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1. Introduction

The domination number, γ(G), of a graph G is an important classical
graph invariant with many applications. It is defined as the minimum car-
dinality of a subset of vertices S, called dominating set, with the property
that each vertex from V (G) − S has a neighbor in S. A dominating set S
of cardinality γ(G) is called a γ(G)-set. The union of closed neighborhoods
centered at vertices of a dominating set covers the entire vertex set. A clas-
sical question for a cover of a set is: when does this cover form a partition?
A graph G is called an efficient closed domination graph, or ECD graph for
short, if there exists a set P , P ⊆ V (G), such that the closed neighborhoods
centered at vertices of P partition V (G). Such a set P is called a perfect code
of G. More general, a set P is an r-perfect code of G if the r-balls centered
at vertices of P partition V (G).

The study of perfect codes in graphs was initiated by Biggs [5] and
presents a generalization of the problem of the existence of (classical) error-
correcting codes. The initial research focused on distance regular and re-
lated classes of graphs, while later the investigation was extended to general
graphs, cf. [33]. To determine whether a given graph has a 1-perfect code is
an NP-complete problem [3] and remains NP-complete on k-regular graphs
(k ≥ 4) [34], on planar graphs of maximum degree 3 [13, 34], as well as
on bipartite and chordal graphs [40]. On the positive side, the existence of
a 1-perfect code can be decided in polynomial time on trees [13], interval
graphs [35], and circular-arc graphs [29].

Recently the study of perfect codes in graphs was primarily focused on
their existence and construction in some central families of graphs. Much
research was done on standard graph products and product-like graphs [2,
23, 28, 39, 42, 44]. Among other classes of graphs on which perfect codes
were investigated we mention Sierpiński graphs [8, 27], cubic vertex-transitive
graphs [31], circulant graphs [10], twisted tori [24], dual cubes [25], and AT-
free and dually chordal graphs [4].

A graph invariant closely related to the domination number is the total
domination number γt(G) [21]. It is defined as the minimum cardinality of
a subset of vertices D, called a total dominating set, such that each vertex
from V (G) has a neighbor in D. A total dominating set D of cardinality
γt(G) is called a γt(G)-set. If we switch to neighborhoods, the union of open
neighborhoods centered at vertices of a total dominating set covers the entire
vertex set and again one can pose the question: when does this cover form
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a partition? A graph G is called an efficient open domination graph, or an
EOD graph for short, if there exists a set D, D ⊆ V (G), such that open
neighborhoods centered at vertices of D partition V (G). Such a set D is
called an EOD set. Note that two different vertices of an EOD set are either
adjacent or at distance at least 3.

The problem of deciding whether a graph G is an EOD graph is NP -
complete [16, 38]. For various properties of EOD graphs see [15], a recursive
characterization of EOD trees is given in [16]. EOD graphs that are also
Cayley graphs were studied in [41], while EOD grid graphs were investigated
in [7, 9, 30]. EOD direct product graphs were characterized in [1], for other
standard graph products (lexicographic, strong, disjunctive and Cartesian)
see [36]. Domination-type problems studied on graph products are usually
most difficult on the Cartesian product, recall the famous Vizing’s conjecture
[6]. It is hence not surprising that EOD graphs studied on product graphs
seems to be the most difficult on the Cartesian product. For some very recent
results in this direction see [32].

In this paper we study the graphs that are ECD and EOD at the same
time and call them efficient open closed domination graphs, EOCD graphs
for short. In the rest of the paper we shall use the term ECD set instead of
1-perfect code to make the notation consistent.

We proceed as follows. In the rest of this section additional definitions
are given and a basic result recalled. In the next section we show how to
construct an ECD graph from and EOD graph and vice versa, and con-
sider the structure of EOCD graphs from the viewpoint of the relationship
between selected EOD sets and selected ECD sets. In two extremal cases
we find that for the corresponding EOCD graphs G we have γt(G) = γ(G)
and γt(G) = 2γ(G), respectively. In Section 3 we prove that the decision
problem regarding whether a graph is an EOCD graph is an NP-complete
problem. On the other hand, in one of the above extremal cases, EOCD
graphs can be recognized in polynomial time. Then, in Section 4, we give a
recursive description of EOCD trees, while in the final section EOCD graphs
are characterized among the Sierpiński graphs.

We will use the notation [n] = {1, . . . , n} and [n]0 = {0, . . . , n − 1}.
Throughout the article we consider only finite, simple graphs. If S is a
subset of vertices of a graph, then 〈S〉 denotes the subgraph induced by S.
A matching of a graph is an independent set of its edges. For the later
use we next state the following basic result. Its first assertion has been
independently discovered several times, cf [19, Theorem 4.2], while for the
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second fact see [36].

Proposition 1.1. Let G be a graph.
(i) If P is an ECD set of G, then |P | = γ(G).
(ii) If D is an EOD set of G, then |D| = γt(G).

2. On the structure of EOCD graphs

In this section we first show that each EOD graph naturally yields an ECD
graph and that each ECD graph can be modified to an EOD graph. Then
we consider the structure of EOCD graphs with respect to the relationship
between their EOD and ECD sets.

If D is an EOD set of a graph G, then D induces a matching M . Note
that an edge from M lies in no triangle, hence its contracting produces no
parallel edges. Now, let G′ be the graph obtained from G by contraction all
the edges from M . Then G′ is an ECD graph with an ECD set consisting of
the vertices obtained by the contraction of M .

Conversely, let G′ be an ECD graph with an ECD set P . For every vertex
v ∈ P weakly partition the set of its neighbors arbitrarily into sets A and B.
(If the degree of v is 1, then necessarily one of these sets is empty.) Let G be
the graph obtained from G′ by replacing every vertex v ∈ P by two adjacent
vertices vA and vB, and adding edges uvA for every u ∈ A and edges uvB for
every u ∈ B. Then G is an EOD graph with an EOD set {vA, vB : v ∈ P}.

Let G be an EOCD graph with an EOD set D and an ECD set P .
Then V (G) can be weakly partitioned into sets D ∩ P , D − P , P −D, and
R = V (G)− (D ∪ P ), see Fig. 1. Clearly, some of these sets may be empty.
From the definitions of ECD and EOD sets we infer the following properties.

• A vertex from D ∩ P (a black squared vertex in Fig. 1) can have an
arbitrary number of neighbors in R, has a unique neighbor in D − P ,
and has no neighbors in P −D.

• A vertex from P − D (a white squared vertex in Fig. 1) can have an
arbitrary number of neighbors in R, a unique neighbor in D − P , and
no neighbors in D ∩ P .

• A vertex from D − P (a black vertex in Fig. 1) can have an arbitrary
number of neighbors in R and, either a unique neighbor in P −D and
a unique neighbor in D − P , or a unique neighbor in D ∩ P .
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• A vertex from R (a white vertex in Fig. 1) can have an arbitrary number
of neighbors in R and either a unique neighbor in P −D and a unique
neighbor in D − P , or a unique neighbor in D ∩ P .

• Vertices from D ∩ P together with their unique neighbors from D− P
induce a matching.

• Vertices from P − D together with their unique neighbors in D − P
induce k copies of P4, where 2k = |P −D|.

The described structure is visible in Fig. 1. The same notation will be
used later in Fig. 3.

· · ·

· · ·

· · ·

· · ·

P −D

D − P

D ∩ P R

Figure 1: Structure of an EOCD graph.

The described structure above yields two extreme cases: either D∩P = ∅
or P − D = ∅. Clearly different pairs of sets P,D in an EOCD graph can
produce different configurations. In this sense, if there exists an ECD set P
and an EOD set D in G, such that D ∩ P = ∅, then we say that G is an
EOCD graph with empty D ∩P , and if P −D = ∅, then we say that G is an
EOCD graph with empty P−D. We observe that D−P is always non-empty
for every ECD set P and every EOD set D of any EOCD graph. Moreover,
if R = ∅, then G is formed only from the disjoint union of copies of K2 and
copies of P4.

The following two propositions follow directly from the above mentioned
structure. The first result characterizes the EOCD graphs with empty D∩P .

Proposition 2.1. A graph G is an EOCD graph with empty D ∩ P if and
only if there exists A ⊆ V (G), such that 〈A〉 = kP4, where every vertex from
V (G)−A is adjacent to exactly one vertex of degree 1 in 〈A〉 and one vertex
of degree 2 in 〈A〉.
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The second result characterizes the EOCD graphs with empty P −D.

Proposition 2.2. A graph G is an EOCD graph with empty P −D if and
only if there exists D ⊆ V (G) that induces a matching M , where every edge
of M contains at least one vertex of degree 1 in G (this vertex is from D−P )
and every vertex from V (G)−D is adjacent to exactly one vertex in M which
is in P .

We end this section with a connection between γ(G) and γt(G) for EOCD
graphs with empty D ∩ P or empty P −D, respectively. Both results follow
from the described structure of EOCD graphs, and by applying Proposi-
tion 1.1.

Proposition 2.3. If G is an EOCD graph with empty D ∩P , then γt(G) =
γ(G).

Proposition 2.4. If G is an EOCD graph with empty P −D, then γt(G) =
2γ(G).

Recall that for any graph G (without isolated vertices) γ(G) ≤ γt(G) ≤
2γ(G) holds. The above two propositions are of interest particularly because
it is an open problem to characterize the graphs G with γt(G) = 2γ(G), as
well as the graphs G with γt(G) = γ(G), cf. [21, p. 36]. In this direction, the
trees T for which γt(T ) = γ(T ) holds were characterized in [12, Theorem 6]
as the trees obtained from a disjoint union of P4s by means of four operations.
Moreover, a characterization of trees T for which γt(T ) = 2γ(T ) holds was
obtained in [20]. For these two results see also [21, Sections 4.6 and 4.7].

3. Complexity results

In this section we deal with the problem of deciding whether a given graph
contains an EOD set and an ECD set (EOCD Problem for short), that is,
the following problem.

EOCD Problem

Input: A simple graph G.
Question: Is G an EOCD graph?
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In order to study this problem, we shall make a reduction from the one-
in-three 3-SAT problem, which is known to be NP-complete [14] and reads
as follows.

One-In-Three 3-SAT

Input: A Boolean formula F on n variables and m clauses.
Question: Is there a satisfying truth assignment for the n variables,

such that each clause has exactly one true literal?

Next we present the main result of this section, which is in part inspired
by the proof of the NP-completeness of the problem of deciding whether a
graph contains an EOD set given in [16].

Theorem 3.1. The EOCD Problem is NP-complete.

Proof. It is clear that the EOCD Problem is in NP, since verifying that a
given set of vertices of a graph G is an EOD set or an ECD set can be done
in polynomial time. We consider now a Boolean formula F with variables
X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}. Each clause contains three
literals, each of which we shall denote by xi for a positive literal, or by xi
for a negative one. From the formula F , we construct a graph GF in the
following way. For any variable xi ∈ X, add to GF the graph Gi from Fig. 2.
For each clause ci ∈ C, we add a vertex yi. Now, if a variable xi occurs as a
positive literal in a clause cj, then add the edge yjui, otherwise (if a variable
xi occurs as a negative literal in a clause cj) add the edge yjui. Clearly, GF

can be constructed in polynomial time.
We claim that GF is an EOCD graph if and only if there is a satisfying

truth assignment for the n variables in the Boolean formula F , such that each
clause has exactly one true literal, that is, if and only if F has a one-in-three
satisfying truth assignment.

Assume first that F has a one-in-three satisfying truth assignment. We
construct two sets D and P in the following way. Add to D the vertices
qi, ci1, ci4, ci5, and to P the vertices qi, ci3, ci6 for every i ∈ [n]. Now, if
the variable xi is assigned the value true, then we add to D the vertices
ui, vi1, wi4, wi5, and to P the vertices ui, wi3, wi7. On the other hand, if xi is
assigned the value false, then we add to D the vertices ui, vi2, wi3, wi4, and
to P the vertices ui, wi2, wi5. It is easy to see that D ∩ V (Gi) is an EOD set
and P ∩ V (Gi) an ECD set of Gi. Moreover, since the truth assignment has
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ui ui
ti1

ti2
ti3

qi

ti4

ci1
ci7 ci2

ci6 ci3

ci5 ci4

vi1 vi2
wi1 wi6

wi3 wi4 wi5

wi2 wi7

Figure 2: The graph Gi corresponding to a variable xi.

exactly one literal with value true, each vertex yj, with j ∈ [m], is adjacent
to exactly one vertex of D and exactly one vertex of P (clearly both vertices
coincide). Thus, D is an EOD set and P is an ECD set in GF and, as a
consequence, GF is an EOCD graph.

Conversely, assume that GF is an EOCD graph. Let D be an EOD set
and P an ECD set in GF . We next collect several facts regarding the sets D
and P .

• The vertex qi (i ∈ [n]) lies in D ∩ P . Indeed, this fact follows because
qi is adjacent to leaves ti3 and ti4.

• The vertices ci1, ci4, ci5 (i ∈ [n]) belong to D. The vertex ci1 belongs
to D because otherwise the 7-cycle on vertices cij cannot be efficiently
open dominated. We then consequently see that also ci4, ci5 ∈ D.

• The vertices ti2, ti3, ti4, ci1 (i ∈ [n]) do not lie in P , and the vertices
ci3, ci6 (i ∈ [n]) lie in P . These facts follow immediately from the first
point.

• Either (ui /∈ D and ui ∈ D) or (ui ∈ D and ui /∈ D). Similarly, either
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(ui /∈ P and ui ∈ P ) or (ui ∈ P and ui /∈ P ). Indeed, since qi ∈ D ∩ P
and ci1 ∈ D, for every i ∈ [n], the vertices ti1, ti2 /∈ D ∪ P . Thus, ti1
must be dominated either by ui or by ui in D and in P .

• If ui ∈ P and ui /∈ P , then vi1 /∈ P and every vertex yj such that the
variable xi belongs to the clause cj does not belong to P . Moreover,
to efficiently dominate the vertices vi2, wi1, . . . , wi7 we clearly have that
wi3 ∈ P and exactly one vertex of the pair wi6, wi7 belongs to P .

• Analogously, if ui /∈ P and ui ∈ P , then we obtain that vi2 /∈ P and
every vertex yj such that the variable xi belongs to the clause cj does
not belong to P . Also, wi5 ∈ P and exactly one vertex of the pair
wi1, wi2 belongs to P .

• If ui ∈ D and ui /∈ D, then either vi1 ∈ D or there exists a vertex
yj ∈ D such that the variable xi appears as positive in the clause
cj. If the latter happens (yj ∈ D), then vi1 /∈ D. It is straightfor-
ward to observe that, in such a case, any subset of vertices of the set
{vi2, wi1, . . . , wi7} does not efficiently open dominate the same set of
vertices {vi2, wi1, . . . , wi7}, which is a contradiction. Thus, yj /∈ D and
therefore vi1 ∈ D. We also observe that wi4, wi5 ∈ D.

• Analogously to the last item, if ui /∈ D and ui ∈ D, then vi2, wi3, wi4 ∈
D.

As a consequence of the above facts, we have that either ui, vi1 ∈ D or
ui, vi2 ∈ D, and either ui ∈ P or ui ∈ P . Now, we say that a subgraph Gi of
GF , corresponding to a variable xi, is nice if either ui ∈ D∩P or ui ∈ D∩P .
Assume that there exists Gi which is not nice, i.e., ui, ui /∈ D ∩ P . Hence,
either ui ∈ D and ui ∈ P or ui ∈ P and ui ∈ D. Consider a clause cj such
that xi ∈ cj. Hence, yj is dominated either by ui or by ui from Gi, which
means either by D or by P , say D. Therefore, there must exist another
variable x` ∈ cj, such that yj is dominated also by P and not by D. This
implies that G` is not nice as well. Notice that for the third literal xk ∈ cj, Gk

must be nice. In general, for every clause cj, either all three corresponding
graphs are nice, or exactly one is nice and two are not. Moreover, if the later
is true, then yj is not dominated from D and from P by the nice subgraph.

Let Pi = P ∩ V (Gi) (i ∈ [n]). For every not nice graph Gi we exchange
some vertices of Pi as follows. If ui ∈ Pi, then P ′i = (Pi−{ui, wi3, wi6, wi7})∪
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{ui, wi2, wi5}, and if ui ∈ P , then P ′i = (Pi−{ui, wi5, wi1, wi2})∪{ui, wi3, wi7}.
If Gi is nice, then P ′i = Pi. We claim that P ′ = ∪ni=1P

′
i is an ECD set, such

that together with D every subgraph Gi is nice. Clearly P ′i is an ECD set
for Gi by the items above. If some yj was dominated by a vertex ui (or by
ui) which was in Pi but not now in P ′i , then yj is now dominated either by
u` or by u`, where xi and x` are those variables from the clause cj, for which
Gi and G` were not nice. Thus, P ′ is an ECD set. Moreover, the EOD set
D and the ECD set P ′ lead to the fact that every Gi is nice. Since D is
an EOD set and P ′ is an ECD set, then every vertex yj corresponding to a
clause is adjacent to exactly one vertex ui or ui of Gi. Now, if ui ∈ D ∩ P ′,
then we set the variable xi as true, otherwise (if ui ∈ D ∩ P ′) set xi as false.
It clearly follows that such an assignment is a truth assignment in exactly
one literal in every clause for F and the proof is complete. �

In view of Theorem 3.1, it is reasonable to try to find some special classes
of graphs for which the EOCD Problem is polynomial. Simple examples
are provided by the paths Pn which are EOCD graphs if and only if n 6≡ 1
(mod 4) and the cycles Cn which are EOCD graphs if and only if n ≡ 0
(mod 12). Note also that a complete bipartite graph Kr,t is an EOCD graph
if and only if r = 1 or t = 1. Moreover, the hypercube Qn is an EOCD graph
if and only if n = 1. Indeed, suppose that Qn, n ≥ 1, is an EOCD graph. As
Qn is n-regular, its order must be divisible by n (because it admits an EOD
set) as well as by n+ 1 (since it admits an ECD set). Since the order of Qn

is 2n, this is only possible if n = 1.
We end this section with a discussion on extreme cases with respect to

the structure of EOCD graphs as described in Section 2.

Theorem 3.2. If G is a graph on n vertices and m edges, then it can be
decided in O(nm) time whether G is an EOCD graph with empty P −D.

Proof. Let G be a graph. Clearly, components which are isomorphic to K2

(if they exist) do not influence the fact that G is an EOCD graph or not.
Hence we may restrict our attention to the case when G has no components
isomorphic to K2. If there exists no degree 1 vertex, then by Proposition 2.2,
G is not an EOCD graph with empty P −D. Let P be the set of all support
vertices of degree one vertices. For every support from P choose exactly one
neighbor of degree 1 and let D be a set containing P as well as the chosen
vertices of degree 1. By Proposition 2.2 one only needs to check if D and P
are an EOD set and an ECD set of G, respectively. Even more, it is clear

10



that P is an ECD set in G if and only if D is an EOD set of G. Hence it
is enough to check whether the union of closed neighborhoods centered at P
covers V (G) and whether these closed neighborhoods have pairwise empty
intersection. The first task can be clearly done in O(m) time. For the second
task it suffices to check if the distance between any two different vertices
from P is at least 3. Clearly, this can be done in time O(mn), if we start the
BFS algorithm in an arbitrary vertex of P . �

We end the section with a question about the other extremal case.

Problem 3.3. Can it be checked in polynomial time whether G is an EOCD
graph with empty D ∩ P?

4. EOCD trees

Let T ′ be an EOCD tree with an EOD set D′ and an ECD set P ′. We
now introduce five operations that construct larger EOCD trees from T ′. In
the main theorem of this section we will then prove that these operations are
characteristic for EOCD trees. The operations are illustrated in Fig. 3 where
we use the convention introduced in Section 2: a vertex from D ∩ P is black
squared, a vertex from P −D is white squared, a vertex from D−P is black
circled, and the remaining vertices are white circled.

(O1) For u ∈ D′∩P ′ we obtain T from T ′ by adding a vertex v and edge uv.

(O2) For w /∈ D′ we obtain T from T ′ by adding a path xuv and edge wx.

(O3) For t ∈ D′−P ′ we obtain T from T ′ by adding a path zwxuv and edge
tz.

(O4) For a path vux with deg(v) = 1, deg(u) = 2, u, x ∈ D′, and u ∈ P ′, we
obtain T from T ′ by adding a vertex y and edge yx.

(O5) For a path uxwzw′x′ with deg(u) = deg(x′) = 1, deg(x) = deg(w) =
deg(w′) = 2, u, x, w′, x′ ∈ D′, and x,w′ ∈ P ′, we obtain T from T ′ by
adding a vertex v and edge uv.

The main difference between these five operations is that for O1 the origi-
nal EOD set and ECD set do not change, for O2 and O3 we add some vertices
to the EOD set and to the ECD set, while for O4 and O5 the EOD set remains
the same and we exchange some vertices in the ECD set.
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T ′O1:
u v

T ′O3:
t z w x u v

T ′O2:
w x u v or T ′

w x u v

T ′O4:

x

u

v

7→ T ′

x

u

v

y

T ′O5: u x w
z
w′ x′

7→ T ′
u x w

z
w′ x′

v

Figure 3: Operations O1 −O5.

Theorem 4.1. A tree T is an EOCD graph if and only if T can be obtained
from K2 by a sequence of operations O1 −O5.

Proof. Assume first that T is a tree obtained from K2 by a sequence of
operations O1 − O5. We will show that T is an EOCD tree by induction on
the length k of the mentioned sequence. If k = 0, then T ∼= K2 which is
an EOCD graph. Let now k > 0 and let T ′ be a tree obtained from K2 by
using the same sequence as for T , but without including the last step. By
the induction hypothesis, T ′ is an EOCD tree with an EOD set D′ and an
ECD set P ′. If T is obtained from T ′ by operation O1, then clearly T is an
EOCD tree for D = D′ and P = P ′ (see the upper left diagram of Fig. 3).
If T is obtained from T ′ by operation O2, then T is an EOCD tree where
D = D′ ∪ {u, v}. The set P depends whether w is in P ′ or not. If w ∈ P ′,
then P = P ′ ∪ {v}, and if w /∈ P ′, then P = P ′ ∪ {u} (see the diagrams
of the second line of Fig. 3). Suppose now that we apply operation O3 on
T ′ to get T . Again it is straightforward to see that T is an EOCD graph
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for D = D′ ∪ {u, x} and P = P ′ ∪ {v, w} (see the upper right diagram of
Fig. 3). If operation O4 is applied to get T from T ′, then we set D = D′

and P = (P ′ − {u}) ∪ {v, y} and T is an EOCD tree again (see the diagram
in the third line of Fig. 3). Finally, if T is obtained from T ′ by operation
O5, then it is not hard to see that T is an EOCD tree for D = D′ and
P = (P ′ − {x,w′}) ∪ {v, x′, w} (see the lower diagram of Fig. 3).

To prove the converse, let T be an EOCD tree with an EOD set D and an
ECD set P . Let r ∈ V (T ) be a vertex of T and consider T as a rooted tree
with the root r. Let v be a vertex of degree 1 of T that is at the maximum
distance from r and let u be the support vertex of v. Clearly u ∈ D, while
either u ∈ P or v ∈ P . We call a neighbor y of x a down- (resp. up-) neighbor
of x if y is further (resp. closer) from r than x. We proceed by induction on
the number of vertices of T . Clearly, K2 is the smallest EOCD tree, hence
the base of the induction. We distinguish the following cases.

Case 1: v /∈ P and v /∈ D.
In this case u ∈ P ∩D. We obtain a tree T ′ from T by deleting v. Clearly
T ′ is an EOCD tree with D′ = D and P ′ = P . By the induction hypothesis
T ′ can be built from K2 by a sequence of operations O1 −O5. If we add the
operation O1 at the end of this sequence, then we obtain T from K2 by a
sequence of operations O1 −O5.

Case 2: v /∈ P and v ∈ D.
Then u ∈ P ∩ D. If deg(u) = 1, then T ∼= K2 and we are done. So, let
deg(u) > 1. If u is the support for more degree 1 vertices than v, then we
have Case 1. (Notice that the same occurs when u = r.) Thus let deg(u) = 2.
Let x be the up-neighbor of u. If deg(x) > 2, then x has a down-neighbor y
different from u. If deg(y) = 1, then we have a contradiction with P being
an ECD set of T , since u ∈ P implies that y and x cannot be in P and
therefore y is neither dominated by P nor y ∈ P . So deg(y) > 1 and let
y′ be a down-neighbor of y. Clearly, deg(y′) = 1 by the choice of v. This
yields a contradiction with D being an EOD set of T , since y cannot be in
D because x is already dominated by u ∈ D. Thus, deg(x) = 2 and let w
be the up-neighbor of x or the other down-neighbor when x = r. By the
choice of v, x must be different from r or we obtain the same problems as
for deg(x) > 2. Since x is the neighbor of u ∈ D ∩ P , we have that w /∈ D
and w /∈ P . Let T ′ be the tree obtained from T by deleting vertices v, u, x.
Then T ′ is an EOCD tree with D′ = D − {u, v} and P ′ = P − {u}. By the
induction hypothesis, T ′ can be built from K2 by a sequence of operations

13



O1−O5. Adding operation O2 at the end of this sequence we obtain T from
K2 by a sequence of operations O1 −O5.

Case 3: v ∈ P ∩D.
If deg(u) = 1, then T ∼= K2 and we are done. If deg(u) > 2, then we have a
contradiction with P being an ECD set. Thus deg(u) = 2. Also notice that
u 6= r, since otherwise T would be isomorphic to P3, which is not possible
with v ∈ P . Let x be the up-neighbor of u. Clearly x /∈ D ∪ P . If x had
a down-neighbor different from u or if x = r, then we have a contradiction
with D being an EOD set of T . Thus, also deg(x) = 2 and let w be the
up-neighbor of x. Notice that now w must be in P to dominate x, but again
w /∈ D. Let T ′ be the tree obtained from T by deleting vertices v, u, x.
Clearly T ′ is an EOCD tree with D′ = D−{u, v} and P ′ = P −{v}. By the
induction hypothesis T ′ can be built from K2 by a sequence of operations
O1−O5. Adding the corresponding operation O2 at the end of this sequence
we obtain T from K2 as desired.

Case 4: v ∈ P and v /∈ D.
In this case u /∈ P . If u = r, then we have a contradiction with P being
an ECD set when deg(u) > 1 and with D being an OED set if deg(u) = 1.
So we may assume that u 6= r. Clearly deg(u) = 2, otherwise we have a
contradiction again with P being an ECD set of T and by the choice of v.
Let x be the up-neighbor of u. Since v /∈ D and v ∈ P , we have that x ∈ D
and x /∈ P , respectively. The only second down-neighbor of x is v, otherwise
we have a contradiction with D being an EOD set for T according to the
choice of v. Suppose that x has a down-neighbor y of degree 1. Clearly,
v ∈ P implies x /∈ P and therefore y ∈ P and y is the unique down-neighbor
of x of degree 1. Thus vuxy is a path. Let T ′ be a tree obtained from T
by deleting the vertex y. Clearly T ′ is an EOCD tree with D′ = D and
P ′ = (P − {v, y}) ∪ {u}. By the induction hypothesis T ′ can be built from
K2 by a sequence of operations O1 − O5. If we add the operation O4 at the
end of this sequence, then we obtain T from K2 by a sequence of operations
O1 −O5.

Suppose now that x has no down-neighbor of degree 1. If x = r, then
we have a contradiction with P being an ECD set for T . Hence x 6= r and
deg(x) = 2 holds. Let w be the up-neighbor of x. Clearly, w ∈ P and w /∈ D.
If deg(w) ≥ 3, then w has a down-neighbor x′ other than x. To dominate
x′ from D, the vertex x′ must have a down-neighbor u′ which is in D and
the same holds for u′, which must have a down-neighbor v′ which is also in
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D. Moreover, to dominate x′, u′ and v′ from P exactly once, also v′ ∈ P
holds. Notice that deg(x′) = 2 according to that D is an EOD set of T , and
deg(u′) = 2 since P is an ECD set of T . The situation for v′ is now as in
Case 3 and we are done if deg(w) ≥ 3.

Thus, from now on, we consider deg(w) = 2 and let z be the up-neighbor
of w (or down-neighbor if w = r). Again z /∈ P since w ∈ P , and z /∈ D
since x ∈ D. We consider the following subcases.

Subcase 4.1: deg(z) ≥ 3.
Let w′ 6= w be a down-neighbor of z. Since z is dominated from P by w,
w′ is not in P and therefore, w′ must have a down-neighbor x′ which is in
P . Also, x′ cannot have a second down-neighbor by the choice of v and the
structure of P . We consider two possibilities regarding the vertex w′.

Subcase 4.1.1: w′ /∈ D.
In this subcase w′ must be dominated by a down-neighbor in D. If x′ /∈ D,
then we have a contradiction since x′ has no second-down neighbor and D is
an EOD set. Hence, x′ ∈ D and x′ must have a down-neighbor u′ ∈ D for x′

to be dominated by D. Clearly u′ /∈ P . If x′ has another down-neighbor u′′,
then we obtain a tree T ′ from T by deleting v. Clearly T ′ is an EOCD tree
with D′ = D and P ′ = P . By the induction hypothesis, T ′ can be built from
K2 by a sequence of operations O1 − O5. If we add the operation O1 at the
end of this sequence, then we obtain T from K2 by a sequence of operations
O1 −O5. So we may assume that deg(x′) = 2. If deg(w′) = 2, then let T ′ be
a tree obtained from T by deleting vertices u′, x′, w′. Clearly T ′ is an EOCD
tree with D′ = D−{u′, x′} and P ′ = P −{x′}. By the induction hypothesis,
T ′ can be built from K2 by a sequence of operations O1 − O5. Adding the
corresponding operation O2 at the end of this sequence we obtain T from K2

as desired. On the other hand, if w′ has a down-neighbor x′′ other than x′,
then x′′ is not in D and not in P , since w′ is already dominated by x′ in both
P and D. Moreover, x′′ must be dominated by its down-neighbor u′′ in both
P and D. Furthermore, u′′ is dominated by its down-neighbor v′′ in D. If
deg(u′′) > 2, then we have Case 1. So let deg(u′′) = 2. If deg(x′′) > 2, we
have a contradiction with D being an EOD set of T or by the choice of v.
Hence, deg(x′′) = 2 and we proceed like in Case 2 for v′′, u′′, x′′.

Subcase 4.1.2: w′ ∈ D.
Since z /∈ D, also in this subcase w′ must have a down-neighbor in D.
Suppose first that x′ ∈ D (and recall that x′ ∈ P ). If x′ has a down-neighbor
u′, then deg(u′) = 1 by the choice of v and since P is an ECD set. Let T ′
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be a tree obtained from T by deleting u′. Clearly T ′ is an EOCD tree with
D′ = D and P ′ = P . By the induction hypothesis T ′ can be built from K2 by
a sequence of operations O1−O5, and attaching operation O1 to this sequence
we obtain T from K2 as desired. Thus, we may assume that deg(x′) = 1.
Observe that deg(w′) = 2, otherwise we have a contradiction with the choice
of v, since P is an ECD set and since D is an EOD set. Let T ′ be a tree
obtained from T by deleting v. Clearly T ′ is an EOCD tree with D′ = D
and P ′ = (P − {x′, w, v}) ∪ {x,w′}. By the induction hypothesis, T ′ can be
built from K2 by a sequence of operations O1 − O5. Now, adding operation
O5 at the end of such sequence produces our desired result. Next, let x′ /∈ D.
Clearly δ(x′) = 1, since D is an EOD set and by the choice of v. Let w now be
dominated by x′′ ∈ D. To dominate x′′ from P , let u′′ be its down-neighbor.
Also, δ(u′′) = 1 since D is an EOD set and by the choice of v. Observe that
δ(x′′) = 2 since any other down-neighbor u′′′ of x′′ would required a down-
neighbor v′ in P , which is not possible since D is an EOD set and by the
choice of v. Let T ′ be a tree obtained from T by deleting vertex x′. Clearly
T ′ is an EOCD tree with D′ = D and P ′ = (P − {x′, u′′}) ∪ {x′′}. By the
induction hypothesis, T ′ can be built from K2 by a sequence of operations
O1−O5. If we add operation O4 at the end of this sequence, then we obtain
T from K2 by a sequence of operations O1 −O5.

Subcase 4.2: deg(z) = 2.
Let T ′ be a tree obtained from T by deleting v, u, x, w, z. Clearly T ′ is an
EOCD tree with D′ = D − {u, x} and P ′ = P − {v, w}. Applying the
induction hypothesis once more and ending with an additional operation O3,
we again obtain T from K2 as desired and we are done. �

It is not obvious that all the five operations are necessary to characterize
EOCD trees. To see that this is the case, note first that P3 can be obtained
from K2 only by operation O1 and that the sequence of operations O1, O4

is unique for P4. Similarly, the sequence of operations O1, O2 is unique for
P6. To infer that operations O3 and O5 are also indispensable, consider the
following more elaborate examples.

Let T be the tree obtained from K1,3 by subdividing one of its edges with
five vertices and each of the other two edges with eight vertices. A short
analysis reveals that T is an EOCD tree where the vertex of degree 3 must
be in D ∩ P and that its neighbor on the shortest leg must be in D. After
this observation, operation O3 cannot be avoided when constructing T in
view of Theorem 4.1. For operation O5, let P+

22 be the graph obtained from
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the path on 22 vertices v1, . . . , v22, by adding vertices u,w, x, y and edges
v5u, uw, v18x, xy. One can observe that P+

22 is an EOCD tree with a unique
EOD set D and a unique ECD set P . From here it can be concluded that
operation O5 is needed to build P+

22 from K2 in view of Theorem 4.1. We
leave the details to the reader.

5. EOCD Sierpiński graphs

The Sierpiński graphs Snp were introduced in [26] and afterwards investi-
gated from many different aspects. Here we only mention recent studies of
Sierpiński graphs related to codes and domination [11, 17, 37], their shortest
paths [22, 43], and an appealing generalization of Sierpiński graphs due to
Hasunuma [18] that in turn extends several known results about Sierpiński
graphs. For the additional vast bibliography on these graphs we refer to [18].

The Sierpiński graphs Snp , p ≥ 1, n ≥ 0, are defined as follows. S0
p = K1

for any p. For n ≥ 1, the vertex set of Snp is [p]n0 , we shall denote its elements
by s = sn . . . s1. Vertices sn . . . s1 and tn . . . t1 are adjacent if and only if there
exists a δ ∈ [n] such that

(i) sd = td, for d ∈ [n]− [δ];

(ii) sδ 6= tδ; and

(iii) sd = tδ and td = sδ for d ∈ [δ − 1].

Note that Sn1
∼= K1 (n ≥ 1), Sn2

∼= P2n (n ≥ 1), and S1
p
∼= Kp (p ≥ 1). Hence,

for our purposes we may restrict the attention to the Sierpiński graphs Snp
with p ≥ 3 and n ≥ 2.

The edge set of Snp can be equivalently defined recursively as

E(Snp ) = {{is, it} : i ∈ [p]0 , {s, t} ∈ E(Sn−1p )}∪{{ijn−1, jin−1} | i, j ∈ [p]0 , i 6= j} .

This implies that Snp can be constructed from p copies of Sn−1p as follows.
For each j ∈ [p]0 concatenate j to the left of the vertices in a copy of Sn−1p

and denote the obtained graph with jSn−1p . Then for each i 6= j join copies

iSn−1p and jSn−1p by the single edge e
(n)
ij = {ijn−1, jin−1}.

If 1 ≤ d < n and s ∈ [p]d0, then the subgraph of Snp induced by the vertices
whose labels begin with s is isomorphic to Sn−dp . It is denoted with sSn−dp in
accordance with the above notation jSn−1p . Note that Snp contains pd pairwise
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disjoint subgraphs sSn−dp , s ∈ [p]d0. In particular, Snp contains pn−1 pairwise

disjoint p-cliques sS1
p , s ∈ [p]n−10 . The vertices in, i ∈ [p]0, of Snp are called

extreme vertices (of Snp ). The clique in which an extreme vertex lies is called
an extreme clique.

After this preparation we can state the following result which asserts,
roughly speaking, that precisely one half of the Sierpiński graphs are EOCD
graphs.

Theorem 5.1. Let p ≥ 3 and n ≥ 2. Then Snp is an EOCD graph if and
only if p is even.

Proof. Suppose that p is odd and that D is an EOD set of Snp . Observe first
that no extreme vertex of Snp lies in D because otherwise D would contain
two vertices from the same extreme clique, which is not possible. Hence every
vertex of D is of degree p and consequently |D| = |V (Snp )|/p = pn−1. Since
this is at the same time the number of all p-cliques of Snp , it follows that D
must have precisely one vertex in each p-clique of Snp . By the same argument
as above, a vertex s of D can only be covered by a vertex t of D that lies in a
p-clique that is neighboring the p-clique of s. This means that the vertices of
D can be partitioned into disjoint pairs. But p is odd and hence |D| = pn−1

is odd as well, hence D does not exist.
Assume now that p is even, say p = 2k, k ≥ 2. We first recall from [27]

that Snp contains an ECD set. In order to prove that Snp is an EOCD graph
it thus remains to prove that it contains an EOD set. For this sake set

D2i = {s(2i)(2i+ 1) : s ∈ [p]n−20 }, 0 ≤ i ≤ k − 1 ,

and
D2i+1 = {s(2i+ 1)(2i) : s ∈ [p]n−20 }, 0 ≤ i ≤ k − 1 .

We claim that

D =
2k−1⋃
i=0

Di

is an EOD set of Snp . Note first that for any i ∈ [k]0, |D2i| = |D2i+1| = pn−2.
Since the sets Di, i ∈ [2k]0, are clearly pairwise disjoint, it follows that
|D| = 2kpn−2 = pn−1. Let now sS1

p , s = sn . . . s2 ∈ [p]n−10 , be an arbitrary
p-clique of Snp . If s2 is even, say s2 = 2i, then s(2i + 1) ∈ D ∩ sS1

p , and if
s2 is odd, say s2 = 2i+ 1, then s(2i) ∈ D ∩ sS1

p . If follows that any p-clique
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contains a vertex of D and consequently it contains exactly one such vertex.
Since by the construction of the sets D2i and D2i+1 any vertex of D has a
neighbor in D, we conclude that D is indeed an EOD set of Snp . �

Combining the construction of the EOC sets in the proof of Theorem 5.1
with Proposition 1.1(ii) we get:

Corollary 5.2. If p ≥ 4 is even and n ≥ 2, then γt(S
n
p ) = pn−1.
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[26] S. Klavžar, U. Milutinović, Graphs S(n, k) and a variant of the Tower
of Hanoi problem, Czechoslovak Math. J. 47(122) (1997) 95–104.

[27] S. Klavžar, U. Milutinović, C. Petr, 1-perfect codes in Sierpiński graphs,
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Sierpiński-like graphs, Theory Comput. Syst. 53 (2013) 365–385.

[38] A. McRae, Generalizing NP-completeness Proofs for Bipartite Graphs
and Chordal Graphs, PhD Thesis, Clemson University, 1994.

[39] M. Mollard, On perfect codes in Cartesian products of graphs, European
J. Combin. 32 (2011) 398–403.

[40] C. B. Smart, P. J. Slater, Complexity results for closed neighborhood
order parameters, Congr. Numer. 112 (1995) 83–96.

[41] T. Tamizh Chelvam, Efficient open domination in Cayley graphs, Appl.
Math. Lett. 25 (2012) 1560–1564.

[42] D. T. Taylor, Perfect r-codes in lexicographic products of graphs, Ars
Combin. 93 (2009) 215–223.

[43] B. Xue, L. Zuo, G. Wang, G. Li, Shortest paths in Sierpiński graphs,
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