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Abstract

The cut method proved to be utmost useful to obtain fast algorithms and
closed formulas for classical distance based invariants of graphs isometrically
embeddable into hypercubes. These graphs are known as partial cubes and in
particular contain numerous chemically important graphs such as trees, ben-
zenoid graphs, and phenylenes. It is proved that the cut method can be used to
compute an arbitrary distance moment of all the graphs that are isometrically
embeddable into Cartesian products of triangles, a class much larger than par-
tial cubes. The method in particular covers the Wiener index, the hyper-Wiener
index, and the Tratch-Stankevich-Zefirov index.
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1 Introduction

Several central graph invariants in mathematical chemistry (and elsewhere) are de-
fined using the distance function of a graph. The most famous is certainly the
Wiener index W (G) of a graph G defined as W (G) =

∑
{u,v}⊆V (G) d(u, v). It was

introduced (for the case of trees) back in 1947 by Wiener in [29], hence the name
of this graph invariant. It is, however, still extensively investigated, cf. [5, 21, 23].
The Wiener index can be naturally and widely generalized by setting

Wλ(G) =
∑

{u,v}⊆V (G)

d(u, v)λ ,
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where λ is some real number [8, 14]. When λ is a positive integer, Wλ(G) is called
the k-th distance moment of G [19]. The distance moment is clearly a fundamental
metric graph concept and was in particular (very recently) applied in an appealing
way in [27]. More precisely, closed formulas using distance moments were obtained
for the n-th order Wiener index [7] and for a recently related invariant from [1].

Of course, W1(G) = W (G), other special cases from the literature include W−2,
W−1,

1
2 W2 +

1
2 W1, and

1
6 W3 +

1
2 W2 +

1
3 W1, invariants known as the Harary in-

dex [24], the reciprocal Wiener index [3], the hyper-Wiener index [20, 23, 26], and
the Tratch-Stankevich-Zefirov index [19, 28], respectively. Therefore, a good method
for computing the distance moments graph yields a good method for computing all
these classical indices and more.

A partial cube is a graph isometrically embeddable into a hypercube [4, 6, 22, 25].
This class of graphs includes trees, median graphs, as well as several chemically
important families of graphs such as hexagonal (benzenoid) systems. Numerous
distance-based invariants can be computed on partial cubes with the so-called cut
method initiated in [16], see the survey [13]. The paper [16] developed the cut
method for the Wiener index, later the method was designed in particular for the
hyper-Wiener index [12] (see also [18]). Recently the cut method was used in [31]
for the edge-Wiener index and the edge-Szeged index (in [17] it has been shown that
the graphs studied in [31] are precisely partial cubes), and very recently the method
was proved to be applicable also for the generalized terminal Wiener index [11]. The
latter index is a generalization of the terminal Wiener index introduced in [9], see
also [2]. A recursive approach for computing Wλ(G) for a partial cube G and any λ
was developed in [15].

Partial cubes can be characterized as the bipartite graphs in which the so-called
Djoković-Winkler’s relation is transitive. A more general class of graphs is obtained
by omitting the requirement for a graph to be bipartite. As proved by Winkler [30],
these graphs are precisely the graphs that admit isometric embeddings into the
Cartesian product of triangles.

In this note we prove that the cut method can be extended to obtain an arbitrary
distance moment of these graphs. Roughly speaking, the method reduces to the
computation of intersections of parts generated by the Djoković-Winkler’s relation.
The method is formulated and proved in the next section, while in the rest of this
section the concepts needed are formally introduced.

The distance dG(u, v) between the vertices u and v of a graph G is the usual
shortest path distance. The notation will be simplified to d(u, v) when the graph
will be clear from the context. A subgraph of a graph is called isometric if the
distance between any two vertices of the subgraph is independent of whether it is
computed in the subgraph or in the entire graph. For a graph G, the Djoković-
Winkler’s relation Θ [4, 30] is defined on E(G) as follows. If e = xy ∈ E(G) and
f = uv ∈ E(G), then eΘf if d(x, u) + d(y, v) ̸= d(x, v) + d(y, u). Relation Θ is
reflexive and symmetric, its transitive closure Θ∗ is hence an equivalence relation,
its parts are called Θ∗-classes or also Θ-classes when Θ = Θ∗.

The Cartesian product G�H of graphs G and H is the graph with vertex set
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V (G) × V (H) where the vertex (g, h) is adjacent to the vertex (g′, h′) whenever
gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). For more information on this
fundamental graph operation see [10]. Winkler [30] proved that if G is a connected
graph G, then Θ = Θ∗ if and only if G admits an isometric embedding into the
Cartesian product whose factors are K3.

Finally, [k] denotes the set {1, 2, . . . , k}.

2 The main result

In order to state the main result of this paper some technical preparation is needed.
Let G be a graph with transitive Θ and let L1, . . . , Lk be the Θ-classes of G. Then
for any 1 ≤ i ≤ k, the graph G− Li consists of two or three connected components

denoted C
(i)
1 , C

(i)
2 and C

(i)
3 . If there are only two such components we assume that

C
(i)
3 is the empty graph. For any p ≥ 1, for any pairwise different i1, i2, . . . , ip ∈ [k]

and for any j1, j2, . . . , jp ∈ [3] let

n
i1,i2,...,ip
j1,j2,...,jp

=
∣∣∣V (C

(i1)
j1

) ∩ V (C
(i2)
j2

) ∩ · · · ∩ V (C
(ip)
jp

)
∣∣∣ .

This notation is illustrated in Fig. 1. The graph in question has 5 Θ-classes and
the components of the corresponding graphs G−Li are indicated. The order of the
intersection of the gray parts is then n1,2,3,5

3,2,3,1.
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Figure 1: Intersection of parts from G− Li

We now set
Ni1,i2,...,ip =

∑
∀r:jr ̸=j′r

n
i1,i2,...,ip
j1,j2,...,jp

· ni1,i2,...,ip
j′1,j

′
2,...,j

′
p
,

where the summation is made over all admissible indices j1, j2, . . . , jp and j′1, j
′
2, . . . , j

′
p,

and where, as indicated, jr ̸= j′r for r = 1, 2, . . . , k.
With this preparation in hand we can formulate the main result of this paper as

follows.
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Theorem 2.1 Let G be a graph with transitive Θ and let s be a positive integer.
Then with the above notation,

Ws(G) =
∑

ti1
,ti2

,...,tip>0

ti1
+ti2

+···+tip=s

(
s

ti1 , ti2 , . . . , tip

)
Ni1,i2,...,ip .

Proof. Let |V (G)| = n and let Y = {P1, . . . , P(n2)
} be a set of shortest paths of G

such that each pair of vertices of G is connected with exactly one path from Y . Let
A = [Aij ] be the

(
n
2

)
× k matrix with entries Aij = 1 if Pi ∩ Lj ̸= ∅ and Aij = 0

otherwise. Since Θ is transitive, and no two edges on a shortest path are in relation
Θ, we infer that

∑k
j=1Aij is the length of the path Pi. Using the multinomial

theorem we get:

Ws(G) =

(n2)∑
i=1

|E(Pi)|s =
(n2)∑
i=1

(Ai1 +Ai2 + · · ·+Aik)
s

=

(n2)∑
i=1

 ∑
t1,t2,...,tk≥0

t1+t2+···+tk=s

(
s

t1, t2, . . . , tk

)
At1

i1A
t2
i2 · · ·A

tk
ik


=

∑
1≤r1≤k
tr1=s

(
s

tr1

) (n2)∑
i=1

Air1 +
∑

1≤r1 ̸=r2≤k
tr1 ,tr2>0

tr1+tr2=s

(
s

tr1 , tr2

) (n2)∑
i=1

Air1Air2

+ · · ·+
∑

t1,t2,...,tk>0
t1+t2+···+tk=s

(
s

t1, t2, . . . , tk

) (n2)∑
i=1

Ai1Ai2 · · ·Aik .

The term Air1Air2 · · ·Airt is nonzero if and only if Airj = 1, for 1 ≤ j ≤ t.
In other words, Air1Air2 · · ·Airt is nonzero if and only if Pi contains edges from

each of the Θ-classes Lr1 , . . . , Lrt . It follows that
∑(n2)

i=1Air1Air2 · · ·Airt is equal to
the number of shortest paths from Y that contain edges from each of the classes
Lr1 , . . . , Lrt . On the other hand, if P is one of the shortest path between vertices

a and b which contains an edge from Lr, then a ∈ C
(r)
j and b ∈ C

(r)
j′ for some

j ̸= j′. We conclude that the number of shortest paths of Y that contain the edges
of Lr1 , . . . , Lrt is Nr1,...,rt . Hence we can continue the above computation as follows:
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Ws(G) =
∑

1≤r1≤k
tr1=s

(
s

tr1

) ∑
j1 ̸=j′1

nr1
j1
· nr1

j′1
+

∑
1≤r1 ̸=r2≤k
tr1 ,tr2>0

tr1+tr2=s

(
s

tr1 , tr2

) ∑
j1 ̸=j′1
j2 ̸=j′2

nr1,r2
j1,j2

· nr1,r2
j′1,j

′
2

+ · · ·+
∑

t1,t2,...,tk>0
t1+t2+···+tk=s

(
s

t1, t2, . . . , tk

) ∑
1≤i≤k

ji ̸=j′
i

ni1,i2,...,ik
j1,j2,...,jk

· ni1,i2,...,ik
j′1,j

′
2,...,j

′
k

=
∑

ti1
,ti2

,...,tip>0

ti1
+ti2

+···+tip=s

(
s

ti1 , ti2 , . . . , tip

)
Ni1,i2,··· ,ip ,

and the proof is complete. �
We conclude the note with an example illustrating Theorem 2.1. Let G be the

graph from Fig. 2. Then it is straightforward to verify that Θ = Θ∗ partitions
E(G) into classes L1, L2, L3, L4, where the edges of the triangle lie in L4, while the
remaining three classes contain four edges each. Fig. 2 shows G − L1 and G − L4,
the graphs G− L2 and G− L3 are not presented as they are symmetric to G− L1.

G - LG G - L
1 4

Figure 2: Graphs G, G− L1 and G− L4

Then W1(G) = W (G) = 3 · (4 · 8) + (4 · 4 + 4 · 4 + 4 · 4) = 144. Moreover,
W2(G) = W1(G) + 2 [3 (1 · 5 + 3 · 3) + 3 (2 · 2 + 2 · 4 + 2 · 2 + 2 · 4 + 0 · 2 + 0 · 2)] =
144 + 228 = 372. The factor 2 comes from the multinomial coefficient, the first
factor 3 is due to symmetry between L1, L2, L3, the second factor 3 comes when
intersections with one part in Li, 1 ≤ i ≤ i, the other part in L4 are considered.
Then the hyper-Wiener index of G is equal to W1(G)/2+W2(G)/2 = 258. Similarly,

W3 = W1+
((

3
2,1

)
+

(
3
1,2

))
[3·24+3·14]+

(
3

1,1,1

)
[3 (1·0+1·2+2·2+1·0+2·0+2·1+2·0+

0·1+0·0+0·1+2·1+2·1)+(2·1+1·2+0·3+2·1)] = 144+6·114+6·42 = 1080. Hence
the Tratch-Stankevich-Zefirov index of G is equal to 1

6 W3 +
1
2 W2 +

1
3 W1 = 414.
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[10] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second
Edition, CRC Press, Boca Raton, FL, 2011.
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[12] S. Klavžar, Applications of isometric embeddings to chemical graphs, DIMACS
Ser. Discrete Math. Theo. Comput. Sci. 51 (2000) 249–259.

6
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