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Abstract

Let G be a median graph on n vertices and m edges and let & be the number of equivalence
classes of the Djokovié’s relation @ defined on the edge-set of G. Then 2n—m—k <2. Moreover,
2n—m—k =2 if and only if G is cube-free. (© 1998 Elsevier Science B.V. All rights reserved

A median graph is a connected graph such that, for every triple of vertices u,v,w,
there is a unique vertex x lying on a geodesic (i.e. shortest path) between each pair of
u,v,w. By now, the class of median graphs is well studied and a rich structure theory
is available, see e.g. [5]. In this note, we present an Euler-type formula for median
graphs, which involves the number of vertices r, the number of edges m, and the
number of @-classes £ (or, equivalenty, the number of cutsets in the cutset coloring,
cf. [6,7]). The formula is an inequality, where equality is attained if and only if the
median graph is cube-free.

For u, v € V(G) let dg(u, v) denote the length of a shortest path in G from u to v.
A subgraph H of G is convex, if for any u, v € V(H), all shortest paths between u
and v belong to H. Clearly, a convex subgraph is connected.

The Djokovic’s relation © introduced in [1] is defined on the edge-set of a graph in
the following way. Two edges e = xy and f = uv of a graph G are in relation @ if

do(x,u) +dg(y,v) # do(x,0) + dg(y,u).
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Clearly, © is reflexive and symmetric. If G is bipartite, relation @ can be rewritten as
follows: e =xy and f = uv are in relation @ if

d(x,u) =d(y,v) and d(x,v) =d(y,u).

Among bipartite graphs, @ is transitive precisely for partial cubes (i.e. isometric sub-
graphs of hypercubes), as proved by Winkler in [9]. Since median graphs form a
subclass of partial cubes, @ is in particular transitive for median graphs. Thus @ is a
congruence on median graphs. For more information on @ we refer to [2,3].

Let G = (V,E) be a connected graph. For two subgraphs G, = (V1,E1) and G, =
(V2, E2) of G, the intersection G NG, is the subgraph of G with vertex-set ;N ¥, and
edge-set £) N E,, and the union Gy U G, is the subgraph of G with vertex-set V; U V>
and edge-set £y U E>. A convex cover Gy, G, of G consists of two convex subgraphs
G; and G, of G such that Gy = G, N G, is non-empty and G = G U G,. Note that
there are no edges between G, — G, and G — G|, and that G is convex.

Let G’ be a connected graph, and let G{, G} be a convex cover of G’ with Gy =
G| N G}. The expansion of G’ with respect to G|, G} is the graph G constructed as
follows. Let G; be an isomorphic copy of G/, for i = 1,2, and, for any vertex #’ in
Gy, let u; be the corresponding vertex in G;, for i = 1,2. Then, G is obtained from
the disjoint union G; U G,, where u; and u, are joined by an edge for each &’ in G.
For example, if G’ = G| = G} = Oy, then G = Q,41, and if G’ is a tree and G| = G’
and G, = {u'}, then G is obtained from G’ by adding a new vertex pending at .
We call G, G; a split in G. Note that the above notion of expansion is called convex
Cartesian expansion in the much more general setting of [8]. We will say that G is
obtained from a graph H by an expansion procedure if we obtain G from H by a
sequence of expansions.

An important tool in the study of median graphs is the following theorem from [6,7].

Theorem 1. 4 graph is a median graph if and only if it can be obtained from the
one vertex graph by an expansion procedure.

Here we need two consequences of this theorem. For the first one see, for instance
[3,6,7].

Corollary 2. Let G be a median graph and let F be a @-equivalence class. Then F
consists of the edges between the parts of a split in G.

A graph is called cube-free if it does not contain the 3-cube as an induced subgraph.
Suppose G is a median graph which is an expansion with respect to G|, G and assume
that G = G|} N G} contains a cycle. Let C,, n>4, be a shortest cycle in G. Clearly,
C, is an even isometric cycle. Let u, v and w be three consecutive vertices of C and
let x be the antipodal vertex of v on C. Then the median y of u, w and x together with
u, v and w form a C; in Gj and by Theorem 1 we find a 3-cube in G. In conclusion,
we have the following:
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Corollary 3. A4 graph is a cube-free median graph if and only if it can be obtained
from the one vertex graph by an expansion procedure, in which every expansion step
is done with respect to a convex cover with a convex tree as intersection.

We are now ready to state our principal result.

Theorem 4. Let G be a median graph with n vertices, m edges and k equivalence
classes of the relation ©. Then

2n—m— k<2.
In addition,
2n—-m—k=2
if and only if G is cube-free.

Proof. We prove the inequality by induction on the number of vertices using Theorem
1. The inequality reduces to 2<2 if G = K. So assume that G is the expansion of
the median graph G’ with respect to its convex subgraphs G|, G} with Gj = G| N G}.
By induction we have 2n’ —m’ — k' €2 for G', where k', n', m' are the corresponding
parameters of G'. Let ¢ be the number of vertices in Gj, so that G(’), being connected,
has at least £ — 1 edges. Then we have n = n’ + ¢ and m>m’ + 2¢ — 1. Moreover, by
Corollary 2, we also have k = k' + 1. So

I—m—k <2An +1)—(m 42— 1)— (K +1)
=2n" —m -k

<2

Clearly, we have equality 2n — m — k = 2 if and only if, in all of the expansions to
obtain G from K|, the expansion was with respect to two isometric subgraphs having a
tree as intersection. By Corollary 3, this is equivalent with G being a cube-free median
graph. 0O

For the simplest example of how to use Theorem 4, consider the 6-cycle Ce. Then
n=m==6and k = 3, hence 2n — m — k = 3 and we can conclude that C¢ is not a
median graph. For a less trivial example consider the graph G from Fig. 1. We have
n=14, m=21and k = 3. Thus 2n—m—k = 4 and so also G is not a median graph.

Consider the Cartesian product of the claw-graph K ; with the path on three vertices
P;3 to see that cube-free median graphs are not planar in general. However, if the
graph in question is a planar, cube-free median graph, then combining Euler’s formula
n—m+ f = 2 with equality 2n — m — k = 2 of Theorem 4 we immediately get the
following corollary due to Janaqi [4]:
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Fig. 1. A graph which is not median.

Corollary 5. Let G be a planar, cube-free median graph with n vertices and k equiv-
alence classes of the relation ©. Then the number of faces in its planar embedding
is equal to n-k.
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