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Abstract

Given a graph G, the general position problem is to find a largest set S of vertices
of G such that no three vertices of S lie on a common geodesic. Such a set is called
a gp-set of G and its cardinality is the gp-number, gp(G), of G. In this paper,
the edge general position problem is introduced as the edge analogue of the general
position problem. The edge general position number, gpe(G), is the size of a largest
edge general position set of G. For r-dimensional hypercube Qr, it is proved that
gpe(Qr) = 2r and for arbitrary tree T , it is shown that gpe(T ) is the number of
its leaves. The value of gpe(Pr �Ps) is determined for every r, s ≥ 2. To derive
these results, the theory of partial cubes is used. Mulder’s meta-conjecture on median
graphs is also discussed along the way.
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1 Introduction

The geometric concept of points in general position, the still open Dudeney’s no-three-
in-line problem [6] from 1917 (see also [18, 22]), and the general position subset selection
problem [8, 28] from discrete geometry, all motivated the introduction of a related concept
in graph theory as follows [19]. Let G = (V (G), E(G)) be a graph. Then the objective of
the general position problem is to find a largest set of vertices S ⊆ V (G), called a gp-set of
G, such that no vertex of S lies on a geodesic between two other vertices of S. The general
position number (gp-number for short), gp(G), of G is the cardinality of a gp-set of G.
We point out that a couple of years earlier and in different terminology, the graph theory
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general position problem was considered in [32] and that in the special case of hypercubes
the problem was much earlier studied by Körner [17].

Following the above listed seminal papers, the general position problem has been ex-
tensively investigated [1, 9, 13, 15, 16, 20, 25, 27, 29, 30, 31]. Let us emphasize some
selected results. From [19] we recall that the general position problem is NP-complete and
that in a block graph, the set of all simplicial vertices forms a gp-set. In [1] it is proved that
S ⊆ V (G) is a general position set if and only if the components of the subgraph induced
by S are complete subgraphs, the vertices of which form an in-transitive, distance-constant
partition of S. In the same paper a formula for the gp-number of the complement of a
bipartite graph is deduced and simplified for the complements of trees, of grids, and of
hypercubes. In [16] the general position problem has been studied on different product
graphs and connected with strong resolving graphs. It should be added that the concept
of the general position set has been recently [14] extended to d-general position sets.

The main topic of interest related to the general position problem thought was the
Cartesian product operation. Let us denote by Xn the Cartesian product of n factors each
isomorphic to X, and let P∞ be the two-way infinite path. One of the main results from [19]
asserts that gp(P 2

∞) = 4. In the same paper it was also proved that 10 ≤ gp(P 3
∞) ≤ 16.

The lower bound 10 was improved to 14 in [13]. These efforts culminated in [15] where it
is proved that if n ∈ N, then gp(Pn

∞) = 22
n−1

. The general position problem in Cartesian
products has been further investigated in [13, 30, 31]. In particular, it was proved in [30]
that gp(G�H) ≤ n(G) + n(H) − 2, where the equality holds if and only if G and H
are both generalized complete graphs. Moreover, the main result of [31] asserts that the
general position number is additive on Cartesian products of trees.

In this paper, the edge version of the graph theory general position problem is intro-
duced. A set S of edges of graph G is said to be an edge general position set if no geodesic
of G contains three edges of S. An edge general position set of maximum cardinality is
called a gpe-set of the graph. An edge general position problem is to find a gpe-set. The
cardinality of a maximum edge general position set is called the edge general position num-
ber (in short gpe-number) of G, to be denoted by gpe(G). Our results indicate that the
edge general position problem is a concept that deserves to be investigated, in particular,
it is intrinsically different from the general position problem.

We proceed as follows. In the next section we give further definitions needed and prove
some preliminary results. In Section 3 we first prove that gpe(Qr) = 2r. This is in contrast
with the fact that determining gp(Qr) appears to be very difficult [17]. We also prove that
the leaves of a tree form an gpe-set of it. These two results are then used to discuss
Mulder’s meta-conjecture on median graphs. In Section 4 we determine gpe(Pr �Ps) for
all r, s ≥ 2. Here the distinct difference between the vertex and the edge version of the
general position problem is that the edge general position number of the n × n grid is
proportional to n whereas the general position number of the n×n grid remains constant
even when n tends to infinity. Moreover, we prove that the gpe-set of Pr �Ps is unique as
soon as r, s ≥ 5, another striking difference with the vertex version.
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2 Preliminaries

In this section we first state further concepts and the notation needed. We continue with
some preliminary and auxiliary results.

Unless stated otherwise, graphs considered in this paper are connected. Let G =
(V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). Its order and size will
be respectively denoted by n(G) and m(G). Let Pn denote the path on n vertices and
Cn the cycle on n vertices. The distance dG(u, v) between vertices u and v of G is the
number of edges on a shortest u, v-path. Shortest paths are also known as isometric paths
or geodesics. The diameter diam(G) of G is the maximum distance between u and v of
G. A subgraph H of a graph G is isometric if dH(x, y) = dG(x, y) holds for every pair of
vertices x, y of H. A pendant vertex of a graph is a vertex of degree one, the edge incident
to it is a pendant edge.

The Cartesian productG�H of graphs G and H is defined on the vertex set V (G�H) =
V (G)× V (H), vertices (g, h) and (g′, h′) are adjacent if either gg′ ∈ E(G) and h = h′, or
g = g′ and hh′ ∈ E(H). If h ∈ V (H), then the subgraph of G�H induced by the vertices
(g, h), g ∈ V (G), is a G-layer and is denoted by Gh. Analogously, if g ∈ V (G), then the
H-layer gH is the subgraph of G�H induced by the vertices (g, h), h ∈ V (H). G-layers
and H-layers are isomorphic to G and to H, respectively.

The r-dimensional hypercube Qr, r ≥ 1, is a graph with V (Qr) = {0, 1}r, and there is
an edge between two vertices if and only if they differ in exactly one coordinate. That is,
if x = (x1, . . . , xr) and y = (y1, . . . , yr) are vertices of Qr, then xy ∈ E(Qr) if and only if
there exists j ∈ [r] such that xj 6= yj and xi = yi for every i 6= j. Note that n(Qr) = 2r

and m(Qr) = r2r−1. Note also that Qr = Qr−1�K2 holds for r ≥ 2.
If diam(G) = 2, then a geodesic of G contains at most two edges. Hence we have the

following observation.

Lemma 2.1 If diam(G) = 2, then gpe(G) = m(G).

Lemma 2.1 in particular implies that gpe(Kn) =
(
n
2

)
and that gpe(Cn) = n for 3 ≤

n ≤ 5. If n ≥ 6, then it is easy to observe that gpe(Cn) = 4.
An isometric path edge cover of a graph G is a collection P of isometric paths of G

such that each edge of G lies on at least one of the paths from P. The cardinality of a
smallest isometric path edge cover is the isometric path edge number of G and denoted by
ipe(G). The following observation will turn out to be very useful, hence we state it as a
lemma for further use.

Lemma 2.2 If G is a connected graph, then gpe(G) ≤ 2 · ipe(G).

Proof. Let P be an isometric path edge cover of G, where |P| = ipe(G). Since paths from
P are isometric, each of them contains at most two edges from an arbitrary edge general
position set. Hence the conclusion. �
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3 Hypercubes, trees, and Mulder’s meta-conjecture

A graph G is a partial cube if G is an isometric subgraph of some hypercube. Partial cubes
have application in many different areas ranging from interconnection networks [10], media
theory [7], till mathematical chemistry, the papers [2, 4] are just a selection of many papers
on the latter applications. For recent developments on the theory of partial cubes we refer
to [3, 21, 23, 26] and references therein.

A key tool in the investigation of partial cubes is the Djoković-Winkler relation Θ [5, 33]
defined as follows. Edges xy and uv of a graph G are in relation Θ if dG(x, u) +dG(y, v) 6=
dG(x, v) + dG(y, u). Winkler [33] proved that a connected graph G is a partial cube if and
only if G is bipartite and Θ is transitive. As Θ is reflexive and symmetric and the edge
set of an arbitrary graph, it partitions the edge set of a partial cube into Θ-classes.

Lemma 3.1 Let G be a partial cube and let F1 and F2 be Θ-classes of G. Then F1 ∪ F2

is an edge general position set of G.

Proof. It is well-known that if P is a shortest path in a graph G, then no two edges of P
are in relation Θ, cf. [11, Lemma 11.1]. Let e, f, g ∈ F1∪F2. Suppose first that e, f, g ∈ F1.
Then no two of these edges lie on a common geodesic. The case e, f, g ∈ F2 is analogous.
Suppose second that, without loss of generality, e, f ∈ F1 and g ∈ F2. But then e and f
are not on a common geodesic. In any case, e, f , and g are not on a common geodesic. �

As a small example consider the partial cube G from Fig. 1. Since the partial cube
has two Θ-classes each containing four edges (marked on the figure), Lemma 3.1 implies
that gpe(G) ≥ 8. On the other hand, it is not difficult to find an isometric path edge
cover of G consisting of four geodesics, hence gpe(G) ≤ 8 by Lemma 2.2. We conclude
that gpe(G) = 8.

Figure 1: A partial cube G.

Theorem 3.2 If r ≥ 2, then gpe(Qr) = 2r.

Proof. It is well-known that hypercubes are partial cubes. Moreover, a Θ-class of a
hypercube is formed by the edges whose endpoints differ in the same, fixed coordinate.
Hence, Qr has r Θ-classes, each containing 2r−1 edges. Lemma 3.1 thus implies that
gpe(Qr) ≥ 2r.
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To prove the reverse inequality we claim the following: if r ≥ 2, then there exists an
isometric path edge cover Pr of Qr, where the paths from Pr can be oriented such that
the endpoints of the paths form one of the bipartition sets of Qr. It is straightforward to
check that the claim holds for r = 2, see the left hand side of Fig. 2 where the circled Q2

is covered with two 2-paths. These two paths end in the two gray vertices which form a
bipartition set of this Q2.

Figure 2: Covering Q3 with four shortest path. The paths are further oriented such that
the endpoints of the paths form one of the bipartition sets.

Let now P ′r be an isometric path edge cover of Qr, r ≥ 2, together with the orientation
of the paths such that the endpoints of the paths form one of the bipartition sets of
Qr. Let further P ′′r be an isometric edge path cover of Qr, where the paths from P ′′r are
orientated such that the endpoints of the paths form the other bipartition set of Qr. The
existence of P ′r will be guaranteed by the induction, while P ′′r can be constructed from P ′r
by applying the automorphism of Qr which assigns to each vertex u the vertex u+00 . . . 01,
where + stands for the component-vise summation modulo 2. (See the right-hand side
of Fig. 2, where P ′′2 is shown with the endpoints of its two shortest paths drawn gray
again.) Consider now Qr+1 as the Cartesian product Qr �K2 with layers Q1

r and Q2
r , and

respective isometric path edge covers P ′r and P ′′r . Then extend each path from P ′r by the
edge from its endpoint in Q1

r to its (unique) neighbor in Q2
r and orient the new edge in this

direction. Note that the new path is a shortest path of Qr+1. Similarly, extend each path
from P ′′r by the edge from its endpoint in Q2

r to its (unique) neighbor in Q1
r and orient the

new edge in this direction. Note that the ends of the paths obtained by extending paths
from P ′r together with the ends of the paths obtained by extending paths from P ′′r form
a bipartition set of Qr+1. (See Fig. 2 again for these extensions and note that their ends
form the bipartition set of Q3 drawn white.) This proves the claim.

It follows from the above proved claim that Qr admits an isometric path edge cover
Pr together with an orientation which reveals that |Pr| is the size of a bipartition set of
Qr, that is, |Pr| = 2r−1. By Lemma 2.2 we conclude that gpe(Qr) ≤ 2r. �
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Another fundamental class of partial cubes is the class of trees for which we have the
following.

Theorem 3.3 If L is the set of pendant edges of a tree T , then gpe(T ) = |L|.

Proof. We first prove that gpe(T ) ≤ |L|. Let S be an edge general position set of T and
suppose that a non-pendant edge, say e, belongs to S. Let T1 and T2 be the components of
T−e. Then E(T1)∩S = ∅ or E(T2)∩S = ∅. Indeed, if there would be edges e′ ∈ E(T1)∩S
and e′′ ∈ E(T2) ∩ S, then the edges e, e′, and e′′ would lie on a common geodesic. We
may thus without loss of generality assume that E(T2) ∩ S = ∅. Let f be a pendant
edge of T2 that is at largest possible distance from e. (Here an arbitrary pendant edge
of T2 would actually do the job, except maybe a pendant edge adjacent to e.) Then it is
straightforward to see that (S \{e})∪{f} is an edge general position set of T . Inductively
continuing this process we end up with an edge general position set of T which contains
only pendant edges and has the same cardinality as S. We conclude that gpe(T ) ≤ |L|.

To see that gpe(T ) ≥ |L| holds, observe that the set of pendant edges of a tree form an
edge general position set because a geodesic of T can pass through at most two pendant
edges. �

Trees and hypercubes are fundamental building blocks of the class of median graphs,
cf. [12], which is in turn (probably) the most important subclass of partial cubes. In 1990,
Mulder proposed the following meta-conjecture: Any (sensible) property that is shared by
trees and hypercubes is shared by all median graphs, see [24]. Theorems 3.2 and 3.3 do
not share some obvious common property, that is, for hypercubes gpe-sets constructed are
the union of two Θ-classes, while for trees their gpe-sets are the sets of their leaves. Hence
it is yet to be seen whether Mulder’s meta-conjecture applies to the edge general position
number of median graphs. We will further comment on this at the end of the next section.

4 Grid networks

In this section we determine the gpe-number of Cartesian products of two paths, known
also as grid networks. We will always assume that V (Pr) = [r] = {1, . . . , r}. The Pr-layers
of Pr �Ps are thus denoted by P i

r , i ∈ [s], and the Ps-layers by jPs, j ∈ [r]. An edge
e = uv of Pr �Ps is called a boundary edge if {d(u), d(v)} = {2, 3} or {d(u), d(v)} = {3},
it is a semi-boundary edge if {d(u), d(v)} = {3, 4}, otherwise e is an internal edge; that is,
e is internal if {d(u), d(v)} = {4}.

The main result of this section reads as follows. By the commutativity of the Cartesian
product operation, the result covers all non-trivial grid networks, that is, we may without
loss of generality assume that r ≥ s.

Theorem 4.1 If r ≥ s ≥ 2, then

gpe(Pr �Ps) =


r + 2; s = 2,

2r; s = 3,

2r + 2s− 8; s ≥ 4 .
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Proof. Suppose first that s ≥ 6. Construct an isometric path edge cover of Pr �Ps as
follows. Select first four paths that cover all the edges from the Ps-layers 2Ps,

3Ps,
r−2Ps,

r−1Ps, as well as all the edges from the Pr-layers P 1
r and P s

r . See Fig. 3 where such four
path are drawn for the case r = 10 and s = 7.

Figure 3: Part of an isometric path edge cover of P10�P7.

By symmetry, select additional four paths that cover all the edges from the Pr-layers
P 2
r , P 3

r , P s−2
r , P s−1

r , as well as all the edges from the Ps-layers 1Ps and rPs. Note that
the eight paths selected so far cover all the edges from six Pr-layers and all the edges
from six Ps-layers. Hence we may easily complete the path edge cover by adding r − 6
paths that cover the edges not yet covered in the Ps-layers and s − 6 paths that cover
the edges not yet covered in the Pr-layers. The constructed path edge cover contains
8+(r−6)+(s−6) = r+s−4 paths. Lemma 2.2 implies that gpe(Pr �Ps) ≤ 2r+2s−8. On
the other hand, the set of the semi-boundary edges of Pr �Ps is an edge general position set
of cardinality 2r+2s−8. We conclude that it is a gpe-set, that is, gpe(Pr �Ps) = 2r+2s−8
when r ≥ s ≥ 6.

Suppose next that s = 5. Let F be an arbitrary edge general position set of Pr �P5

and distinguish two cases.

Case 1. |F ∩ E(iP5)| ≤ 1 for each i ∈ [r].
Suppose first that |F ∩ E(

⋃
i
iP5)| = r − x, where x ≥ 3. This means that there are

exactly x Ps-layers with no edges from F and r − x Ps-layers with exactly one edge from
F . Since every of the five Pr-layers contains at most two edges from F , it follows that
|F | ≤ (r − x) + 10. We wish to show that (r − x) + 10 ≤ 2r + 2 which is equivalent that
r + x ≥ 8 holds. Since r ≥ 5 and x ≥ 3, this is indeed the case.

Suppose second that |F ∩ E(
⋃

i
iP5)| = r − x, where x ∈ {0, 1, 2}. If each Pr-layer

contains at most one edge from F , then |F | ≤ (r − x) + 5. We wish to show that
r − x + 5 ≤ 2r + 2, which is equivalent to r + x ≥ 3, the latter being clearly true. Hence
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suppose that at least one Pr-layer shares two edges with F . In this case we claim that
there are at least two P5-layers that have no edge in F . To demonstrate this claim, suppose
that the edges e = (i, j)(i + 1, j) and e′ = (i′, j)(i′ + 1, j) lie in F for some j ∈ [5]. We
may without loss of generality assume that i < i′. Then no edge f from the layer iP5 lies
in F because f lies on a common shortest path with e and e′. From the same reason no
edge from the layer i′+1P5 lies in F . It follows that |F | ≤ (r − 2) + 10 and we wish that
(r − 2) + 10 ≤ 2r + 2, that is, r ≥ 6. This settles Case 1 in all possibilities except when
r = 5.

It remains to consider P5�P5. The theorem asserts that gpe(P5�P5) = 12. The
12 semi-boundary edges imply that gpe(P5�P5) ≥ 12. Here it remains to prove that
gpe(P5�P5) ≤ 12 under the assumption of Case 1. This is clearly the case if each
Pr = P5-layer contain at most one edge from F . Hence assume that some Pr = P5-
layer contains two edges from F . Then we see similarly as above that the Ps-layers (s = 5
of course) contain at most 3 edges from F . Hence the only possibility to get more than
13 edges in F is that each Pr = P5-layer contains exactly two edges from F . In this case
we claim that these 10 edges must project to exactly two edges of the Pr = P5 factor.
Suppose on the contrary that there exist edges e = (i, j)(i + 1, j), e′ = (i′, j′)(i′ + 1, j′),
and e′′ = (i′′, j′′)(i′′ + 1, j′′) from F such that i < i′ < i′′, that is, such that they project
to three edges of Pr = P5. If j ≤ j′ ≤ j′′ or j ≥ j′ ≥ j′′, then e, e′, e′′ lie on a common
geodesic, which is not possible. So assume without loss of generality that j < j′′ < j′.
Consider now the second edge from the layer in which e′ lies, let it be f = (k, j′)(k+1, j′).
If k < i′, then f , e′, and e′′ lie on a common geodesic. And if k > i′, then f , e′ and e
lie on a common geodesic. In any case we have a contradiction which proves that the 10
edges project to exactly two edges of the Pr = P5 factor. But then it is clear that there
are no more edges in F .

Case 2. There exists an i ∈ [r] such that |F ∩ E(iP5)| = 2.
Suppose first that this i is unique. Since this P5-layer has two edges from F , we see that
at least two of the Pr-layers have no edges in F . Since the other have at most two such
edges, we conclude that |F | ≤ 2 + (r − 1) + 3 · 2 holds in this subcase. We wish to show
that 2 + (r− 1) + 6 ≤ 2r + 2, which is equivalent to r ≥ 5. So we are done in this subcase.

Suppose second that there are at least two P5-layers with exactly two edges from F .
Then we infer again that the projection of these edges on the factor P5 contain exactly
two edges. But then we easily obtain that in each case |F | ≤ 2r + 2. For instance, if each
of the P5 layers contain exactly two edges from F , then actually none of the edges from
the Pr-layers lie in F . This settles Case 2 and hence the theorem is proved for the case
s = 5.

Suppose next that s = 4, that is, Ps = P4. Let F be an arbitrary edge general position
set of Pr �P4.

Case 1. |F ∩ E(iP4)| ≤ 1 for each i ∈ [r].
Suppose first that |F ∩ E(

⋃
i
iP4)| = r − x where x ≥ 4. This means that there are

exactly x Ps-layers with no edges from F . Since each of the four Pr-layers contains at most
two edges from F , it follows that |F | ≤ (r−x) + 8. We wish to show that (r−x) + 8 ≤ 2r
which is equivalent to r + x ≥ 8. Since r ≥ 4 and x ≥ 4 this is indeed the case.

8



Suppose second that |F ∩ E(
⋃

i
iP4)| = r − x where x ∈ {0, 1, 2, 3}. If each Pr-layer

contains at most one edge from F , then |F | ≤ (r−x)+4. We wish to show that r−x+4 ≤ 2r
which is equivalent to r+x ≥ 4, the latter being clearly true. Hence suppose that at least
one Pr-layer shares two edges with F . In this case we infer that there are at least two
P4-layers that have no edge in F . It follows that |F | ≤ (r− 2) + 8. Since we would like to
see that (r − 2) + 8 ≤ 2r, that is r ≥ 6, this settles Case 1 in all possibilities except when
r ∈ {4, 5}.

Consider P4�P4. The theorem asserts that gpe(P4�P4) = 8 and the eight semi-
boundary edges imply that gpe(P4�P4) ≥ 8. Hence it remains to prove that gpe(P4�P4) ≤
8 (under the assumption of Case 1). This is clearly the case if each Pr = P4-layer contains
at most one edge from F . Hence assume that some Pr = P4-layer contains two edges from
F . Then there exist at least two Ps = P4-layers that have no edge in F . Hence, under the
assumption of Case 1, the Ps-layers together contain at most two edges from F . Hence
the only possibility to get more than eight edges in F is that at least three among the
Pr = P4-layers must contain exactly two edges from F . But then the Ps-layers can contain
at most one edge from F and we easily conclude that |F | ≤ 8.

Consider P5�P4. The theorem asserts that gpe(P5�P4) = 10. The ten semi-
boundary edges imply that gpe(P5�P4) ≥ 10. It remains to prove that gpe(P5�P4) ≤ 10
under the assumption of Case 1. If each Pr = P5-layer contains at most one edge from F ,
then there is nothing to prove. Hence assume that some Pr = P5-layer contains two edges
from F . Then we claim that the Ps = P4-layers together contain at most three edges from
F . Assume hence that (i, j)(i + 1, j) and (i′, j)(i′ + 1, j) are two edges from E(P j

5 ) ∩ F .
Then E(kP4)∩F = ∅ for each k ≤ i and for each k ≥ i′+1. Hence at most three P4-layers
can have edges from F and thus the case assumption implies that the Ps = P4-layers
together contain at most three edges from F . Hence the only possibility to get more than
ten edges in F is that at all four P5-layers contain exactly two edges from F . But in that
case, no P4-layer can share an edge with F .

Case 2. There exists an i ∈ [r] such that |F ∩ E(iP4)| = 2.
Suppose first that this i is unique. Since this P4-layer has two edges from F , we see

that at least two of the Pr-layers have no edges in F . Since the other Pr-layers have at
most two such edges, we conclude that |F | ≤ 2 + (r − 1) + 2 · 2 holds in the subcase. We
wish to show that 2 + (r − 1) + 4 ≤ 2r which is equivalent to r ≥ 5. This settles Case 2
in all possibilities except when r = 4. For P4�P4 we can use a parallel argument as we
gave in Case 1.

Suppose second that there are at least two P4-layers with exactly two edges from F .
Then we infer that the projection of these edges on the factor P4 contains exactly two
edges. But then we can verify easily that in each case, |F | ≤ 2r. For instance, if each of
the Ps = P4-layers contain exactly two edges from F , then actually none of the edges from
the Pr-layers lie in F . This settles Case 2 and hence the theorem for s = 4.

Next, let s = 3. Note that the theorem asserts that gpe(Pr �P4) = gpe(Pr �P3) = 2r.
As we have already proved that gpe(Pr �P4) = 2r and Pr �P3 is an isometric subgraph of
Pr �P4, it follows that gpe(Pr �P3) ≤ gpe(Pr �P4). On the other hand, a set of 2r edges
that is a gpe-set of Pr �P4 can also be used as an edge general position set of Pr �P3,
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that is, a gpe-set of Pr �P3.

Finally, let s = 2. If each of the two Pr-layers intersects F in at most one edge, then
clearly |F | ≤ r+2. On the other hand, if one of the two Pr-layers contains two edges from
F , then at least two edges of the P2-layers are not in F . Hence again |F | ≤ 2+2+(r−2) =
r + 2. On the other hand, the union of two Θ-classes, one with r edges, and the other
with 2 edges, is an edge general position set by Lemma 3.1. �

We next supplement Theorem 4.1 by the following information.

Theorem 4.2 If r, s ≥ 5, then the gpe-set of Pr �Ps is unique.

Proof. By Theorem 4.1 we know that the set S of semi-boundary edges of Pr �Ps form a
gpe-set of Pr �Ps. We need to prove that there is no other gpe-set. For this sake assume
that T is an arbitrary edge general position set different from S. Our goal is to show that
|T | < 2r+ 2s− 8. Since T 6= S we see that T contains a boundary or an internal edge and
distinguish our considerations accordingly.

Suppose first that T contains a boundary edge e. By the commutativity of Pr �Ps

and by the symmetry between the layers 1Ps and rPs we may without loss of generality
assume that e ∈ E(1Ps).

Case 1. T ∩ E(P 1
r ) 6= ∅ or T ∩ E(P s

r ) 6= ∅.
In this case we infer that |T ∩E(P i

r)| ≤ 1 for i ∈ [s] and that |T ∩E(jPs)| ≤ 1 for j ∈ [r].
Then clearly, |T | ≤ r + s and we wish to show that r + s < 2r + 2s − 8. We are done
because r + s > 8 holds.

In the rest of the argument we may hence assume that T∩E(P 1
r ) = ∅ and T∩E(P s

r ) = ∅.

Case 2. |T ∩E(1Ps)| = 1 and |T ∩E(rPs)| ∈ {0, 1}. In this case |T ∩E(P i
r)| ≤ 1 holds for

every 2 ≤ i ≤ s− 1. This in turn implies that |T | ≤ 2(r− 2) + 2 + s− 2 = 2r + s− 4. We
wish to show that 2r + s− 4 < 2r + 2s− 8, and this indeed holds since s > 4.

Case 3. |T ∩ E(1Ps)| = 2 and T ∩ E(rPs) = ∅.
Then clearly T ∩ E(P 1

r ) = T ∩ E(P s
r ) = ∅ which implies |T | ≤ 2(r − 1) + s− 2. We wish

that 2(r − 1) + s− 2 < 2r + 2s− 8 which implies s > 4 which is indeed the case.

Case 4. |T ∩ E(1Ps)| = 2 and |T ∩ E(rPs)| ∈ {1, 2}.
In this case there exists at least three Pr-layers that contribute no edges to T . Hence
|T | ≤ 2(r− 1) + 1 + s− 3 = 2r + s− 4. Now 2r + s− 4 < 2r + 2s− 8 implies s > 4 which
is indeed true.

Suppose second that T contains an internal edge. We may further assume that T
contains no boundary edge as we have already dealt with this situation. Without loss of
generality suppose there exists a Ps-layer, say kPs, such that T ∩E(kPs) = {e1, e2}, where
at least one of e1 and e2 is an internal edge. Now observe that at least three Pr-layers
(including two layers P 1

r and P s
r ) contribute no edges to T . Hence |T | ≤ 2(r−2)+2(s−3) <

|S|. �

Note that Theorem 4.2 does not hold for the grids P4�P4 and P5�P4. Indeed, the
sets of semi-boundary edges of then contain 8 and 10 edges, respectively. On the other
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hand, each Θ-class of P4�P4 has four edges, so the union of arbitrary two Θ-classes is
also a gpe-set of P4�P4. In P5�P4, there are three Θ-classes with five edges each, hence
also the union of any two of them is a gpe-set of P5�P4.

Let us return to the Mulder’s meta-conjecture. In the previous section we found out
that unions of two Θ-classes are gpe-sets of hypercubes and that the unique gpe-set of a
tree is the set of its pendant edges. Since each edge of a tree forms a Θ-class, one could
say that a (weak) common property of hypercubes and trees is that gpe-sets are unions of
Θ-classes. But this does not extend to all median graphs. Since the Cartesian product of
two median graphs is again median, we see that Pr �Ps is a median graph. However, we
have just seen that in Pr �Ps, where r ≥ s ≥ 5, the set of its semi-boundary edges forms
a unique gpe-set. Clearly, this set is not a union of Θ-classes of Pr �Ps.

5 Conclusions

In this paper, the edge general position problem is completely solved for hypercubes and
two-dimensional grids. A notable contribution of this paper is the discussion of Mulder’s
meta-conjecture on median graphs from the perspectives of the edge general position
problem. This problem may be studied for other classes of graphs such as Cayley graphs,
perfect graphs, bipartite graphs, etc.

It would also be pertinent to view this problem in generalized perspectives. For in-
stance, for a given integer k ≥ 3, one may call a set S of edges of a graph G an edge
k-general position set if no k edges of S lie on a common geodesic. An edge k-general
position set S of maximum cardinality is an k-gpe-set of G and its cardinality is the edge
k-general position number (in short, k-gpe-number) of G and is denoted by k-gpe(G). When
k = 3, this problem becomes an edge general position problem. The complexity status of
edge k-general position problems is not known. Enthusiastic graph theory students will
find the “edge k-general position problem” an interesting topic for further research.
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