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Abstract

Exchanged hypercubes [Loh et al., IEEE Transactions on Parallel and Dis-
tributed Systems 16 (2005) 866–874] are spanning subgraphs of hypercubes with
about one half of their edges but still with many desirable properties of hyper-
cubes. Lower and upper bounds on the domination number of exchanged hy-
percubes are proved which in particular imply that γ(EH(2, t)) = 2t+1 holds
for any t ≥ 2. Using Hamming codes we also prove that γ(EH(s,2k − 1)) ≤

(2s − 2k)γ(Q2k−1) + 2
2
k
−1(γ(Q−

s
) + 1) holds for s ≥ k ≥ 3.
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1 Introduction

Hypercubes form a fundamental model for parallel computers and interconnection net-

works, cf. [22, Chapter 7]. They have many fine properties that are essential for net-

work efficiency, such as recursive decomposition, lots of symmetries, low regularity, and
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small diameter. Hypercubes also allow straightforward (local) routing and are Hamil-

tonian. For more information on their fault tolerance with respect to the hamiltonicity

see [19, 20] and references therein. Having all this in mind it comes with no big surprise

that machines based on hypercubes have actually been implemented, see [22, p. 115]

for the list of implementations.

Interconnection networks often require a distribution of limited supply of resources

and from this point of view various kinds of dominating sets serve as possible locations

for placement of resources. For general aspects of the role of domination in complex

networks see the book chapter [1]. Unfortunately, the exact domination number is

known only for small dimensional hypercubes and two infinite families: γ(Q3) = 2,

γ(Q4) = 4, γ(Q5) = 7, γ(Q6) = 12, and γ(Qn) = 2
n−k for n = 2k − 1 or n = 2k, see [8].

In general, γ(Qn) ≤ 2n−3 for n ≥ 7 [3]. For some variations of domination studied

on hypercubes see [3, 7, 17], while for domination of closely related Fibonacci cubes

see [4, 18]. Domination was also studied on other types of interconnection networks as

for instance on toroidal meshes [21].

Since domination is very difficult on hypercubes, they are not very appropriate when

dealing with domination-type problems. In this note we instead study the domination

number of exchanged hypercubes EH(s, t). This two-parametric family of graphs was

proposed by Loh et al. [13] and constitute a variation of the hypercube networks with

numerous appealing properties, see [15] for their bipancyclicity and [10, 14, 16] for

their connectivity and super connectivity, important measures for the fault-tolerance

of networks. In the special case when s = t, the exchanged hypercubes coincide with

the so-called dual-cubes, a class of hypercube-like networks studied in [2, 5, 11, 12].

We proceed as follows. In the next section we introduce the exchanged hypercubes,

recall some of their properties, and define other concepts used in this note. Then, in

Section 3, our results are presented. We prove several bounds on the domination number

of exchanged hypercubes and deduce from them that if t ≥ 2, then γ(EH(2, t)) = 2t+1.

This exact result appears appealing because, as we have noted above, the domination

number of the usual hypercubes is an intrinsically difficult problem. Using the fact that

Q2k−1 contains a perfect code (which is just a corresponding Hamming code) we also

prove that γ(EH(s,2k − 1)) ≤ (2s − 2k)γ(Q2k−1) + 2
2
k−1(γ(Q−s ) + 1) holds for s ≥ k ≥ 3.
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2 Preliminaries

Graphs considered here are simple, finite, and connected.

If n is a positive integer, then the n-dimensional hypercube (or n-cube, for short)

Qn is the graph with vertex set {0,1}n, two vertices (strings) being adjacent if they

differ in exactly one coordinate. Hypercubes are vertex-transitive graphs, hence all

vertex-deleted subgraphs Qn − v, v ∈ V (Qn), are isomorphic, we denote it with Q−n.

The distance between vertices u, v ∈ V (Qn) is equal to the Hamming distance between

u and v, denoted H(u, v), that is, the number of coordinates in which u and v differ.

Exchanged hypercubes are spanning subgraphs of hypercubes. Let u = ud−1 . . . u0 ∈

{0,1}d be a binary string, d ≥ 1. If j ≥ i, then we will use the notation uj∶i for the

substring of u between uj and ui, that is, uj∶i = uj . . . ui. For any integers s ≥ 1 and

t ≥ 1, the exchanged hypercube EH(s, t) is the graph with the vertex set {0,1}s+t+1.

Hence, if u ∈ V (EH(s, t)), then its coordinates are us+t . . . ut+1ut . . . u1u0. Vertices u

and v are adjacent if one of the following conditions is satisfied:

(i) us+t∶1 = vs+t∶1, u0 ≠ v0,

(ii) u0 = v0 = 1,H(ut∶1, vt∶1) = 1, and us+t∶t+1 = vs+t∶t+1,

(iii) u0 = v0 = 0,H(us+t∶t+1, vs+t∶t+1) = 1, and ut∶1 = vt∶1.

Clearly, EH(s, t) has 2s+t+1 vertices. If u ∈ V (EH(s, t)) and u0 = 0, then the degree

of u is s + 1, otherwise the degree of u is t + 1. It is also straightforward that for any s

and t, the exchanged hypercube EH(s, t) is isomorphic to EH(t, s). The ratio of the

number of edges in EH(s, t) to that of Qs+t+1 is 1/2 + 1/(2(s + t + 1)) [6].

If G is a graph, then D ⊆ V (G) is a dominating set if every vertex of V (G) −D is

adjacent to some vertex ofD. The domination number γ(G) is the minimum cardinality

of a dominating set of G. A dominating set D of G is a perfect code if any two vertices

from D are at distance at least 3. Hence the closed neighborhoods of the vertices from

a perfect code D partition the vertex of G, cf. [9, Theorem 4.1].

A matching of a graph G is a set of independent edges and a perfect matching

is a matching M such that each vertex is an endpoint of an edge from M . Finally, if

X ⊆ V (G), then the closed neighborhood N[X] is ⋃u∈X N[u], where N[u] is the closed
neighborhood of u.
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3 Results

We begin with the following bounds:

Theorem 3.1 If s, t ≥ 1 and s ≤ t, then

max{2tγ(Qs),2sγ(Qt)} ≤ γ(EH(s, t)) ≤ (2s − 1)γ(Qt) + 2tγ(Qs) .
Proof. Consider the following edge-subsets of EH(s, t):

E1 = {uv ∶ us+t∶1 = vs+t∶1, u0 ≠ v0},
E2 = {uv ∶ us+t∶t+1 = vs+t∶t+1,H(ut∶1, vt∶1) = 1, u0 = v0 = 1},
E3 = {uv ∶ ut∶1 = vt∶1,H(us+t∶t+1, vs+t∶t+1) = 1, u0 = v0 = 0}.

Let EH1(s, t) be the subgraph of EH(s, t) induced by the edges E2. Then EH1(s, t)
is the disjoint union of 2s copies of Qt, we denote these cubes with Q

(i)
t , 1 ≤ i ≤ 2s.

Indeed, fixing the leftmost s bits and fixing the rightmost bit to 1, the induced subgraph

is isomorphic to Qt. Moreover, there are no edges between two such induced subgraphs

isomorphic to Qt. Similarly, the subgraph EH0(s, t) of EH(s, t) induced by the edges

E3 consists of 2t subgraphs isomorphic to Qs denoted with Q
(j)
s , 1 ≤ j ≤ 2t. Finally, the

edges from E1 form a perfect matching of EH(s, t), it is a matching between EH0(s, t)
and EH1(s, t). More precisely, for any i, any vertex of Q

(i)
t has exactly one neigbor in

EH0(s, t), each of these neighbors belonging to different Q
(j)
s . See Fig. 1.

D1 Q
(1)
s

D2 Q
(2)
s

D2t Q
(2t)
s

⋯

⋯

⋯

Q
(1)
t Q

(2)
t

D′
2

⋯ D′
2s

Q
(2s)
t

EH1(s, t)

EH0(s, t)
Figure 1: Subgraphs EH0(s, t) and EH1(s, t) of EH(s, t)
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For the upper bound, consider the t-cube Q
(1)
t . Then each of Q

(i)
s , 1 ≤ i ≤ 2t, has

a (unique) neighbor in Q
(1)
t . In each of the cubes Q

(i)
s select a minimum dominating

set Di such that if x ∈ N[V (Q(1)t )]⋂Q
(i)
s then x ∈ Di. (Such a dominating set exists

since hypercubes are vertex-transitive graphs.) Then Q
(1)
t is dominated by ⋃2

t

i=1Di,

see Fig. 1 again. For 2 ≤ i ≤ 2s let D′i be a minimum dominating set of Q
(i)
t . Then

D = (⋃2
t

i=1Di)⋃(⋃2
s

i=2D
′
i) is a dominating set of EH(s, t). Clearly, ∣D∣ = 2tγ(Qs) +

(2s − 1)γ(Qt). The upper bound is proved.

Let D be a dominating set of EH(s, t) and let Ti = D ∩ N[V (Q(i)t )], 1 ≤ i ≤ 2s.

Then ∣Ti∣ ≥ γ(Qt), for otherwise Ti ∩Q
(i)
t together with the neighbors of the vertices

from Ti −V (Q(i)t ) that lie in Q
(i)
t would form a dominating set of order strictly smaller

than γ(Qt). In addition, if i ≠ j, then Ti ∩ Tj = ∅ because a vertex from Ti −Q
(i)
t has

exactly one neighbor in EH1(s, t). It follows that
∣D∣ ≥ 2

s

∑
i=1

∣Ti∣ ≥ 2sγ(Qt) .
Applying analogous arguments to EH0(s, t) we infer that ∣D∣ ≥ 2tγ(Qs). This proves

the lower bound. ◻

For another upper bound the following lemma will be useful.

Lemma 3.2 If n ≥ 3, then V (Qn) can be partitioned into 4 (pairwise disjoint) domi-

nating sets.

Proof. For n = 3, the partition {{000,111},{100,011}, {010,101}, {001,110}} does the
job. We proceed by induction. Let n ≥ 3 and let V (Qn) = ⊍4

i=1Di, where each Di

(1 ≤ i ≤ 4) is a dominating set of Qn, and ⊍ denotes the disjoint union of sets. For

1 ≤ i ≤ 4 set

D′i = {0u ∶ u ∈ Di} ∪ {1u ∶ u ∈Di} .
Then it is straightforward to verify that each D′i is a dominating set of Qn+1 and that

V (Qn+1) = ⊍4

i=1D
′
i. ◻

Proposition 3.3 If 2 ≤ s ≤ t and t ≥ 3, then

γ(EH(s, t)) ≤ (2s − 4)γ(Qt) + 2t(γ(Q−s ) + 1) .
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Proof. Since t ≥ 3, Lemma 3.2 guarantees the existence of a partition V (Qt) = ⊍4

i=1Di,

where each Di is a dominating set of Qt. Since s ≥ 2, EH1(s, t) (defined in the proof of

Theorem 3.1) contains the four t-cubes Q
(i)
t , 1 ≤ i ≤ 4. For any i with 1 ≤ i ≤ 4, let D′i

be the isomorphic copy of Di in Q
(i)
t . For 5 ≤ i ≤ 2s, let D′i be a minimum dominating

set of Q
(i)
t , and for each j = 1, . . . ,2t, let D′′j be a minimum dominating set of (Q(j)s )−.

Note that ∣⋃4

i=1D
′
i∣ = 2t and that each vertex from ⋃4

i=1D
′
i is adjacent to exactly one

vertex in a private copy of Q
(j)
s in EH0(s, t). It follows that D = (⋃2

s

i=1D
′
i)⋃(⋃2

t

j=1D
′′
j )

is a domination set of EH(s, t). Since
∣D∣ = ∣ 4⋃

i=1

D′i∣ + ∣ 2
s

⋃
i=5

D′i∣ +
RRRRRRRRRRR
2
t

⋃
j=1

D′′j

RRRRRRRRRRR = 2
t + (2s − 4)γ(Qt) + 2tγ(Q−s ) ,

the result follows. ◻

We are now ready for our key insight.

Theorem 3.4 If t ≥ 2, then γ(EH(2, t)) = 2t+1.
Proof. Let t = 2. Then γ(EH(2,2)) ≥ 8 by Theorem 3.1. In Fig. 2 a dominating set

of EH(2,2) of size 8 is shown, hence γ(EH(2,2)) = 8.
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EH(2,2)

Figure 2: A minimum dominating set of EH(2,2)
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Let t ≥ 3. Then the lower bound γ(EH(2, t)) ≥ 2t+1 again follows from Theorem 3.1.

On the other hand, γ(EH(2, t)) ≤ 2t+1 follows from Proposition 3.3 having in mind that

s = 2 and γ(Q−
2
) = 1. ◻

In the proof of Proposition 3.3 we have partitioned the vertex set of Qn into four

dominating sets. If V (Qn) can be partitioned into more disjoint dominating sets, the

upper bound can be improved. This is not possible for n ≤ 5 as we can find out from the

exact domination numbers of these cubes. On the other hand, using Hamming codes

this can be done in the following special case.

Theorem 3.5 If s ≥ k ≥ 3, then

γ(EH(s,2k − 1) ≤ (2s − 2k)γ(Q2k−1) + 22k−1(γ(Q−s ) + 1) .
Proof. Let k ≥ 3. Let D0 be an arbitrary perfect code of Q2k−1. It is well-known that

such a code exists, see [9], in fact, it is just a Hamming code of block length 2k −1. Let

e(i), 1 ≤ i ≤ 2k − 1, denote the binary word of length 2k − 1 with 1 in the ith coordinate

and with 0 in any other coordinate. For each i = 1, . . . ,2k − 1 we now define

Di = {u + e(i) ∶ u ∈ D0} .
We claim that Di ∩Dj = ∅ for any i ≠ j, 0 ≤ i, j ≤ 2k − 1. Note first that D0 ∩Di = ∅,

because if u ∈ Di, then there exists an x ∈ D0 such that u = x+e(i) and henceH(u,x) = 1.
Since for any other vertex y of D0 we have H(x, y) ≥ 3, we conclude that u ≠ y. Let

next u ∈ Di and v ∈ Dj , where i, j ≥ 1 and i ≠ j. Then u = x + e(i) and v = y + e(j) for

some x, y ∈ D0. Because H(x, y) ≥ 3 it then follows that u ≠ v.

The mapping V (Qn) → V (Qn) that changes a fixed coordinate in each of the

vertices is an automorphism of Qn. Since an automorphism maps dominations sets

onto dominating set, we infer that Di, 1 ≤ i ≤ 2
k − 1, are dominating sets because D0 is

such. Hence, V (Q2k−1) is partitioned into 2k dominating sets Di, 0 ≤ i ≤ 2
k − 1.

We now construct a dominating set of EH(s,2k − 1) similarly as in the proof of

Proposition 3.3. Since s ≥ k, there exist 2k cubes Q
(i)

2k−1
, 1 ≤ i ≤ 2k. For any 1 ≤ i ≤ 2k−1,

let D′i be the isomorphic copy of Di in Q
(i)

2k−1
, and let D′

2k
be the isomorphic copy

of D0 in Q
(2k)

2k−1
. For 2k + 1 ≤ i ≤ 2s, let D′i be a minimum dominating set of Q

(i)
t ,

and for 1 ≤ j ≤ 22
k−1, let D′′j be a minimum dominating set of (Q(j)s )−. Then D =
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(⋃2
s

i=1D
′
i)⋃(⋃2

2
k
−1

j=1 D′′j ) is a domination set of EH(s,2k−1) of order (2s−2k)γ(Q2k−1)+
22

k−1(γ(Q−s ) + 1). ◻

It is clear that if γ(Q−s ) < γ(Qs), then the upper bounds of Theorem 3.5 and of

Proposition 3.3 are better than the upper bound of Theorem 3.1. Unfortunately, it

seems difficult to determine whether this indeed holds for some dimensions s. We can

show however that γ(Q−s ) ≤ γ(Qs) holds. To see it, let D be a dominating set of Qs with

∣D∣ = γ(Qs), and let x be an arbitrary vertex of V (Qs) −D. ThenD is also a dominating

set of Qs − x which is in turn isomorphic to Q−s (because Qs is vertex-transitive). It

follows that γ(Q−s ) ≤ γ(Qs). An indication that γ(Q−s ) < γ(Qs) might hold for some

dimensions s is the fact that there exist vertex-transitive graphs whose vertex-deleted

subgraphs have smaller domination number. For instance, γ(C3k+1) = k + 1, while for

the vertex-deleted subgraph P3k of C3k+1 we have γ(P3k) = k.
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