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Abstract

If d(x, y) denotes the distance between vertices x and y in a graph G, then an L(2, 1)-labeling
of a graph G is a function f from vertices of G to nonnegative integers such that |f(x)−f(y)| ≥ 2
if d(x, y) = 1, and |f(x)−f(y)| ≥ 1 if d(x, y) = 2. Griggs and Yeh conjectured that for any graph
with maximum degree ∆ ≥ 2, there is an L(2, 1)-labeling with all labels not greater than ∆2.
We prove that the conjecture holds for dot-Cartesian products and dot-lexicographic products
of two graphs with possible minor exceptions in some special cases. The bounds obtained are
in general much better than the ∆2-bound.
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1 Introduction

In the frequency assignment problem, radio transmitters are assigned frequencies with some separa-

tion in order to reduce interference. This problem can be formulated as a graph coloring problem [1].

Roberts [2] proposed a new version of the frequency assignment problem with two restrictions: ra-

dio transmitters that are “close” must be assigned different frequencies; those that are “very close”

must be assigned frequencies at least two apart. To formulate the problem in graph theoretic terms,

radio transmitters are represented by vertices of a graph; adjacent vertices are considered “very

close” and vertices at distance two are considered “close”. Let d(x, y) be the distance between

vertices x and y in a graph G. An L(2, 1)-labeling of a graph G is a function f from all vertices

of G to non-negative integers such that |f(x) − f(y)| ≥ 2 if d(x, y) = 1 and |f(x) − f(y)| ≥ 1 if

d(x, y) = 2. For an L(2, 1)-labeling, if the maximum label is no greater than k, then it is called
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a k-L(2, 1)-labeling. The L(2, 1)-labeling number of G, denoted by λ(G), is the smallest number

k such that G has a k-L(2, 1)-labeling. The theory of L(2, 1)-labeling is now already very exten-

sive, see the 2006 survey of Yeh [3] and the 2011 updated survey and annotated bibliography by

Calamoneri [4] containing 184 references. From recent results we point to two appealing algorith-

mic achievements: A linear time algorithm for L(2, 1)-labeling of trees [5] and a polynomial space

algorithm to determine the L(2, 1)-span in the general case [6].

Griggs and Yeh [7] proved that it is NP-complete to decide whether a given graph G allows an

L(2, 1)-labeling of span at most n. Thus, it is important to obtain good lower and upper bounds

for λ. For a diameter two graph G, it is known that λ(G) ≤ ∆2, where ∆ = ∆(G) is the maximum

degree of G, and the upper bound can be attained by Moore graphs, that is, diameter 2 graphs of

order ∆2 + 1 [7]. Based on the previous research, Griggs and Yeh [7] conjectured that λ(G) ≤ ∆2

holds for any graph G with ∆ ≥ 2. The conjecture is known as the ∆2-conjecture and considered

as the most important open problem in the area. The best general bound ∆2 + ∆− 2 so far is due

to Gonçalves [8]. Havet, Reed and Sereni [9] proved that the ∆2-conjecture holds for sufficiently

large ∆.

A lot of research regarding L(2, 1)-labelings (and, more generally of L(j, k)-labelings) was done

on standard graph products, cf. recent investigations on the Cartesian product [10, 11, 12, 13, 14],

the direct product [15, 16], the lexicographic product [17], and the strong product [18]; cf. also

references therein. A special emphasize was put on the ∆2-conjecture. In [19] the conjecture was

verified for lexicographic products as well as for Cartesian products with factors of minimum degree

at least 2. In [20] the ∆2-conjecture was confirmed for the strong and the direct product of graphs.

The obtained upper bounds on these two products were later improved in [21]. Shiu et al. [22] used

an analysis of the adjacency matrices of the graphs to obtain improvements of the previous bounds

on all the above four (standard) graph products. Finally, in [23] the ∆2-conjecture was verified

for modular products of two graphs with minor exceptions. Now, modular product is obtained

from the strong product by superimposing edges that come from non-edges in both facts. This

construction is not really interesting for the direct product. Hence, as there are four standard

graph products, there are two natural additional products (w.r.t. the superimposition of the edges

that come from non-edges) to consider—the products obtained from the Cartesian product and the

lexicographic product, named the dot-Cartesian and the dot-lexicographic (see the next section for

formal definitions). In this paper we prove that the ∆2-conjecture is true also for these products

with possible minor exceptions. The bounds obtained are typically much better than the ∆2-bound.
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2 Preliminaries

In this section we first introduce the graph products of our main interest, the dot-Cartesian product

and the dot-lexicographic product, and then recall a labeling algorithm of Chang and Kuo that

will be a key tool in our proofs. To avoid ambiguities with the definitions of graph products we

emphasize that all graphs considered in this paper are without loop.

As we have seen in the introduction (see also [24]), there are many different graph products. In

order to simplify their description (and to classify which products are associative and commutative),

Imrich and Izbicki [25] (cf. also [24]) introduced the following useful convention. For a graph G,

let δ : V (G)× V (G)→ {∆, 1, 0}, where ∆ is a previously undefined symbol, be a function defined

as follows:

δ(g, g′) =


∆ if g = g′,
1 if g 6= g′ and gg′ ∈ E(G),
0 if g 6= g′ and gg′ 6∈ E(G).

So δ encodes the incidence relation of G. An operation ∗ is a graph product, if V (G ∗ H) =

V (G)×V (H) and δ((g, h), (g′, h′)) is a function of δ(g, g′) and δ(h, h′). Such a function is a binary

operation on the set {∆, 1, 0}, and it can be written as δ((g, h), (g′, h′)) = δ(g, g′) ∗ δ(h, h′). For

example, the multiplication tables for the Cartesian product and the lexicographic product are

shown in Tables 1 and 2, respectively.

� ∆ 1 0

∆ ∆ 1 0
1 1 0 0
0 0 0 0

Table 1: Cartesian product

◦ ∆ 1 0

∆ ∆ 1 0
1 1 1 1
0 0 0 0

Table 2: lexicographic product

In this way graphs products are defined in a compact way. Indeed, the Cartesian product is

usually introduced as follows: The Cartesian product G�H of graphs G and H is the graph with

vertex set V (G) × V (H), in which the vertex (g, h) is adjacent to the vertex (g′, h′) if and only if

either g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to g′ in G. The standard

(rather clumsy) definition of the lexicographic product G ◦ H should now be clear from Table 2.

We add here that some authors use the notation G[H] for the lexicographic product. However, we

prefer the notation G ◦H because this graph operation is associative. Note also that some authors

use the term composition for the lexicographic product.

We now introduce the dot-Cartesian product � and the dot-lexicographic product � with the

following two tables:
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� ∆ 1 0

∆ ∆ 1 0
1 1 0 0
0 0 0 1

Table 3: dot-Cartesian product

� ∆ 1 0

∆ ∆ 1 0
1 1 1 1
0 0 0 1

Table 4: dot-lexicographic product

Hence the dot-Cartesian product G�H is obtained from the Cartesian product G�H by adding

the edges (g, h)(g′h′), where gg′ /∈ E(G) and hh′ /∈ E(H). Analogously, the dot-lexicographic

product G � H is obtained from the lexicographic product G ◦ H. (As already mentioned in the

introduction, the modular product is obtained in the same manner from the strong product.) As

for the notation, note that the strong product G�H is obtained from the Cartesian product G�H

by adding the edges of the direct product G ×H. So in our case, the central dot means “not an

edge in both factors”, just like the central cross stands for “an edge in both factors”.

Note that K1 is a unit for both new products, that is, G �K1 = K1 � G = G and G �K1 =

K1�G = G, where by abuse of notation, the equality sigh stands for graph isomorphism. Therefore,

we may assume in the rest that all factors have at least two vertices.

We next recall the announced labeling algorithm of Chang and Kuo. For a subset X of V (G),

if the distance between any two vertices in X is greater than i, then X is called an i-stable set (or

i-independent set). A 1-stable (independent) set is a usual independent set. A maximal 2-stable

subset X of a set Y is a 2-stable subset of Y such that X is not a proper subset of any 2-stable

subset of Y .

Chang and Kuo [26] introduced the following algorithm to obtain an L(2,1)-labeling and the

maximum value of that labeling on any given graph. For its statement recall that a vertex subset

X of a graph is 2-stable (also called a packing) if the distance between any two vertices in X is

greater than 2.

Algorithm Label(G)

Input: A graph G = (V,E).

Output: Value k which is the maximum label.

Idea: In each step, find a maximal 2-stable set from all unlabeled vertices which are distance

at least two away from the vertices labeled in the previous step. Then label all vertices in this

2-stable set with the same index i. The index i starts from 0 and then increases by 1 in each step.

The maximum label k is the final value of i.
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Initialization: Set X−1 = ∅; V = V (G); i = 0.

Iteration:

1. Determine Yi and Xi.

• Yi = {x ∈ V : x is unlabeled and d(x, y) ≥ 2 for all y ∈ Xi−1}.

• Xi a maximal 2-stable subset of Yi.

• If Yi = ∅ then set Xi = ∅.

2. Label all vertices in Xi (if there are any) by i.

3. V ← V \Xi.

4. If V 6= ∅ then i← i+ 1, and go to Step 1.

5. Record the current i as k (which is the maximum label). Stop.

It is clear that the labeling constructed by the above procedure is an L(2, 1)-labeling of G (cf.

the proof of [26, Theorem 4.1]). It is usually used (as it will be later on in this paper) to obtain

(theoretical) upper bounds but it is worth mentioning that the procedure can be implemented in

polynomial time. As a preprocessing, distances between vertices of G are computed which can be

done in O(|V (G)| · |E(G)|) time. In the main loop, computing Yi is a simple task by observing

that x ∈ Yi if and only if x /∈ N [Xi−1], that is, Yi = V \N [Xi−1]. (Here N [X] denotes the closed

neighborhood of X.) Finally, Xi is computed using the greedy approach: start with an empty set,

and during the process add to Xi the next vertex from Yi if it is at distance at least 3 to all already

selected vertices. Since distances were precomputed, Xi can be obtained in time O(|Yi)|2) time.

As already mentioned, the value k obtained by the above labeling procedure is an upper bound

on λ(G). To get a bound in terms of the maximum degree ∆(G) of G we proceed as follows. Let

x be a vertex with the largest label k obtained by Algorithm Label. Denote

I1 = {i : 0 ≤ i ≤ k − 1 and d(x, y) = 1 for some y ∈ Xi}

I2 = {i : 0 ≤ i ≤ k − 1 and d(x, y) ≤ 2 for some y ∈ Xi}

I3 = {i : 0 ≤ i ≤ k − 1 and d(x, y) ≥ 3 for all y ∈ Xi}

It is clear that |I2|+ |I3| = k. For any i ∈ I3, x /∈ Yi; otherwise Xi ∪ {x} is a 2-stable subset of

Yi, which contradicts the choice of Xi. That is, d(x, y) = 1 for some vertex y in Xi−1; i.e., i−1 ∈ I1.

So, |I3| ≤ |I1|. Hence k ≤ |I2|+ |I3| ≤ |I2|+ |I1|.
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In order to find k, it suffices to estimate B = |I1|+ |I2| in terms of ∆(G). We will investigate the

value B for the two classes of graphs introduced in the previous section. The notation introduced

in this section will also be used in the remainder of the paper.

3 L(2, 1)-labelings of dot-Cartesian products

Throughout this section let G1 and G2 be graphs of order n1 ≥ 2 and n2 ≥ 2 and size m1 and m2,

respectively. We will also simplify the notation u ∈ V (G) to u ∈ G.

Lemma 3.1 |E(G1 �G2)| = (n1 − 1)(n2 − 1)n1n2/2− (n2 − 2)n2m1 − (n1 − 2)n1m2 + 2m1m2.

Proof. It is well-known (and easy to see) that |E(G1�G2)| = n1m2 + n2m1 (cf. [24, Exercise

4.2]). The number of the non-Cartesian edges of G1 � G2 is 2(
(
n1

2

)
− m1)(

(
n2

2

)
− m2) = (n1 −

1)(n2−1)n1n2/2− (n2−1)n2m1− (n1−1)n1m2 + 2m1m2. The total number is then [(n1−1)(n2−

1)n1n2/2 − (n2 − 1)n2m1 − (n1 − 1)n1m2 + 2m1m2] + [n1m2 + n2m1] = (n1 − 1)(n2 − 1)n1n2 −

2(n2 − 2)n2m1 − 2(n1 − 2)n1m2 + 4m1m2. �

In the proof of Theorem 3.3 we will make use of the following lower bound on the number of

edges in G1 �G2 in terms of the orders of the factors.

Corollary 3.2 |E(G1 �G2)| ≥ min{n1 − 1, n2 − 1}n1n2/2.

Proof. By Lemma 3.1, there are m = (n1−1)(n2−1)n1n2/2−(n2−2)n2m1−(n1−2)n1m2+2m1m2

edges in G1�G2. Note that m = (n1−1)(n2−1)n1n2/2+2(m1−(n1−2)n1/2)(m2−(n2−2)n2/2)−

(n1−2)n1(n2−2)n2/2 = (n1 +n2−3)n1n2/2 + 2(m1− (n1−2)n1/2)(m2− (n2−2)n2/2). Let q1 =

m1−(n1−2)n1/2 and q2 = m2−(n2−2)n2/2, som = (n1+n2−3)n1n2/2+2q1q2. Let us obtain upper

and lower bounds for q1 and q2. Note that 0 ≤ m1 ≤ (n1−1)n1/2 and 0 ≤ m2 ≤ (n2−1)n2/2, thus,

−(n1−2)n1/2 ≤ q1 = m1−(n1−2)n1/2 ≤ (n1−1)n1/2−(n1−2)n1/2) = n1/2 and −(n2−2)n2/2 ≤

q2 = m2−(n2−2)n2/4 ≤ (n2−1)n2/2−(n2−2)n2/2) = n2/2. Having these lower and upper bounds

for q1 and q2, we can obtain a lower bound for m = (n1 +n2− 3)n1n2/2 + 2q1q2. Since we assumed

n1 ≥ 2, the lower bound −(n1−2)n1/2 for q1 is non-positive and the upper bound n1/2 is positive;

the same about the lower bound −(n2−2)n2/2 and the upper bound n2/2 for q2. Therefore, q1q2 ≥

min{−((n1− 2)n1/2) · (n2/2), − ((n2− 2)n2/2) · (n1/2)} = −(max{n1, n2}− 2)n1n2/4. If n1 ≥ n2,

then m = (n1 + n2− 3)n1n2/2 + 2q1q2 ≥ (n1 + n2− 3)n1n2/2− 2(n1− 2)n1n2/4 = (n2− 1)n1n2/2.

If n1 ≤ n2, then m = (n1 + n2 − 3)n1n2/2 + 2q1q2 ≥ (n1 + n2 − 3)n1n2/2 − 2(n2 − 2)n1n2/4 =

(n1 − 1)n1n2/2. The statement of the corollary follows immediately. �
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Theorem 3.3 Let ∆ = ∆(G1 �G2), ∆1 = ∆(G1), and ∆2 = ∆(G2). Then

λ(G1 �G2) ≤ max
u∈G1,v∈G2

{deg(u, v)(∆ + 1)− deg(u)deg(v)−

min{n1 − deg(u)− 2, n2 − deg(v)− 2}(n1 − deg(u)− 1)(n2 − deg(v)− 1)} .

Proof. Let x = (u, v) be a vertex of G1 � G2. By the definition of the dot-Cartesian product,

degG1�G2
(x) = degG1

(u) + degG2
(v) + (n1 − degG1

(u) − 1)(n2 − degG2
(v) − 1). To simplify the

notations, let d = degG1�G2
(x), d1 = degG1

(u) and d2 = degG2
(v). Hence d = d1 + d2 + (n1 − d1 −

1)(n2 − d2 − 1) and ∆ = ∆(G1 �G2) = maxu∈G1,v∈G2{d1 + d2 + (n1 − d1 − 1)(n2 − d2 − 1)}.

A neighbor (u′, v′) of (u, v) is called a G1-neighbor if v = v′ in G2 and u is adjacent to u′ in

G1. It is called an G2-neighbor if u = u′ in G1 and v is adjacent to v′ in G2. For each G1-neighbor

of x, if d2 > 0, there is an G2-neighbor of x such that they have a common neighbor other than x

in G1 �G2. By the definition of G1 �G2, we have d1d2 such “common neighbors”.

The number of vertices at distance 1 from x is d. The number of vertices at distance 2 from

x is clearly not greater than d(∆ − 1); let it be d(∆ − 1) − r for some r ≥ 0. If two neighbors of

x have one common neighbor other than x then this will contribute 1 to r. Hence the number of

vertices that are at distance 2 from x cannot be greater than d(∆− 1)− d1d2.

Now, we will use arguments based on the definition of dot-Cartesian product to further reduce

this upper bound. Let ε denote the number of edges of the subgraph F induced by the neighbors

of x. The present upper bound on the number of vertices at distance two from x is d(∆−1)−d1d2;

for each edge in F , this upper bound is decreased by 2. Hence, the number of vertices at distance

2 from x is not greater than d(∆− 1)− d1d2 − 2ε. Now we need a good lower bound for ε.

Consider the subgraph Q of F induced by vertices (ut, vt), where ut is not adjacent to u in G1

and vt is not adjacent to v in G2. If n1− d1− 1 > 0 and n2− d2− 1 > 0, then Q is a dot-Cartesian

product of two subgraphs of G1 and G2, respectively, one with n1 − d1 − 1 vertices and the other

with n2 − d2 − 1 vertices. By Corollary 3.2, there are at least min{n1 − d1 − 2, n2 − d2 − 2}(n1 −

d1 − 1)(n2 − d2 − 1)/2 edges in Q. If n1 − d1 − 1 = 0 or n2 − d2 − 1 = 0, then Q does not

exist and thus has 0 edges. Combining the above two subcases, we have that there are at least

min{n1 − d1 − 2, n2 − d2 − 2}(n1 − d1 − 1)(n2 − d2 − 1)/2 edges in Q. (Note that n1 − d1 − 1 ≥ 0,

n2− d2− 1 ≥ 0, n1− d1− 2 can be negative only if n1− d1− 1 = 0, and n2− d2− 2 can be negative

only if n2 − d2 − 1 = 0, so min{n1 − d1 − 2, n2 − d2 − 2}(n1 − d1 − 1)(n2 − d2 − 1)/2 ≥ 0.) Hence,

ε ≥ min{n1−d1−2, n2−d2−2}(n1−d1−1)(n2−d2−1)/2, and the number of vertices at distance

2 from x is not greater than d(∆−1)−d1d2−min{n1−d1−2, n2−d2−2}(n1−d1−1)(n2−d2−1).
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The number of vertices at distance 1 from x is d. By Algorithm Label and by the above,

λ(G1 �G2) = k = |I2|+ |I3| ≤ |I2|+ |I1|

≤ d+ d∆− d1d2 −min{n1 − d1 − 2, n2 − d2 − 2}(n1 − d1 − 1)(n2 − d2 − 1)

≤ max
u∈G1,v∈G2

{d(∆ + 1)− d1d2 −

min{n1 − d1 − 2, n2 − d2 − 2}(n1 − d1 − 1)(n2 − d2 − 1)} .

and we are done. �

Corollary 3.4 Let G1 and G2 be graphs without isolated vertices on n1 ≥ 5 and n2 ≥ 5 vertices,

respectively. Let ∆ = ∆(G1�G2). If ∆(G1) ≤ n1− 4 and ∆(G2) ≤ n2− 4, then λ(G1�G2) ≤ ∆2.

Proof. Since d = d1 + d2 + (n1 − d1 − 1)(n2 − d2 − 1), ∆ = maxu∈G1,v∈G2{d1 + d2 + (n1 − d1 −

1)(n2−d2−1)}, by Theorem 3.3, we have λ(G1�G2) ≤ maxu∈G1,v∈G2{(d1 +d2 +(n1−d1−1)(n2−

d2 − 1))(maxu∈G1,v∈G2{d1 + d2 + (n1 − d1 − 1)(n2 − d2 − 1)}+ 1)− d1d2 −min{n1 − d1 − 2, n2 −

d2 − 2}(n1 − d1 − 1)(n2 − d2 − 1)}.

Define the function f(s, t) = (s+ t+ (n1− s−1)(n2− t−1))(maxu∈G1,v∈G2{d1 +d2 + (n1−d1−

1)(n2− d2− 1)}+ 1)− st−min{n1− s− 2, n2− t− 2}(n1− s− 1)(n2− t− 1)}. We consider f(s, t)

as defined on the set of pairs (s, t) such that s = d1, t = d2 for some u ∈ G1 and v ∈ G2. Note that

(s, t) ∈ [0,∆G1 ] × [0,∆G2 ], and s and t are integer. Suppose that f(s, t) achieves its maximum at

some point (p1, p2). Setting X = ∆2 − f(p1, p2) we have:

X = ∆2 − ((p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1))(∆ + 1)− p1p2 −

min{n1 − p1 − 2, n2 − p2 − 2}(n1 − p1 − 1)(n2 − p2 − 1))

= ∆2 − ((p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1))∆ + (p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1))−

p1p2 −min{n1 − p1 − 2, n2 − p2 − 2}(n1 − p1 − 1)(n2 − p2 − 1))

= (∆2 − (p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1))∆)− (p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1)) +

p1p2 + min{n1 − p1 − 2, n2 − p2 − 2}(n1 − p1 − 1)(n2 − p2 − 1))

≥ (∆2 −∆∆)− (p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1)) + p1p2 +

min{n1 − p1 − 2, n2 − p2 − 2}(n1 − p1 − 1)(n2 − p2 − 1))

= −(p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1)) + p1p2 +

min{n1 − p1 − 2, n2 − p2 − 2}(n1 − p1 − 1)(n2 − p2 − 1))

= p1p2 − p1 − p2 + (min{n1 − p1 − 2, n2 − p2 − 2} − 1)(n1 − p1 − 1)(n2 − p2 − 1) .
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To show that λ(G1�G2) is bounded by ∆2, it is sufficient to show that p1p2− p1− p2 + (min{n1−

p1 − 2, n2 − p2 − 2} − 1)(n1 − p1 − 1)(n2 − p2 − 1) ≥ 0, since then ∆2 − f(p1, p2) ≥ 0 and thus

λ(G1 �G2) ≤ f(p1, p2) ≤ ∆2.

Since ∆(G1) ≤ n1 − 4 and ∆(G2) ≤ n2 − 4, we infer that (n1 − p1 − 1) ≥ (n1 −∆(G1)− 1) ≥ 3

and (n2−p2−1) ≥ (n2−∆(G2)−1) ≥ 3. Since in addition G1 and G2 are without isolated vertices,

p1 ≥ 1 and p2 ≥ 1. Then p1p2−p1−p2+(min{n1−p1−2, n2−p2−2}−1)(n1−p1−1)(n2−p2−1) ≥

p1p2− p1− p2 + (n1− p1− 1)(n2− p2− 1) > 0. It follows that λ(G1 �G2) ≤ ∆2 if ∆(G1) ≤ n1− 4

and ∆(G2) ≤ n2 − 4 and we are done. �

We conclude this section by noting that it is possible to prove additional cases for which the

∆2-bound is fulfilled. Here we show two such cases.

Suppose that in the proof of Corollary 3.4 the extreme vertex (u, v) is such that p1 = 0 and

p2 = 0, in which case G1 and G2 both have isolated vertices. Then p1p2 − p1 − p2 + (min{n1 −

p1 − 2, n2 − p2 − 2} − 1)(n1 − p1 − 1)(n2 − p2 − 1) ≥ (n1 − p1 − 1)(n2 − p2 − 1) ≥ 9 and hence the

∆2-bound holds also in this case.

For another case suppose that p1 = 0 and p2 ≥ 1. Then p1p2−p1−p2+(min{n1−p1−2, n2−p2−

2}−1)(n1−p1−1)(n2−p2−1) ≥ p1p2−p1−p2+(n1−p1−1)(n2−p2−1) = (n1−1)(n2−p2−1)−p2 ≥ 0

if (n1−1)(n2−p2−1) ≥ p2. That is, in this case the bound holds as soon as (n1−1)(n2−p2−1) ≥ p2.

However, we were not able to cover all the cases and thus these minor exceptions are left as

open problems.

4 L(2, 1)-labelings of dot-lexicographic products

Throughout this section let again G1 and G2 be graphs of order n1 ≥ 2 and n2 ≥ 2 and size m1

and m2, respectively. To reduce the number of minor special cases that have to be considered, we

also assume that G1 and G2 do not have isolated vertices.

Lemma 4.1 |E(G1 �G2)| = (n1 − 1)(n2 − 1)n1n2/2 + n2m1 − (n1 − 2)n1m2 + 2m1m2.

Proof. Recall that |E(G[H])| = n1m2 + n22m1, cf. [24, Exercise 4.2]. Hence, similarly as in the

proof of Lemma 3.1, |E(G1 � G2)| = [(n1 − 1)(n2 − 1)n1n2/2 − (n2 − 1)n2m1 − (n1 − 1)n1m2 +

2m1m2] + [n1m2 + n22m1] = (n1 − 1)(n2 − 1)n1n2/2 + n2m1 − (n1 − 2)n1m2 + 2m1m2. �

For the proof of the main result of this section, Theorem 4.3, we need the following lower bound.

Corollary 4.2 |E(G1 �G2)| ≥ (n2 − 1)n1n2/2.
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Proof. By Lemma 4.1, there are m = (n1−1)(n2−1)n1n2/2+n2m1−(n1−2)n1m2+2m1m2 edges in

G1�G2. This can be written as m = ((n1−1)n2−1)n1n2/2+2(m1−(n1−2)n1/2)(m2+n2/2). Let

q1 = m1−(n1−2)n1/2 and q2 = m2+n2/2, then m = ((n1−1)n2−1)n1n2/2+2q1q2. Let us obtain

upper and lower bounds for q1 and q2. Note that 0 ≤ m1 ≤ (n1−1)n1/2 and 0 ≤ m2 ≤ (n2−1)n2/2,

thus, −(n1 − 2)n1/2 ≤ q1 = m1 − (n1 − 2)n1/2 ≤ (n1 − 1)n1/2 − (n1 − 2)n1/2 = n1/2 and

n2/2 ≤ q2 = m2 + n2/2 ≤ (n2 − 1)n2/2 + n2/2 = n22/2. Since we assumed n1 ≥ 2 and n2 ≥ 2, the

lower bound −(n1 − 2)n1/2 for q1 is non-positive and the bounds n1/2, n2/2, ν22/2 are positive;

therefore, q1q2 ≥ (−(n1 − 2)n1/2)(n22/2) and m ≥ ((n1 − 1)n2 − 1)n1n2/2 − (n1 − 2)n1n
2
2/2 =

((n1 − 1)n2 − 1− (n1 − 2)n2)n1n2/2 = (n2 − 1)n1n2/2. �

Theorem 4.3 Let ∆ = ∆(G1 �G2), ∆1 = ∆(G1), and ∆2 = ∆(G2). Then

λ(G1 �G2) ≤ max
u∈G1,v∈G2

{deg(u, v)(∆ + 1)− deg(v)(∆2 − 1)n2deg(u)−

deg(u)(∆1 − 1)(n2 − 1)− 2deg(u)∆2 − 2n2deg(u)deg(v)−

(n2 − deg(v)− 2)(n1 − deg(u)− 1)(n2 − deg(v)− 1)} .

Proof. Let x = (u, v) be a vertex of G1 �G2. By the definition of the dot-lexicographic product,

degG1�G2
(x) = n2degG1

(u) + degG2
(v) + (n1 − degG1

(u)− 1)(n2 − degG2
(v)− 1). To simplify the

notations, let d = degG1�G2
(x), d1 = degG1

(u) and d2 = degG2
(v). Hence d = n2d1 + d2 + (n1 −

d1− 1)(n2− d2− 1) and ∆ = ∆(G1�G2) = maxu∈G1,v∈G2{n2d1 + d2 + (n1− d1− 1)(n2− d2− 1)}.

The number of vertices at distance 2 from (u, v) in G1 �G2 is not greater than d(∆− 1). Now we

will strengthen this straightforward bound by analyzing the structure of G1 �G2.

For this paragraph, see Fig. 1, where du denotes the degree of u in G1. For any vertex v′ in G2

at distance 2 from v, there must be a path v′v′′v of length two between v′ and v in G2; since the

degree of u in G1 is d1, i.e., u has d1 adjacent vertices in G1, by the definition of a dot-lexicographic

product G1 �G2, for each vertex vk, 1 ≤ k ≤ n2, of G2, there must be d1 internally-disjoint paths

(u, v′)−(ui, vk)−(u, v) of length two between (u, v′) and (u, v), and these do not include the path of

length two between (u, v′) and (u, v) via (u, v′′). Hence for any vertex v′ in G2 with distance 2 from

v, there must be at least n2d1 + 1 internally-disjoint paths of length 2 from x = (u, v) to (u, v′) in

G1�G2. Speaking informally, at least n2d1 + 1 potential vertices at distance 2 from (u, v) coincide

in G1�G2, for any vertex v′ in G2 at distance 2 from v. On the contrary, whenever such a vertex in

G2 with distance 2 from v in G2 is missing, there will not exist the corresponding n2d1+1 potential

vertices with distance 2 from x = (u, v) in G1�G2. In the former case, since such n2d1 + 1 vertices

with distance 2 from x = (u, v) coincide in G1 �G2 and hence can only be counted once, we have
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to deduct n2d1 + 1− 1 from the upper bound d(∆− 1) on the number of distance 2 vertices from x

in G1�G2; in the latter case, since such n2d1 + 1 potential vertices with distance 2 from x = (u, v)

in G1 � G2 do not exist at all, we have to deduct n2d1 + 1 from the upper bound d(∆ − 1). Let

the number of vertices in G2 with distance 2 from v be t, then t ∈ [0, d2(∆2 − 1)]. The minimum

number we have to deduct from the upper bound d(∆− 1) occurs when t = d2(∆2 − 1); then, the

upper bound is reduced by d2(∆2 − 1)(n2d1 + 1 − 1) = d2(∆2 − 1)n2d1 from the value d(∆ − 1),

and d(∆− 1)− d2(∆2 − 1)n2d1 is now the improved upper bound for the number of vertices with

distance 2 from x = (u, v) in G1 �G2.

Figure 1: Local structure of G1 �G2

For this paragraph see Fig. 2. For any vertex u′ in G1 with distance 2 from u, there must be a

path u′u′′u of length two between u′ and u in G1. Since the number of vertices of G2 is n2, by the

definition of a dot-lexicographic product G1 � G2, there must exist n2 internally-disjoint paths of

length two between (u′, v) and (u, v) in G1 �G2. Hence for any vertex in G1 with distance 2 from

u, there must be the corresponding n2 potential vertices with distance 2 from x = (u, v) which

coincide in G1 � G2. On the contrary, whenever such a vertex in G1 with distance 2 from u is

missing, there will not exist the corresponding n2 potential vertices with distance 2 from x = (u, v).
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In the former case, since such n2 vertices with distance 2 from x = (u, v) coincide in G1 �G2 and

hence can only be counted once, we have to deduct n2 − 1 from the upper bound on the number

of vertices at distance 2 from x in G1�G2; in the latter case, since such n2 potential vertices with

distance 2 from x = (u, v) do not exist at all, we have to deduct n2 from the upper bound. Let

the number of vertices in G1 with distance 2 from u be t, then t ∈ [0, d1(∆1 − 1)]. The minimum

number we have to deduct from the upper bound occurs when t = d1(∆1− 1), so the upper bound

on the number of vertices with distance 2 from x = (u, v) in G1 � G2 will decrease at least by

d1(∆1 − 1)(n2 − 1). Therefore, the number d(∆− 1)− d2(∆2 − 1)n2d1 − d1(∆1 − 1)(n2 − 1) is now

the improved upper bound on the number of vertices with distance 2 from x = (u, v) in G1 �G2.

Figure 2: Local structure of G1 �G2

Moreover, we can further analyze as follows. Let ε denote the number of edges of the subgraph

F induced by the neighbors of x. For the edges of the subgraph F , we consider the following cases.

Case 1. (See Fig. 3 for this paragraph.) If u′ is adjacent to u in G1, then (u, v) must be adjacent

to (u′, v1) and (u′, v2) for any two vertices v1 and v2 of G2, hence all (u′, v) where v ∈ V (G2) are

neighbors of x and vertices of F . Because ∆(G2) = ∆2 and there are totally d1 neighbors u′ of u,

there should be at least d1∆2 edges in F of the type ((u′, v1), (u
′, v2)).

Case 2. (See Fig 4 for this paragraph.) For each neighbor (u, v′) of x = (u, v) where v′ is adjacent

to v in G2, and any vertex (u′, vt) where u′ is adjacent to u in G1 and vt is any vertex of G2, there
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Figure 3: Situation from Case 1

must be an edge between (u′, vt) and (u, v′). But there are in total n2d1 neighbors (u′, vt) (where

u′ is adjacent to u in G1) of x = (u, v) and d2 neighbors (u, v′) (where v′ is adjacent to v in G2) of

x = (u, v), hence the number of edges of the type ((u′, vt), (u, v
′)) of the subgraph F should be at

least n2d1d2.

Figure 4: Situation from Case 2

Case 3. Let us estimate the number of edges in the subgraph of F induced by vertices (ut, vt),

where ut is not adjacent to u in G1 and vt is not adjacent to v in G2. If n1 − d1 − 1 > 0 and

n2 − d2 − 1 > 0, then this subgraph is a dot-lexicographic product of two subgraphs of G1 and G2,

one with vertex number n1− d1− 1 and the other with vertex number n2− d2− 1, respectively. By

Corollary 4.2, there are at least (n2 − d2 − 2)(n1 − d1 − 1)(n2 − d2 − 1)/2 edges in this subgraph.

If n1 − d1 − 1 = 0 or n2 − d2 − 1 = 0, then this subgraph does not exist and has 0 edges. Thus,

there are at least (n2 − d2 − 2)(n1 − d1 − 1)(n2 − d2 − 1)/2 edges in this subgraph. Note that

n1 − d1 − 1 ≥ 0, n2 − d2 − 1 ≥ 0, and n2 − d2 − 2 can be negative only if n2 − d2 − 1 = 0, thus

(n2 − d2 − 2)(n1 − d1 − 1)(n2 − d2 − 1) ≥ 0.
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The current upper bound on the number of vertices at distance two from x is d(∆−1)−d2(∆2−

1)n2d1−d1(∆1−1)(n2−1). For each edge in F , this upper bound is decreased by 2. Hence, by the

analysis of the above cases, the upper bound on the number of vertices with distance 2 from x =

(u, v) in G1�G2 can be decreased by at least 2d1∆2+2n2d1d2+(n2−d2−2)(n1−d1−1)(n2−d2−1)

and becomes d(∆−1)−d2(∆2−1)n2d1−d1(∆1−1)(n2−1)−2d1∆2−2n2d1d2− (n2−d2−2)(n1−

d1 − 1)(n2 − d2 − 1).

The number of vertices with distance 1 from x is not greater than d. Then by Algorithm Label,

λ(G1 �G2) ≤ |I2|+ |I3| ≤ |I2|+ |I1|

≤ d+ d∆− d2(∆2 − 1)n2d1 − d1(∆1 − 1)(n2 − 1)− 2d1∆2 − 2n2d1d2 −

(n2 − d2 − 2)(n1 − d1 − 1)(n2 − d2 − 1)

≤ max
u∈G1,v∈G2

{d(∆ + 1)− d2(∆2 − 1)n2d1 − d1(∆1 − 1)(n2 − 1)− 2d1∆2 −

2n2d1d2 − (n2 − d2 − 2)(n1 − d1 − 1)(n2 − d2 − 1)} ,

where d = degG1�G2
(u, v). �

Corollary 4.4 Let G1 and G2 be graphs with n1 ≥ 4 and n2 ≥ 4 vertices, respectively. If ∆(G1) ≤

n1 − 3 and ∆(G2) ≤ n2 − 3, then λ(G1 �G2) ≤ ∆2.

Proof. By Theorem 4.3 and using the expressions for d and ∆ from the beginning of the proof of

Theorem 4.3, λ(G1�G2) ≤ maxu∈G1,v∈G2{(n2d1+d2+(n1−d1−1)(n2−d2−1))(maxu∈G1,v∈G2{n2d1+

d2 + (n1 − d1 − 1)(n2 − d2 − 1)}+ 1)− d2(∆2 − 1)n2d1 − d1(∆1 − 1)(n2 − 1)− 2d1∆2 − 2n2d1d2 −

(n2 − d2 − 2)(n1 − d1 − 1)(n2 − d2 − 1)}.

Define the function f(s, t) = (n2s+t+(n1−s−1)(n2−t−1))(maxu∈G1,v∈G2{n2d1+d2+(n1−d1−

1)(n2−d2−1)}+1)−t(∆2−1)n2s−s(∆1−1)(n2−1)−2s∆2−2n2st−(n2−t−2)(n1−s−1)(n2−t−1).

We consider f(s, t) as defined on the set of pairs (s, t) such that s = d1, t = d2 for some u ∈ G1

and v ∈ G2. Note that (s, t) ∈ [1,∆G1 ] × [1,∆G2 ], and s and t are integer. Suppose that f(s, t)

achieves its maximum at some point (p1, p2). Then, λ(G1 � G2) ≤ f(p1, p2). Note that p1 ≥ 1,
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p2 ≥ 1. Setting X = ∆2 − f(p1, p2), we now have

X = ∆2 − ((n2p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1))(∆ + 1)− p2(∆2 − 1)n2p1 −

p1(∆1 − 1)(n2 − 1)− 2p1∆2 − 2n2p1p2 − (n2 − p2 − 2)(n1 − p1 − 1)(n2 − p2 − 1))

= ∆2 − ((n2p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1))∆ +

(n2p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1))− p2(∆2 − 1)n2p1 − p1(∆1 − 1)(n2 − 1)−

2p1∆2 − 2n2p1p2 − (n2 − p2 − 2)(n1 − p1 − 1)(n2 − p2 − 1))

= (∆2 − (n2p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1))∆)−

(n2p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1)) + p2(∆2 − 1)n2p1 + p1(∆1 − 1)(n2 − 1) +

2p1∆2 + 2n2p1p2 + (n2 − p2 − 2)(n1 − p1 − 1)(n2 − p2 − 1))

≥ (∆2 −∆∆)− (n2p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1)) + p2(∆2 − 1)n2p1 +

p1(∆1 − 1)(n2 − 1) + 2p1∆2 + 2n2p1p2 + (n2 − p2 − 2)(n1 − p1 − 1)(n2 − p2 − 1)

= −(n2p1 + p2 + (n1 − p1 − 1)(n2 − p2 − 1)) + p2(∆2 − 1)n2p1 + p1(∆1 − 1)(n2 − 1) +

2p1∆2 + 2n2p1p2 + (n2 − p2 − 2)(n1 − p1 − 1)(n2 − p2 − 1))

= p2(∆2 − 1)n2p1 + p1(∆1 − 1)(n2 − 1)− n2p1 − p2 + 2p1∆2 + 2n2p1p2 +

(n2 − p2 − 3)(n1 − p1 − 1)(n2 − p2 − 1)

= p2(∆2 − 1)n2p1 + p1(∆1 − 1)(n2 − 1) + (2p1∆2 − p2) + n2p1(2p2 − 1) +

(n2 − p2 − 3)(n1 − p1 − 1)(n2 − p2 − 1) .

To show that λ(G1 � G2) is bounded by ∆2, we only need to show that p2(∆2 − 1)n2p1 +

p1(∆1 − 1)(n2 − 1) + (2p1∆2 − p2) + n2p1(2p2 − 1) + (n2 − p2 − 3)(n1 − p1 − 1)(n2 − p2 − 1) ≥ 0

since the left side of this inequality is ∆2−f(p1, p2) and λ(G1�G2) ≤ f(p1, p2). We have supposed

that ∆(G1) ≤ n1 − 3 and ∆(G2) ≤ n2 − 3, then (n1 − p1 − 1) ≥ (n1 − ∆(G1) − 1) ≥ 2 and

(n2 − p2 − 1) ≥ (n2 −∆(G2)− 1) ≥ 2. We consider the following three cases:

Case 1. (n1 − p1 − 1) = 2 and (n2 − p2 − 1) ≥ 2.

Then p2(∆2− 1)n2p1 + p1(∆1− 1)(n2− 1) + (2p1∆2− p2) +n2p1(2p2− 1) + (n2− p2− 3)(n1− p1−

1)(n2 − p2 − 1) ≥ p2(∆2 − 1)n2p1 + p1(∆1 − 1)(n2 − 1) + (2p1∆2 − p2) + n2p1(2p2 − 1).

Subcase 1. p1 = 1 and p2 ≥ 1. Then p2(∆2 − 1)n2p1 + p1(∆1 − 1)(n2 − 1) + (2p1∆2 − p2) +

n2p1(2p2 − 1) = (∆2 − 1)n2p2 + (∆1 − 1)(n2 − 1) + (2∆2 − p2) + n2(2p2 − 1) > 0.

Subcase 2. p2 = 1 and p1 ≥ 1. Then p2(∆2 − 1)n2p1 + p1(∆1 − 1)(n2 − 1) + (2p1∆2 − p2) +

n2p1(2p2 − 1) = p1(∆2 − 1)n2 + p1(∆1 − 1)(n2 − 1) + (2p1∆2 − 1) + n2p1 > 0.
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Subcase 3. p1 ≥ 2 and p2 ≥ 2. Hence ∆1 ≥ 2 and ∆2 ≥ 2. Then p2(∆2 − 1)n2p1 + p1(∆1 −

1)(n2− 1) + (2p1∆2− p2) + n2p1(2p2− 1) = p2(∆2− 1)n2p1 + p1(∆1− 1)(n2− 1) + ((2p1− 1)∆2 +

∆2 − p2) + n2p1(2p2 − 1) ≥ p1n1p2 + p1(n2 − 1) + (2p1 − 1)∆2 + n2p1(2p2 − 1) > 0.

Case 2. (n2 − p2 − 1) = 2 and (n1 − p1 − 1) ≥ 2.

Now p2(∆2− 1)n2p1 + p1(∆1− 1)(n2− 1) + (2p1∆2− p2) + n2p1(2p2− 1) + (n2− p2− 3)(n1− p1−

1)(n2 − p2 − 1) = p2(∆2 − 1)n2p1 + p1(∆1 − 1)(n2 − 1) + (2p1∆2 − p2) + n2p1(2p2 − 1). We can

consider the same three subcases as in Case 1, with the same analysis and conclusions.

Case 3. (n1 − p1 − 1) ≥ 3 and (n2 − p2 − 1) ≥ 3.

Then p2(∆2− 1)n2p1 + p1(∆1− 1)(n2− 1) + (2p1∆2− p2) +n2p1(2p2− 1) + (n2− p2− 3)(n1− p1−

1)(n2 − p2 − 1) ≥ 2∆2 − p2 + n2p1 + (n1 − p1 − 1)(n2 − p2 − 1) ≥ n2p1 + 9.

By above three cases, we have proved that λ(G1 �G2) ≤ ∆2 if ∆(G1) ≤ n1 − 3 and ∆(G2) ≤

n2 − 3. �

Note that Case 3 is the most general case and the bound from the proof of Corollary 4.4 is

much better than the ∆2-bound.

We conclude the paper by proving that the ∆2-bound also holds for dot-lexicographic products

in which G1 has large maximum degree. More precisely, the following result holds.

Proposition 4.5 Let G1 and G2 be graphs with n1 ≥ 3 and n2 ≥ 2 vertices, respectively. If

∆(G1) > n1 − 3, then λ(G1 �G2) ≤ ∆2.

Proof. Recall from [7] that if G is an arbitrary graph on n vertices with chromatic number χ,

then λ(G) ≤ n + χ − 2 holds. If ∆ = 2, then G is a path or a cycle and we have λ(G) ≤ ∆2.

Thus, we only need to consider graphs with ∆ ≥ 3. Suppose that ∆ ≥ (n − 1)/2, then λ(G) ≤

n + χ − 2 ≤ 2∆ + 1 + ∆ − 2 = 3∆ − 1 < ∆2 (note that ∆ ≥ 3). We will use this result to prove

the proposition. Since ∆(G1) > n1 − 3, we need to consider the following two cases. (Recall that

|V (G1 �G2)| = n1n2).

Case 1. ∆(G1) = n1 − 1. Then

∆ − (n1n2 − 1)/2 = ∆(G1 � G2) − (n1n2 − 1)/2 = maxu∈G1,v∈G2{n2d1 + d2 + (n1 − d1 − 1)(n2 −

d2− 1)}− (n1n2− 1)/2 ≥ n2∆(G1) + ∆(G2) + (n1−∆(G1)− 1)(n2−∆(G2)− 1)− (n1n2− 1)/2 =

n2(n1 − 1) + ∆(G2)− (n1n2 − 1)/2 ≥ n2(n1 − 1)− (n1n2 − 1)/2 = ((n1 − 2)n2 + 1)/2 > 0.

Case 2. ∆(G1) = n1 − 2. Then

∆−(n1n2−1)/2 ≥ n2∆(G1)+∆(G2)+(n1−∆(G1)−1)(n2−∆(G2)−1)−(n1n2−1)/2 = n2(n1−2)+
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∆(G2)+n2−∆(G2)−1−(n1n2−1)/2 = n2(n1−2)+n2−1−(n1n2−1)/2 = ((n1−2)n2−1)/2 > 0.
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[8] Gonçalves, D. (2008) On the L(p, 1)-labeling of graphs. Discrete Math., 308, 1405–1414.

[9] Havet, F., Reed, B. and Sereni, J.-S. (2008) L(2, 1)-labellings of graphs. ACM-SIAM Sym-

posium on Discrete Algorithms, San Francisco, California, January 20-22, 2008, pp. 621–630.

ACM, New York.

[10] Karst, N., Oehrlein, J., Troxell, D.S. and Zhu, J. (2014) Labeling amalgamations of Cartesian

products of complete graphs with a condition at distance two. Discrete Appl. Math., 178,

101–108.

17



[11] Karst, N., Oehrlein, J., Troxell, D.S. and Zhu, J. (2015) The minimum span of L(2, 1)-labelings

of generalized flowers. Discrete Appl. Math., 181, 139–151.

[12] Lv, D. and Lin, W. (2015) L(j, k)-labelings of Cartesian products of three complete graphs.

Ars Combin., 119, 97–116.

[13] Shao, Z. and Zhang, D. (2013) Distance labellings of graphs. Ars Combin., 108, 23–31.

[14] Wu, Q., Shiu, W.C. and Sun, P.K. (2015) L(j, k)-labeling number of Cartesian product of path

and cycle. J. Comb. Optim., in press. DOI 10.1007/s10878-014-9775-4.

[15] Kim, B.M., Song, B.C. and Rho, Y. (2013) L(2, 1)-labellings for direct products of a triangle

and a cycle. Int. J. Comput. Math., 90, 475–482.

[16] Kim, B.M., Song, B.C., Rho, Y. and Hwang W. (2014) New L(j, k)-labelings for direct products

of complete graphs. Taiwanese J. Math., 18, 793–807.

[17] Shao, Z. and Solis-Oba, R. (2010) L(2, 1)-labelings on the composition of n graphs. Theor.

Comput. Sci., 411, 3287–3292.

[18] Shao, Z. and Vesel, A. (2014) L(2, 1)-labeling of the strong product of paths and cycles,

Scientific World J., 2014, Article ID 741932, 12 pages.

[19] Shao, Z. and Yeh, R.K. (2005) The L(2, 1)-labeling and operations of graphs. IEEE Trans.

Circuits Syst. I, 52, 668–671.
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