distance-balanced.

Conversely, assume that G◦H is distance-balanced. Let ab be an arbitrary edge
of G. By following the above argument for an edge of the form (a, x)(a, y) we see
that |W(a,x)(a,y)| = |W(a,y)(a,x)| implies that any two adjacent vertices of H have the
same degree. Since H is connected this implies that H is r-regular for some r. For
an edge e = (a, x)(b, y) where a 6= b it follows again from earlier analysis that

|W(a,x)(b,y)| = |{(u, v) | u 6∈ {a, b} , dG(a, u) < dG(b, u)}|
+|{(b, v) | dH(v, y) ≥ 2}|

= (|Wab| − 1) · |V (H)|+ (|V (H)| − (r + 1))

and that

|W(b,y)(a,x)| = |{(u, v) | u 6∈ {a, b} , dG(b, u) < dG(a, u)}|
+|{(a, v) | dH(v, x) ≥ 2}|

= (|Wba| − 1) · |V (H)|+ (|V (H)| − (r + 1)).
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Now, since G◦H is distance-balanced the two above equations imply that |Wab| =
|Wba| and hence G is distance-balanced. ¤

The other two standard graph products, the direct and the strong ones, do not
preserve the property of being distance-balanced. Let H be the graph from Fig. 1
that was obtained by Handa in [8]. H is an example of a distance-balanced partial
cube; its embedding into the 5-cube Q5 is also shown on the figure.

Figure 1: Non-regular bipartite distance-balanced graph H

For the strong product, consider the product H £C4. Let w1, w2, w3, w4 be the
vertices of C4 with natural adjacencies and let u = 00010, v = 00110 be vertices of H.
Consider the edge (u, w2)(v, w3) in H £C4. Then |(Wuv×{w4})∩W(u,w2)(v,w3)| = 9,
while |(Wvu × {w1}) ∩ W(v,w3)(u,w2)| = 8. Since W(u,w2)(v,w3) and W(v,w3)(u,w2) are
balanced elsewhere, we conclude that H £ C4 is not distance-balanced.

For the direct product consider H ×H and let x = 00000 and u = 00010 be ver-
tices of H. A tedious but straightforward computation shows that in the connected
component of H×H containing the edge (x, x)(u, u) we have |W(x,x)(u,u)| = 128 but
|W(u,u)(x,x)| = 160, so H ×H is not distance-balanced.

5 Concluding remarks

Note that in a k-regular, triangle free graph G of diameter two, we have |Wab| = k
for all ab ∈ E(G). However, it is possible for G to be regular of diameter two such
that there are edges uv and ab in G such that |Wuv| and |Wab| are not the same.
For example, “expand” one of the vertices of a K3,3 to a triangle and the resulting
graph F (keep it 3-regular) is distance-balanced, but the range of values of |Wuv|
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considering all edges uv is {2, 3}. One can ask - must this range be an interval of
integers for a distance-balanced graph? How many different values could be in this
range for a distance-balanced graph?

By using Proposition 4.1 the answer to the first question above is no, and the
answer to the second one is that graphs can be constructed having arbitrarily many
different positive integers in the range. For example, the Cartesian product of the
graph F (the one from modifying K3,3) and the 5-cycle has values 10, 15 and 16.
The Cartesian product of this graph and the 7-cycle has values 70, 105, 112, and
120. This can be continued.

Let G be a graph and let b(G) be the smallest number of edges that can be added
to G such that the obtained graph is distance-balanced. Since complete graphs are
distance-balanced, b(G) is a well-defined graph invariant. In general it seems that
the computation of b(G) is quite hard, but it might be interesting to obtain it in
some special cases.
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