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Abstract

A short proof for the closed expression of the edge-connectivity of Carte-
sian product graphs is given and the structure of minimum edge cuts is
described. It is also proved that the connectivity and edge-connectivity of
an arbitrary Cartesian power equals its minimum degree.
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1 Introduction

The Cartesian product of graphs is one of the most fundamental graph operations
and has been studied since its introduction in the 1950’s. Many important classes
of graphs such as hypercubes, Hamming graphs, and prisms, are Cartesian prod-
ucts. Even more important is the fact that Cartesian products serve as natural
hosts for different embeddings in metric graph theory. A prominent example is
the canonical metric representation of an arbitrary graph due to Graham and
Winkler [4], see also [3, 5]: every graphs has a unique (irredundant) isometric

∗Work supported in part by the Ministry of Science of Slovenia under the grant P1-0297.

The authors are also with the Institute of Mathematics, Physics and Mechanics, Jadranska 19,

1000 Ljubljana, Slovenia.

1



embedding into a Cartesian product of graphs with a largest possible number of
factors.

Recently, fundamental results on the connectivity κ and the edge-connectivity
κ′ of Cartesian product graphs were obtained. In this paper we round these inves-
tigations by simplifying some arguments and giving additional structure insights.

We note that these connectivity results present just a fraction of recent exten-
sive developments on the Cartesian product. Let us just mention that Imrich and
Peterin designed a linear algorithm for recognizing Cartesian products [7]; that
the structure of the automorphism group of Cartesian powers was carefully stud-
ied to determine their distinguishing numbers [6]; and that interesting results on
colorings and metric properties of Cartesian products were obtained in [1] and [2],
respectively.

Back in 1957, Sabidussi [10] observed that for the Cartesian product G� H
of arbitrary graphs G and H, κ(G� H) ≥ κ(G)+κ(H). (Interestingly, in [9] it is
wrongly claimed that the equality holds here.) About 20 years later, Liouville [8]
announced that for any graphs G and H on at least two vertices,

κ(G� H) = min{κ(G)|H|, κ(H)|G|, δ(G) + δ(H)} , (1)

where δ denoted the minimum degree of a given graph. However, the announced
proof never appeared. Finally, after an additional 30 years, the paper [11] gives
a proof of (1).

For the edge-connectivity of Cartesian products, Xu and Yang proved in [12]
that for any graphs G and H on at least two vertices,

κ′(G� H) = min{κ′(G)|H|, κ′(H)|G|, δ(G) + δ(H)} . (2)

The basic idea of their proof is to use the edge version of Menger’s theorem, that
is, to find enough edge-disjoint paths between pairs of vertices of the Cartesian
product. This way the arguments are rather technical and lengthy.

In Section 2 we first give a direct, short proof of (2). Then we prove that if
S is a minimum edge cut of G� H, then either S is induced by a minimum edge
cut of a factor, or S is a set of edges incident to a vertex of G� H. In Section 3
we consider powers of graphs (with respect to the Cartesian product) and show
that in this case the edge-connectivity as well as the connectivity is always equal
to the minimum degree.

In the rest of this section we recall basic properties of the Cartesian product of
graphs. Recall that the Cartesian product G� H of graphs G and H is the graph
with the vertex set V (G) × V (H) where vertices (g, h) and (g′, h′) are adjacent
if gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). We say that G and H are
factors of G� H. Let g be a vertex of G. The subgraph of G� H induced by
{g}×V (H) is isomorphic to H. It is called an H-fiber and denoted gH. Similarly
one defines the G-fiber Gh for a vertex h of H.
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The Cartesian product operation is associative, hence products of more than
two factors are well-defined. In the special case when all the factors are the same
we speak of powers with respect to the Cartesian product. More precisely, for a
positive integer n, the nth Cartesian power of a graph G is Gn = �

n
i=1

G.
Note finally that if follows immediately from the definition of the product

that δ(G� H) = δ(G) + δ(H).

2 A short proof and the structure of edge cuts

In this section we first give a short proof of (2).
Let S′ be an edge cut in G and S = {(x, h)(y, h) |h ∈ V (H), xy ∈ S′}. Then

it is easy to see that S is an edge cut in G� H; we say that S is induced by S′.
Therefore,

κ′(G� H) ≤ min{κ′(G)|H|, κ′(H)|G|, δ(G) + δ(H)} .

The nontrivial part of the proof is hence to show the other inequality. Let S ⊆
E(G� H) be an edge cut in G� H, such that |S| < min{κ′(G)|H|, κ′(H)|G|} .
We need to prove that |S| ≥ δ(G) + δ(H).

By our assumption on the size of S there is a G-fiber Gx and an H-fiber yH
that are connected in (G� H) − S. Let Gx ∪ yH be contained in the connected
component C1 of (G� H) − S. Since (G� H) − S is not connected there exists
a connected component C2 6= C1 of (G� H) − S. Define U and W with

U = {g ∈ G | gH ∩ C2 6= ∅} and W = {h ∈ H | Gh ∩ C2 6= ∅} .

Both U and W are nonempty. Let (a, b) be an arbitrary vertex of C2, and U and
W the complements of U and W , respectively. See Fig. 1.

Then

degG �H(a, b) = degG(a) + degH(b)

= |N(a) ∩ U | + |N(a) ∩ U | + |N(b) ∩ W | + |N(b) ∩ W | .

Observe that every edge with one endvertex (a, b) and the other (a, w̄) or (ū, b)
(here ū ∈ U and w̄ ∈ W ) is an edge of S. Therefore there are at least |N(a) ∩
U | + |N(b) ∩ W | edges of S contained in Gb or aH. Moreover, the set S contains
at least one edge of every Gw, w ∈ W − {b} and every uH,u ∈ U − {a}. Hence
there are at least (|W | − 1) + (|U | − 1) edges of S that are not contained in Gb

or aH. Combining this with |N(a) ∩ U | ≤ |U | − 1 and |N(b) ∩ W | ≤ |W | − 1 we
come to the conclusion that deg(a, b) ≤ |S| and the proof is complete.

Remark 2.1 If in the above proof deg(a, b) = |S|, then |N(a)∩U | = |U |−1 and

|S ∩ Gb| = |N(a) ∩ U |.
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Figure 1: (a, b) is an arbitrary vertex of C2

We next describe the structure of minimum edge cuts of Cartesian products.

Theorem 2.2 Let S be a minimum edge cut of G� H. Then either S is induced

by a minimum edge cut of a factor, or S is the set of edges incident to a vertex

of G� H.

Proof. Let S be a minimum edge cut in G� H and C a connected component
of (G� H)− S. By the minimality of S, (G� H)− S has exactly two connected
components. Suppose that every G-fiber has a vertex of C and its complement
C. Then removing the edges of S from any G-fiber disconnects that fiber, and
therefore |S| ≥ κ′(G)|H|. Since S is a minimum edge cut |S| = κ′(G)|H| and no
edges from H-fibers are contained in S. It follows that every H-fiber is either
entirely contained in C or entirely in C, and therefore S is induced by a minimum
edge cut of G. If every H-fiber has a vertex of C and C, analogous arguments
prove that S is induced by a minimum edge cut of H.

Suppose now that there is a G-fiber and an H-fiber entirely contained in C.
It follows from the proof of the first part (and from the minimality of S) that
then |S| = deg(a, b) for every (a, b) ∈ C. Therefore, it suffices to prove that if
|C| > 1, then there are vertices (a, b) and (a′, b) in C with deg(a, b) 6= deg(a′, b).
So assume that |C| > 1 and let (a, b) be an arbitrary vertex of C. Since |C| > 1
there is a vertex (a′, b) ∈ C and at least one neighbor (a′′, b) ∈ C of (a, b). We
claim that deg(a, b) > deg(a′, b). Since deg(a, b) = degG(a) + degH(b) we only
have to prove that degG(a) > degG(a′). Let

U = {g ∈ G | gH ∩ C 6= ∅} and W = {h ∈ H | Gh ∩ C 6= ∅} .

By remark 2.1 we have |N(a)∩U | = |U |−1 and |S∩Gb| = |N(a)∩U |. Therefore
|N(a′) ∩ U | = 0. Since |N(a) ∩ U | ≥ 1 and |N(a′) ∩ U | ≤ |U | − 1 we conclude

4



that degG(a) > degG(a′). We have proved that |C| = 1 and hence S is a set of
edges incident to a vertex of G� H. �

3 Connectivity of powers of graphs

In this section we prove that in the case when the factors of a Cartesian product
are isomorphic, the minimum in (2) is always achieved by the minimum degree.
The same holds for the (vertex) connectivity as well.

Theorem 3.1 Let G be a connected graph on at least two vertices. Then for any

n ≥ 2, κ′(Gn) = n δ(G).

Proof. Assume first that κ′(G) = 1, that is, G contains a bridge e. Consider a
smallest component of G − e to see that δ(G) ≤ |G|/2. Using (2) it follows that
2δ(G) ≤ |G| = κ′(G)|G|, thus κ′(G2) = 2δ(G).

Let n ≥ 3. Then by induction and associativity of the Cartesian product,

κ′(G� Gn−1) = min{|G|n−1, (n − 1)δ(G)|G|, nδ(G)} . (3)

Clearly, nδ(G) ≤ (n − 1)δ(G)|G|. Moreover, if G = K2 then nδ(G) = n ≤
|Gn−1| = 2n−1. And if |G| ≥ 3 then nδ(G) ≤ n|G| ≤ |Gn−1| = |G|n−1 holds since
n ≥ 3 and |G| ≥ 3. In any case the minimum in (3) equals nδ(G) so the results
holds for powers of graphs with edge-connectivity 1.

Let κ′(G) ≥ 2, then 2δ(G) ≤ κ′(G)|G|. Hence the assertion is true for n = 2.
Let n ≥ 3. Then by the induction hypothesis,

κ′(G� Gn−1) = min{κ′(G)|G|n−1, (n − 1)δ(G)|G|, nδ(G)} . (4)

Clearly, nδ(G) ≤ (n − 1)δ(G)|G|. Moreover,

nδ(G) ≤ n(|G| − 1) ≤ n|G| ≤ 2|G|n−1 ≤ κ′(G)|G|n−1 ,

where n|G| ≤ 2|G|n−1 (that is, n/2 ≤ |G|n−2) holds since n ≥ 3 and |G| ≥ 2. We
conclude that the minimum in (4) equals nδ(G). �

We conclude the paper by observing that along the same lines as Theorem 3.1
the following result can be proved.

Theorem 3.2 Let G be a connected graph on at least two vertices. Then for any

n ≥ 2, κ(Gn) = n δ(G).
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