
Hamming dimension of a graph - the case of Sierpiński
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Abstract

The Hamming dimension of a graph G is introduced as the largest dimension
of a Hamming graph into which G embeds as an irredundant induced subgraph.
An upper bound is proved for the Hamming dimension of Sierpiński graphs Sn

k ,
k ≥ 3. The Hamming dimension of Sn

3 grows as 3n−3. Several explicit embeddings
are constructed along the way, in particular into products of generalized Sierpiński
triangle graphs. The canonical isometric representation of Sierpiński graphs is also
explicitly described.
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1 Introduction

Several graph dimensions based on embeddings into product graphs have been studied
by now. The isometric dimension of G is the largest number of factors of a Cartesian
product graph, such that G is an irredundant, isometric subgraph of the product [9].
The strong isometric dimension is defined analogously, except that one embeds into the
strong product of paths [5, 6], while the lattice dimension is defined via embeddings
into Cartesian products of paths [4, 17]. The lattice dimension of a graph G is finite if
and only if G is isometrically embeddable into some hypercube. For additional related
dimensions see [11, Section 15.3].

The strong isometric dimension is universal in the sense that as soon as a graph is not
the path graph, then its dimension is finite and bigger than 1. A similar conclusion can
be stated for the so called direct dimension of a graph (introduced in [26], see also [3])
which is a graph dimension defined with respect to the direct product of graphs. On
the other hand, for the (arguably) most important graph product, the Cartesian one,
no such universal dimension is known. While the isometric dimension is utmost useful
as soon as the dimension of a graph is more than 1 (see [19]), it was proved in [8] that
for almost any graph (with respect to the usual random graph model) its isometric
dimension is 1. In other words, for almost any graph G, the isometric dimension yields
no new insight about G. Also, only partial cubes, a special (although important)
subclass of bipartite graphs, have finite lattice dimension.

In order to significantly increase the number of graphs with a non-trivial dimension
that comes from the Cartesian product of graphs, the Hamming dimension Hdim(G)
of a graph G is introduced as the largest dimension of a Hamming graph into which G
embeds as an irredundant induced subgraph. (That G embeds into H as an induced
subgraph means that G is a subgraph of H induced by V (G).) If G is not an induced
subgraph of any Hamming graph we set Hdim(G) = ∞. Clearly, Hdim(G) = 1 if and
only if G is a complete graph. By a result from [23], Hdim(G) < ∞ if and only if
G admits a certain edge labeling, see Theorem 3.1 below. Note that K4 − e is the
graph with the least number of vertices with Hdim(G) = ∞. The general problem of
determining the Hamming dimension of a graph seems very demanding, here we will
study this concept on Sierpiński graphs. Roughly speaking, we prove that all Sierpiński
graphs (except in the trivial cases) have Hamming dimension bigger than 1 and finite.
On the other hand, all but base 3 Sierpiński graphs have isometric dimension 1. Not
to speak about the lattice dimension—no non-trivial Sierpiński graph has finite lattice
dimension. Hence the Hamming dimension indeed significantly increases the number
of graphs with a non-trivial Cartesian-like dimension.

Sierpiński graphs Sn
k were studied for the first time in [20] and independently in-

troduced in [29]. In computer science, a very similar class of graphs (known as WK-
recursive networks) was introduced earlier in [2]. The study in [20] was motivated in
part by the fact that for k = 3 these graphs are isomorphic to the Tower of Hanoi
graphs [12] and in part by topological studies. The Tower of Hanoi graphs were first
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considered back in 1944 in [31], for more information on the Tower of Hanoi see [12] or
the forthcoming book [14]. For details about the topological motivation see Lipscomb’s
book [25].

The graphs Sn
k were investigated from numerous points of view, we recall some of

them. These graphs contain (essentially) unique 1-perfect codes [21], a classification of
their covering codes is given in [7]. In [10] a shorter proof is given for the uniqueness
of 1-perfect codes and their optimal L(2, 1)-labelings are presented. Equitable L(2, 1)-
labelings were later studied in [1]. The crossing number of Sierpiński graphs and their
natural regularizations was studied in [22], giving first infinite families of graphs of
fractal nature for which the crossing number was determined (up to the crossing number
of complete graphs). Metric properties of Sierpiński graphs were investigated in [16, 27].
To determine the chromatic number of these graphs is easy, while in [15] it is proved
that they are in edge- and total coloring class 1, except those isomorphic to a complete
graph of odd or even order, respectively. Recently, the hub number of Sierpiński graphs
was determined in [24].

As already said, Sierpiński graphs are closely related to the Tower of Hanoi. In [30],
Romik used the Sierpiński labeling of Sn

3 to construct an appealing finite automaton
that solves the decision problem of whether the largest disc moves once or twice on a
shortest path from a regular to another regular configuration in the Tower of Hanoi
problem. For connections between the Sierpiński graphs Sn

3 (alias Hanoi graphs) and
Stern’s diatomic sequence see [13].

We proceed as follows. In the rest of this section we give necessary definitions. In the
next section Sierpiński graphs and generalized Sierpiński triangle graphs are introduced
and some of their properties recalled. Then, in Section 3, the theory from [23] on
induced embeddings into Hamming graphs and more generally, into Cartesian product
graphs, is recalled. (An induced embedding of G into H is a mapping ψ : V (G) →
V (H) such that ψ(G) is a subgraph of H induced by ψ(V (G)).) It is applied to
describe induced embeddings of Sierpiński graphs into Cartesian products of generalized
Sierpiński triangle graphs. In Section 4 it is proved that for any n ≥ 2,

Hdim(Sn
3 ) ≥ 7

4
· 3n−3 + 3 · 2n−4 +

3

2
n− 9

4
.

In the subsequent section an upper bound for Hdim(Sn
k ), k ≥ 3, is determined. Together

with the lower bound it implies that Hdim(Sn
3 ) asymptotically grows like 3n−3. As

proved in [9], an irredundant isometric embedding into the largest number of factors
is unique and called the canonical isometric representation. In the last section we
explicitly describe this embedding of Sn

k .
The Cartesian product G�H of graphs G and H is the graph with the vertex

set V (G) × V (H), where the vertex (g, h) is adjacent to the vertex (g′, h′) whenever
gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). The Cartesian product is
commutative and associative. Products all of whose factors are complete are called
Hamming graphs. The dimension of a Hamming graph is the number of its factors, that
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is, the number of coordinates of its vertices. We say that a graph G is an irredundant
subgraph of � iGi if each Gi has at least two vertices and any vertex of Gi appears
as a coordinate of some vertex of G. Assuming that G is an irredundant and induced
subgraph of at least one Hamming graph, we set

Hdim(G) = max{r | G is an irredundant and induced subgraph of � r
i=1Kpi} .

Otherwise, set Hdim(G) =∞.
The distance d(u, v) = dG(u, v) between vertices u and v of a connected graph G

is the length of a shortest u, v-path in G. A subgraph H of a graph G is an isometric
subgraph of G if dH(u, v) = dG(u, v) for each pair of vertices u, v of H. Finally, by a
labeled graph we mean a graph together with a labeling of its edges.

2 Sierpiński graphs

The Sierpiński graph Sn
k , k, n ≥ 1, is defined on the vertex set {1, . . . , k}n, two different

vertices u = (u1, . . . , un) and v = (v1, . . . , vn) being adjacent if and only if there exists
an h ∈ {1, . . . , n} such that

(i) ut = vt, for t = 1, . . . , h− 1;
(ii) uh 6= vh; and
(iii) ut = vh and vt = uh for t = h+ 1, . . . , n.

In the rest we will use abbreviation 〈u1 . . . un〉 for (u1, . . . , un). On figures, this
will be further simplified to u1 . . . un. The Sierpiński graph S4

3 together with the cor-
responding vertex labeling is shown on Fig. 1.

A vertex of the form 〈ii . . . i〉 of Sn
k is called an extreme vertex . Note that Sn

k

contains k extreme vertices and that |V (Sn
k )| = kn. Let n ≥ 2, then for i ∈ {1, . . . , k}

let iSn−1
k be the subgraph of Sn

k induced by the vertices of the form 〈iv2 . . . vn〉. More
generally, for given i1, . . . , ir ∈ {1, . . . , k}, we denote by i1 . . . irS

n−r
k the subgraph of Sn

k

induced by the vertices of the form 〈i1 . . . irvr+1 . . . vn〉. Note that iSn−1
k is isomorphic

to Sn−1
k , and, more generally, i1 . . . irS

n−r
k is isomorphic to Sn−r

k .
An edge of Sn

k of the form 〈u1u2 . . . un−1i〉〈u1u2 . . . un−1j〉, i 6= j, will be called a
clique edge. A clique edge is contained in a unique subgraph Kk of Sn

k . The other edges
will be called non-clique edges. Let i 6= j. Then the edge 〈ijj . . . j〉〈jii . . . i〉 is the unique

edge between iSn−1
k and jSn−1

k . It is denoted by e
(n)
ij = e

(n)
ji . Consider the subgraph

i1 . . . irS
n−r
k of Sn

k . Then the edge between 〈i1 . . . irj` . . . `〉 and 〈i1 . . . ir`j . . . j〉 will be

denoted by i1 . . . ire
(n−r)
j` .

Setting

ρi,j =

{
1 i 6= j ,
0 i = j ,

the following holds:
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Figure 1: The Sierpiński graph S4
3

Lemma 2.1 [20] Let 〈u1 . . . un〉 and 〈ii . . . i〉 be vertices of Sn
k . Then

dSn
k
(〈u1u2 . . . un〉, 〈ii . . . i〉) =

n∑
j=1

ρuj ,i2
n−j .

Moreover, a shortest path between 〈u1 . . . un〉 and 〈ii . . . i〉 is unique.

The unique path in Sn
k between 〈ii . . . i〉 and 〈jj . . . j〉 is denoted by P

(n)
ij . Simi-

larly, in the subgraph i1 . . . irS
n−r
k , there is a unique path between 〈i1 . . . irjj . . . j〉 and

〈i1 . . . ir`` . . . `〉, is denoted by i1 . . . irP
(n−r)
j` . By the uniqueness of the shortest paths

between extreme vertices, it follows that there is also a unique shortest cycle of Sn
k con-

taining the edges e
(n)
ij , e

(n)
j` , and e

(n)
`i , where i, j, ` ∈ {1, 2, . . . , k} are pairwise different.

This cycle is denoted by C
(n)
ij` .
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One of our embeddings will be an embedding into the Cartesian product of gener-
alized Sierpiński triangle graphs, a class of graphs introduced in [18] as 2-parametric
Sierpiński gasket graphs. For n ≥ 1 and k ≥ 3, the generalized Sierpiński triangle graph
Ŝn
k is the graph obtained from Sn

k by contracting all non-clique edges of Sn
k . Note that

Ŝ1
k = Kk (k ≥ 3). For Ŝ2

4 see Fig. 2, where {i, j} denotes the vertex obtained by
contracting the edge 〈ij〉〈ji〉.

{1, 2} {1, 3}
11

{1, 4}

44 {3, 4}{2, 4}

3322

{2, 3}

Figure 2: The generalized Sierpiński triangle graph Ŝ2
4

3 Embeddings into products of generalized Sierpiński tri-
angle graphs

In this section we first summarize the theory developed in [23] about induced embed-
dings of graphs into Hamming graphs.

Let G be a connected graph and let F = {F1, . . . , Fp} be a partition of E(G). Such
a partition yields the corresponding labeling ` : E(G)→ {1, . . . , p} by setting `(e) = i
for e ∈ Fi. For our purpose, the following conditions of a labeling are crucial:

Condition A. A(n edge) labeling of a graph G fulfills Condition A, if for any triangle
of G, its edges have the same label.

Condition B. A(n edge) labeling of a graph G fulfills Condition B, if for any vertices
u and v of G with dG(u, v) ≥ 2, there exist different labels i and j which both appear
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on any induced u, v-path. (By an induced path we mean a subgraph X of G isomorphic
to a path graph and induced by V (X).)

Now we can recall:

Theorem 3.1 [23] Let G be a connected graph. Then Hdim(G) < ∞ if and only if
there exists a labeling of G that fulfills Conditions A and B.

The proof of Theorem 3.1 is constructive in the following way. If G is an induced
subgraph of a Hamming graph with p factors, then the labeling of G that respects
the projection of the edge uses p labels and satisfies Conditions A and B. Conversely,
let F = {F1, . . . , Fp} be a partition of E(G) such that the corresponding labeling `
fulfills Conditions A and B. For every i ∈ {1, . . . , p} define the graph G/Fi whose
vertices are the components of G \ Fi, two components C and C ′ being adjacent in
G/Fi whenever there exists an edge of Fi connecting a vertex of C with a vertex of C ′.
Let ψi : V (G) → V (G/Fi) be the natural projection, that is, u ∈ V (G) is mapped to
the component of G \ Fi to which it belongs. Then

ψ = (ψ1, . . . , ψp) : V (G)→ V (G/F1� · · · �G/Fp) (1)

is an induced embedding of G. Moreover, by adding edges to each factor G/Fi to make
it complete, the embedding ψ is still induced. It follows that ψ can be considered as an
induced embedding of G into a Hamming graph. In addition, ψ(G) is an irredundant
subgraph of G/F1� · · · �G/Fp. (To obtain induced embeddings of G into a Cartesian
product (of factors that are not necessarily complete), Condition B must be modified,
see [28].)

We will make use of the following additional properties of a labeling that fulfills
Condition B, see [23, Lemmas 3.1 and 3.2]:

(i) in an induced cycle of length > 3, every label must appear at least twice, and
(ii) if every induced path between two vertices contains labels i and j, then every

path between these two vertices contains these two labels.

In addition, it is easy to see that if a maximal part of an induced cycle C is labeled
alternatively with i and j, then i and j must also exist on the other part of C. In
particular, if we have the sequence iji on C, then i appears at least once more on C.

We now turn our attention to Sierpiński graphs. Every Sn
k can be embedded in a

Hamming graph with two factors as follows. Label the clique and the non-clique edges
of Sn

k with labels p and q, respectively. Call this labeling a p|q-labeling. Clearly, a
p|q-labeling fulfills Condition A. Moreover, since no two non-clique edges are incident,
Condition B holds as well.

Let k ≥ 3. Then the Sierpiński triangle labeling of Sn
k is inductively defined as

follows. Label the edges of S1
k
∼= Kk with label 1. Suppose now Sn

k , n ≥ 1, has already
been labeled. Then label every subgraph iSn

k (1 ≤ i ≤ k) of Sn+1
k identically as Sn

k and
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label the edges e
(n+1)
ij with label n + 1. Clearly, the Sierpiński triangle labeling of Sn

k

uses n labels. Note also that the Sierpiński triangle labeling of S2
k coincides with its

1|2-labeling.

Theorem 3.2 Let k ≥ 3 and n ≥ 1. Then there exists an induced embedding

Sn
k → Ŝn

k � Ŝn−1
k � · · · � Ŝ1

k .

Proof. Let k ≥ 3 be a fixed integer. The Sierpiński triangle labeling clearly fulfills
Condition A. Let u, v be two non-adjacent vertices of Sn

k . Consider a shortest path P
between u and v and let i be the largest label on P . Then i > 1 and every induced
path between u and v contains labels 1 and i. Hence Condition B is fulfilled and thus
the embedding (1) can be used.

Let Fi, 1 ≤ i ≤ n, be the set of edges of Sn
k labeled with n− i+ 1 in the Sierpiński

triangle labeling of Sn
k . We are going to prove that for any n ≥ 1 and for any 1 ≤ i ≤ n,

Sn
k /Fi = Ŝi

k.

Let n = 1. Then S1
k = Kk and all of its edges are labeled with 1. Hence Ŝ1

k =
Kk = S1

k/F1. Suppose Theorem 3.2 holds for some n ≥ 1 and consider Sn+1
k . Since

F1 = {e(n+1)
ij | i 6= j} we infer that Sn+1

k /F1 = Kk = Ŝ1
k . Let next i ≥ 2. Then every

edge of Fi lies in some subgraph jSn
k . Let jFi be the restriction of Fi to jSn

k and note
that jFi coincides with the labeling as Fi−1 in Sn

k . Hence, by the induction hypothesis,

it follows that jSn
k /jFi = Ŝi−1

k . But then Sn+1
k /Fi = Ŝi

k by the way the generalized
Sierpiński triangle graphs are constructed. �

4 A lower bound on Hdim(Sn3 )

In this section we prove:

Theorem 4.1 For any n ≥ 2,

Hdim(Sn
3 ) ≥ 7

4
· 3n−3 + 3 · 2n−4 +

3

2
n− 9

4
.

To prove the theorem we construct a merging labeling of Sn
3 , n ≥ 2, as follows. For

n = 2, label every edge of iS1
3 with i and for any j 6= k, label the edge e

(2)
jk with i,

where {i, j, k} = {1, 2, 3}. Proceed by induction on n as follows. Label every iSn−1
3

with the same pattern as Sn−1
3 , but such that iSn−1

3 and jSn−1
3 use pairwise different

labels for any i 6= j. In addition, label the edges e
(n)
12 , e

(n)
23 , and e

(n)
13 with the same

labels as 3e
(n−1)
12 , 1e

(n−1)
23 , and 2e

(n−1)
13 , respectively. Note that this labeling does not

fulfill Condition B since some labels appears only once at C
(n)
123.
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We thus need to merge every label that appears only once on 1P
(n−1)
23 , only once on

2P
(n−1)
13 , and only once on 3P

(n−1)
12 with the exception of the edges 1e

(n−1)
23 , 2e

(n−1)
13 , and

3e
(n−1)
12 , respectively. The merging is done as follows. Consider the following pairs of ori-

ented subpaths of C
(n)
123: 12P

(n−2)
23 , 32P

(n−2)
21 ; 13P

(n−2)
23 , 23P

(n−2)
13 ; and 31P

(n−2)
12 , 21P

(n−2)
13 .

Here oriented means that each of these paths has its start and its end, for instance,

12P
(n−2)
23 starts in 〈122 . . . 2〉 and ends in 〈1233 . . . 3〉. Now traverse 12P

(n−2)
23 and

32P
(n−2)
21 in parallel. As soon as a label `1 is found on 12P

(n−2)
23 that appears only once

on 1P
(n−1)
23 , merge it with the corresponding label `3 of 32P

(n−2)
21 . (Note that `3 also

appears only once on 3P
(n−1)
21 by the construction.) More precisely, we replace every

label `3 in Sn
3 with `1. Do the same procedure for the other two pairs of paths. An

example of a merging labeling of S3
3 is shown in Fig. 3. Here labels 3 and 5 are merged

into 3, labels 6 and 8 into 6, and labels 2 and 9 into 2.

1
3 2

2 3
7 41

6 8
5 4 7 9

4 5 9 7
6 1 8

1
3 2

2 3
7 41

6 6
3 4 7 2

4 3 2 7
6 1 6

Figure 3: S3
3 before (left) and after merging (right)

Proposition 4.2 A merging labeling of Sn
3 , n ≥ 2, fulfills Conditions A and B.

Proof. Edges that form a triangle are labeled with the same label, hence Condition
A is fulfilled. Note also that Condition B is fulfilled on S2

3 . Let now n > 2 and let
u, v be vertices of Sn

3 with d(u, v) ≥ 2. Let p be the smallest index such that both u
and v are in i1 . . . ipS

n−p
3 . Then p < n− 1 since d(u, v) ≥ 2. Let u ∈ i1 . . . ipj1Sn−p−1

3 ,

v ∈ i1 . . . ipj2Sn−p−1
3 , and let {j1, j2, j3} = {1, 2, 3}.

Let P be a shortest u, v-path. Suppose first that P contains the edges i1 . . . ipe
(n−p)
j1j3

and i1 . . . ipe
(n−p)
j2j3

. Then the labels of these two edges are on any induced u, v-path by
the way the merging labeling is constructed. In the other case, P contains a unique edge

of the form e = i1 . . . ipe
(n−p)
rq , namely the edge i1 . . . ipe

(n−p)
j1j2

. By the same argument
its label appears on every induced u, v-path. Since d(u, v) ≥ 2, the edge e has at least
one adjacent edge on P , say f . We may assume without loss of generality that f ∈
i1 . . . ipj2S

n−p−1
3 . Then the label of f appears also on the triangle of i1 . . . ipj3S

n−p−1
3

that is incident with the edge i1 . . . ipe
(n−p)
j1j3

. Again by the construction, the label of f
appears on any induced u, v-path. �
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Before we continue, we present in Fig. 4 a more elaborated merging labeling of S5
3 .

We will refer to this labeling in the subsequent arguments. Note that in the top S3
3 we

use labels 1 to 6, which is a labeling obtained from the right labeling from Fig. 3 by
replacing label 7 with label 5.

1
3 2

2 3
5 41

6 6
3 4 5 2

4 3 2 5
8 6 1 6 7

11 11
9 10 12 9

9 910 12
11 115 7 8 4

2 2 3 3
9 7 5 10 12 4 8 9

7 9 5 4 9 810 12
22 132 11 2 1 3 11 3

14 14
18 15 27 25

15 18 25 27

14 1417 21 26 17

16 16 16 16
18 21 17 15 27 17 26 25

21 27 25 2618 15 17 17
8 13 22 716 14 16 16 14 16

4 4 5 5
19 20 12 19 24 10 23 24

19 19 12 1020 24 24 23

4 4 5 517 13 8 21 26 7 22 17

15 15 18 18 25 25 27 27

19 13 17 20 12 21 8 19 24 7 26 10 23 17 22 24

8 713 19 17 12 19 10 1720 21 24 26 23 24 22

15 4 15 14 18 4 18 1 25 5 25 14 27 5 27

Figure 4: A merging labeling of S5
3

Lemma 4.3 Let Sn
3 , n ≥ 2, be labeled with a merging labeling. Then every label of

a non-clique edge of P
(n)
ij , i, j ∈ {1, 2, 3}, different from e

(n)
ij , appears exactly twice on

P
(n)
ij .

Proof. There is nothing to be proved for n = 2. We may restrict ourselves to P
(n)
23 by

symmetry. Note that the labels of the edges 2e
(n−1)
23 and 3e

(n−1)
23 are merged in Sn

3 and
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have thus the same label. Hence every label of a non-clique edge of P
(n)
ij , i, j ∈ {1, 2, 3},

other than the label of e
(n)
ij , appears at least twice on P

(n)
ij by induction.

It remains to prove that no non-clique edge appears more than twice. This clearly
holds for n = 3, 4, cf. Fig. 4. Let now n ≥ 5. Note first that the assertion holds

for the label of 2e
(n−1)
23 and 3e

(n−1)
23 . Indeed, their labels were unique on 2P

(n−1)
23 and

3P
(n−1)
23 , respectively, and were henceforth merged in the last step of the construction.

The label of the edges 22e
(n−2)
23 and 23e

(n−2)
23 (which is the same) appears only once on

2P
(n−1)
13 and is also merged in Sn

3 . But this label appears on 23P
(n−2)
13 and is merged

with a label from 13P
(n−1)
23 . In other words, this label does not appear in 3Sn−1

3 and

consequently not on 3P
(n−1)
23 . By symmetry, the assertion also holds for the label of

the edges 32e
(n−2)
23 and 33e

(n−2)
23 .

Next we show that the label ` of non-clique edges 222e
(n−3)
23 and 223e

(n−3)
23 appears

twice on 2P
(n−1)
13 and is not merged in Sn

3 . Clearly ` appears once on 223P
(n−3)
13 (on

the edge incident with 〈22311 . . . 1〉) and was in 2Sn−1
3 merged with the label of the

edge on 213P
(n−3)
23 incident with 〈21322 . . . 2〉. This label is in 21Sn−2

3 present also on

the edges 211e
(n−3)
13 and 213e

(n−3)
13 , which are both on 2P

(n−1)
13 .

Similarly, the label `′ of the edges 232e
(n−3)
23 and 233e

(n−3)
23 appears twice on 2P

(n−1)
13

and is not merged in Sn
3 . Clearly `′ appear once on 2P

(n−1)
13 since it is in the triangle of

the extreme vertex 〈23311 . . . 1〉 in 233Sn−3
3 . But `′ is also in the triangle of the extreme

vertex 〈23211 . . . 1〉 in 232Sn−3
3 . Hence it was merged in 2Sn−1

3 with the label of the
triangle of the extreme vertex 〈21333 . . . 3〉 in 212Sn−3

3 . But this was again merged in
21Sn−2

3 with the label of the triangle of the extreme vertex 〈21133 . . . 3〉, which lies on

2P
(n−1)
13 .

The conclusion also holds for the labels of P
(n)
23 in 3Sn−1

3 that are symmetric to the
edges in the previous two paragraphs.

Finally, for all the other non-clique edges of P
(n)
23 the statement follows by induction.

�

Next we calculate the number of labels of a merging labeling of Sn
3 . Let bn be the

number of labels different from 1 that appear on P
(n)
23 exactly once. In other words,

bn is the number of labels of 1Sn
3 that will be merged with some other label in Sn+1

3 .
(Clearly label 1 will not be merged.) Hence

bn = 2bn−1 − 2cn ,

where cn represents the number of labels that appear twice on P
(n)
23 for the first time.

To determine cn, Lemma 4.3 implies that we only need to find clique edges whose labels

appear twice on P
(n)
23 for the first time and, moreover, one edge must be in 2Sn−1

3 and
the second one in 3Sn−1

3 . By the way merging is defined this can happen if the first

11



edge is in 223Sn−3
3 and its label appears on both 22P

(n−2)
23 and 22P

(n−2)
13 exactly once.

The label of such an edge is then merged with the label of some edge in 213Sn−3
3 that

again appears on 21P
(n−2)
23 and 21P

(n−2)
13 exactly once. The edge on 21P

(n−2)
13 is then

on C
(n)
123 and its label is merged with the label of an edge in 312Sn−3

3 that appears on

31P
(n−2)
12 and 31P

(n−2)
23 exactly once by symmetry. Finally this was merged with a label

in 332Sn−3
3 that again appears only once on 33P

(n−2)
12 and 33P

(n−2)
23 . Looking at Fig. 4

we infer that c4 = 1 (label 9) and c5 = 1 (label 17).

Hence we need to treat clique edges on 223P
(n−3)
23 . For this sake we define even and

odd clique edges of P
(n)
23 as follows. Let T1, T2, . . . , T2n−1 be the consecutive triangles

with edges in P
(n)
23 . (On Fig. 4, triangle T1 is labeled with 13, and T16 with 22.) Then

we say that a clique edge e ∈ P (n)
23 is even/odd if e ∈ Ti and i is even/odd. Note that

the label of an odd clique edge from 223P
(n−3)
23 appears twice on 22P

(n−2)
13 . Hence it

appears twice on 2C
(n−1)
123 and is not merged at this step. So we only need to consider

even clique edges from 223P
(n−3)
23 . We will show by induction that cn = n−4 for n ≥ 5.

Note that for n = 5 there is only one such label, namely label 17 on Fig. 4. For Sn
3 ,

n > 5, every even clique edge of 2233P
(n−4)
23 has this property as well as the even clique

edge of T3·2n−5 . Hence cn = n− 4 for n ≥ 5.
Returning back to bn we now have:

bn = 2bn−1 − 2(n− 4) for n ≥ 6, and b5 = 10 ,

which yields
bn = 2n−3 + 2n− 4, n ≥ 5 .

Note that this formula holds also for n = 4.
Let finally an, n ≥ 4, be the number of labels in a merging labeling of Sn

3 . Then

an = 3an−1 −
3

2
bn−1 = 3an−1 −

3

2
(2n−4 + 2n− 6), a4 = 12

since we merge six parts into three by pairs. Clearly Hdim(Sk
3 ) ≥ an and the solution

of the recurrence gives Theorem 4.1. (We need to check n ∈ {2, 3} separately.)

5 An upper bound on Hdim(Snk )

In this section we prove an upper bound on the Hamming dimension of Sn
k for k ≥ 3.

We first establish some exact values.

Proposition 5.1 (i) Hdim(S2
3) = 3, Hdim(S3

3) = 6.
(ii) For any k ≥ 4, Hdim(S2

k) = 2.

12



Proof. (i) By Theorem 4.1, Hdim(S2
3) ≥ 3. That Hdim(S2

3) ≤ 3 follows from the fact

that on the cycle C
(2)
123 of S2

3 each label appears at least twice. Note that the merging
labeling is the unique 3-labeling of S2

3 that satisfies Conditions A and B.

Using Theorem 4.1 again we have Hdim(S3
3) ≥ 6. Since C

(3)
123 has length 12 (and

every label of an induced cycle must appear at least twice on it), there can be at most

6 different labels on C
(3)
123. If for {i, j, `} = {1, 2, 3} every `P

(2)
ij contains three labels

in `S2
3 , then each `S2

3 contains the same three labels as `P
(2)
ij (because the merging

labeling is the unique appropriate 3-labeling of S2
3). Such a labeling thus uses at most

6 different labels. Similarly, if some `P
(2)
ij contains only two different labels we infer

that only these two labels can be used on `S2
3 .

(ii) Let k ≥ 4. We claim that the 1|2-labeling of S2
k yields a unique induced

embedding of S2
k into a Hamming graph and hence Hdim(S2

k) = 2.
Since S2

k is not a complete graph we need at least two labels. By Condition A, all
edges of iS1

k , i ∈ {1, . . . , k}, must receive the same label. By Condition B, every edge

e
(2)
ij , j 6= i, must have different label from the labels of iS1

k and jS1
k . If all iS1

k have

the same label, then the non-clique edges of any cycle C
(2)
pqr must have the same label,

for otherwise one label appears only once on C
(2)
pqr. Since p, q, and r are arbitrary we

obtain the 1|2-labeling.
Suppose next that two of iS1

k , i ∈ {1, . . . , k}, are labeled with 1 and that among
the others there is at least one labeled with 2. We may choose the notation so that 1S1

k

and 2S1
k have label 1 and 3S1

k label 2. Then by Condition B, edges e
(2)
12 , e

(2)
13 , and e

(2)
23

cannot have label 1, moreover e
(2)
13 and e

(2)
23 cannot have label 2 by the same condition.

But then e
(2)
12 must have label 2, for otherwise we have the same contradiction as above

in C
(2)
123. Now consider vertices 〈13〉 and 〈23〉 to find the final contradiction to Condition

B.
Assume finally that all the iS1

k , i ∈ {1, . . . , k}, have different labels, say iS1
k has

label i. To satisfy Condition B, the edge e
(2)
12 of C

(2)
123 must have label 3, e

(2)
13 label 2,

and e
(2)
23 label 1. By the same argument applied on C

(2)
124, the edge e

(2)
12 must have label

4, a final contradiction. �

We are now ready for the main result of this section.

Theorem 5.2

(i) Hdim(Sn
3 ) ≤ 5 · 3n−3 + 1 (n ≥ 3) .

(ii) Hdim(Sn
k ) ≤ 2

k − 1
kn−2 +

2k − 4

k − 1
(k ≥ 4 and n ≥ 2) .

Proof. Labels that appear in more than one iSn−1
k will be called common labels.

13



For a fixed k and n ≥ 3, consider a labeling of Sn
k that fulfills Conditions A and B

and uses Hdim(Sn
k ) labels. We know that such a labeling exists, for instance, the 1|2

labeling generates it. Because iSn−1
k is isomorphic to Sn−1

k , the fixed labeling has at
most Hdim(Sn−1

k ) different labels in each subgraph iSn−1
k . In addition, by Condition

B, there must be at least two labels in each iSn−1
k that appear also in Sn

k \iS
n−1
k . Hence

we get
Hdim(Sn

k ) ≤ k(Hdim(Sn−1
k )− 2) + αn ,

where αn denotes the maximum number of common labels in the labeling under con-
sideration. Setting

an = k(an−1 − 2) + αn ,

we thus have Hdim(Sn
k ) ≤ an for the same initial conditions. By Proposition 5.1,

the initial conditions for k = 3 and k ≥ 4 are Hdim(S3
3) = 6 and Hdim(S2

k) = 2,
respectively.

Consider iSn−1
k and C

(n)
ij` . For the closest vertices of e

(n)
ij and e

(n)
i` on Cij` we observe

that by Condition B we need (at least) two labels of iSn−1
k on the other part of C

(n)
ij` .

Hence for every i ∈ {1, . . . , k} there are at most an−1 − 2 labels that appear only in
iSn−1

k . First we assume that the maximum number of labels is attained when we have
an−1 − 2 different labels in every iSn−1

k . Even more, these two labels cannot be on

e
(n)
ij or e

(n)
i` , since otherwise we can include these two edges and consider the other two

vertices of e
(n)
ij and e

(n)
i` . Thus we have 6 positions on C

(n)
ij` for new labels in iSn−1

k ,

jSn−1
k , and `Sn−1

k , and additional 3 edges e
(n)
ij , e

(n)
i` , and e

(n)
j` —all together 9 positions.

By the above argument, each position in iSn−1
k , jSn−1

k , and `Sn−1
k may contain more

than one edge but all such edges can be viewed just as one. But then in C
(n)
ij` we may

have at most 4 =
⌊
9
2

⌋
common labels.

Suppose now that we can use 5 common labels. First we consider a longer path
Pij` between 〈i`` . . . `〉 and 〈j`` . . . `〉 in Cij` for every i, j, and `. If every Cij` contains
at most two common labels, Pij` clearly contains both labels. But then Pijr = Pij`

for every r /∈ {i, j, `} and every Cijr contains these two labels. This is a contradiction
since we have used 5 common labels. Next suppose that every Cij` contains at most
3 common labels. If Pi`j contains only two of these labels, then both Pij` and Pj`i

contain all three. Again Pijr = Pij` for every r /∈ {i, j, `} and every Cijr contains these
three labels—a contradiction. Next suppose that Cij` contains four common labels. If
Pij` contains only three common labels, we have only 4 positions in Cij`−Pij` and one

label, say 4, is present only on Cij` − Pij`. By the above, both e
(n)
i` and e

(n)
j` must have

label 4. The label of e
(n)
ij , say 3, must be in `Sn−1

k together with a common label 2.

Label 2 must also be in one of iSn−1
k or jSn−1

k . We may assume that it is in iSn−1
k

(together with label 1). Hence Pi`j contains four common labels. If label 5 exists in
rSn−1

k , r /∈ {i, j, `}, then Ci`r contains 5 common labels which is not possible. Hence let
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e
(n)
pr have label 5. If p ∈ {i, `} (or by symmetry r ∈ {i, `}) then Ci`r (or Ci`p) contains

5 common labels again. If finally p, r /∈ {i, j, `}, either e
(n)
pi or e

(n)
ri have label 5 which is

not possible. Thus αn ≤ 4, hence

an = k(an−1 − 2) + 4 , a3 = 4 .

Solving the recurrence yields the result. �

Corollary 5.3 For any k ≥ 4, Hdim(S3
k) = 4.

Proof. By Theorem 5.2, Hdim(S3
k) ≤ 4. A 4-labeling of S3

k that satisfies Conditions
A and B can be constructed as follows. Use the 1|2-, 2|3-, 3|4-, and 4|1-labelings on

1S2
k , 2S2

k , 3S2
k , and 4S2

k , respectively. Label the edges e
(3)
12 , e

(3)
23 , e

(3)
34 , and e

(3)
14 with 4, 1,

2, and 3, respectively. Next, we may choose labels 2 or 4 for the edge e
(3)
13 and labels

1 or 3 for the edge e
(3)
24 . Finally, for every i ∈ {5, . . . , k} use the 1|3-labeling on iS2

k ,

label edges e
(3)
i1 and e

(3)
i2 with 4, edges e

(3)
i3 and e

(3)
i4 with 2, and all the other edges e

(3)
ij ,

j ∈ {5, . . . , k}, i 6= j, with 2. For this labeling, Condition A clearly holds. Moreover,

a straightforward checking on cycles C
(3)
pqr shows that Condition B is fulfilled for it as

well. �

Note that in Theorem 5.2 equality holds for S2
k and S3

k , k ≥ 4. The upper bound
(ii) is also exact for S4

4 . Indeed, the bound is 12, and on the other hand, two different
appropriate labelings of S4

4 are shown on Fig. 5.

6 Isometric embedding

In this final section we consider isometric embeddings of Sn
k into Cartesian product

graphs. In this case the classical theory due to Graham and Winkler asserts that there
is precisely one such embedding that is irredundant and has the largest number of
factors. The embedding is described in many papers and books, see [11, Chapter 11]
for instance, and is called the canonical isometric representation. We recall that it is
defined just as the embedding f was introduced in Section 3 where the partition of the
edge set of G is done with respect to the transitive closure Θ∗ of the relation Θ. Here
edges e = xy and f = uv of G are in relation Θ if d(x, u) + d(y, v) 6= d(x, v) + d(y, u).
The canonical isometric representation is trivial if G contains only one Θ∗ class.

It is easy to see that no two edges of a geodesic are in relation Θ, a fact that will
be used later. We will also need the following well-known lemma, cf. [11, Lemma 11.3]:

Lemma 6.1 Suppose P is a walk connecting the endpoints of an edge e. Then P
contains an edge f 6= e with eΘf .
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4(4) 12(12) 7(9)

1(1) 1(1) 1(1) 1(1) 1(3) 1(3) 1(3) 1(3)

3 (3) 2 (2) 8 (10) 11 (11)

1(1) 1(1) 1(1) 1(1) 1(3) 1(3) 1(3) 1(3)

4(4) 3(3) 11(11) 7(9)
4 (4) 2 (2) 8 (10) 7 (9)

1(1) 1(1) 3(3) 3(3) 11(11) 11(11) 1(3) 1(3)

2 (2) 2 (2) 8 (10) 8 (10)

1(1) 1(1) 3(3) 3(3) 11(11) 11(11) 1(3) 1(3)

2(2) 8(10)12(1) 3(3)
12 (11) 11 (1)

9(6) 6(8)

1(12) 1(12) 11(1) 11(1) 11(12) 11(12) 3(11) 3(11)

9 (6) 9 (6) 6 (8) 6 (8)

1(12) 1(12) 11(1) 11(1) 11(12) 11(12) 3(11) 3(11)

11(1) 10(5) 11(7) 5(12)
10 (5) 9 (6) 6 (8) 5 (7)

1(12) 1(12) 1(12) 1(12) 3(11) 3(11) 3(11) 3(11)

11 (1) 9 (6) 6 (8) 11 (12)

1(12) 1(12) 1(12) 1(12) 3(11) 3(11) 3(11) 3(11)

10(5) 11(3) 5(7)

Figure 5: Two labelings of S4
4

Now we have:

Proposition 6.2 Let k ≥ 4. Then for any n ≥ 1 the canonical isometric representa-
tion of Sn

k is trivial.

Proof. For a given k ≥ 4 we proceed by induction on n. Graph S1
k is isomorphic to Kk,

hence the assertion clearly holds in this case. Let n > 1. Then for i ∈ {1, . . . , k} the
subgraph iSn−1

k contains a single Θ∗-class by the induction assumption. Lemma 6.1
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now implies that for i ∈ {3, . . . , k} the cycle C
(n)
12i contains an edge f with fΘe

(n)
12 .

Moreover, f can only lie in iSn−1
k . Hence the edges of iSn−1

k , i ≥ 3, all lie in the
same Θ∗-class. By the symmetry of Sn

k , the canonical isometric representation of Sn
k is

trivial. �

By Proposition 6.2 we may hope for a nontrivial isometric representation of Sn
k only

when k = 3. This is indeed the case as the main result (Theorem 6.5) of this section
asserts. We need some preparation for it.

Proposition 6.3 Let n ≥ 1 and let F be a Θ∗-class of Sn
3 . Then |P (n)

ij ∩ F | ≥ 1 for
i 6= j.

Proof. The statement is clearly true for n = 1. Let n > 1 and let F be an arbitrary
Θ∗-class of Sn

3 . If |F ∩ iSn−1
3 | ≥ 1, then by the induction hypothesis (applied to iSn−1

3 ),

F intersects shortest paths iP
(n−1)
ij , iP

(n−1)
i` , and iP

(n−1)
j,` for {i, j, `} = {1, 2, 3}. Let e

be in iP
(n−1)
j,` ∩ F . If the antipodal edge of e on C

(n)
123 is e

(n)
j` , we are done since e

(n)
j` is

on P
(n)
j,` . Otherwise, the antipodal edge of e on C

(n)
123 is either on jP

(n−1)
i` or `P

(n−1)
ij .

Induction completes the proof. �

It is well-known (and easy to prove) that edges from different 2-connected com-
ponents of a graph are not in relation Θ and hence also not in relation Θ∗. For our
purposes we need the following modification of this fact.

Lemma 6.4 Let H be an isometric subgraph of G and let e and f be edges from
different blocks of H. Then e is not in relation Θ with f in G.

Proof. Let e = uv and f = xy. By the above fact, e and f are not in relation Θ in H,
that is,

dH(u, x) + dH(v, y) = dH(u, y) + dH(v, x) .

Since H is an isometric subgraph of G, it follows that

dG(u, x) + dG(v, y) = dG(u, y) + dG(v, x) ,

hence e and f are not in relation Θ in G. �

Note that we cannot conclude in Lemma 6.4 that e and f are not in relation Θ∗ in
G. For instance, consider P3 as a subgraph of K2,3. Then it is isometric in K2,3 yet its
edges are in relation Θ∗.

To describe Θ∗-classes of Sn
3 , let {i, j, k} = {1, 2, 3} and set

F i
n = {〈in〉〈in−1j〉, 〈in〉〈in−1k〉} ∪ {e(`)jk | ` ∈ {1, . . . , n}} .

Note that |F i
n| = n+ 2.

Now we can state the main result of this section:
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Theorem 6.5 Let n ≥ 2. Then the Θ∗-classes of Sn
3 are F 1

n , F 2
n , F 3

n , and F̃n =
E(Sn

3 ) \ (F 1
n ∪ F 2

n ∪ F 3
n).

Proof. It is straightforward to check the result for n = 2, where F̃3 = ∅ so that in this
case we have three Θ∗-classes.

Let i ∈ {1, 2, 3} and consider F i
n. By induction assumption (and the fact that iSn−1

3

is an isometric subgraph of Sn
3 ), we infer that 〈in〉〈in−1j〉, 〈in〉〈in−1k〉 ∈ F i

n, as well as

e
(`)
jk ∈ F

i
n for ` ∈ {1, . . . , n − 1}. Moreover, the edge e

(n)
jk belongs to F i

n because it is

the antipodal edge of e
(n−1)
jk on C

(n)
123. (Recall that C

(n)
123 is the shortest cycle containing

the edges e
(n)
12 , e

(n)
23 , and e

(n)
31 .) Hence the edges of F i

n belong to a common Θ∗-class. It

remains to show that (i) no two edges from different sets F 1
n , F 2

n , F 3
n , and F̃n are in

relation Θ and that (ii) in F̃n any two edges are in relation Θ∗.
For assertion (i), by symmetry it suffices to prove that no edge of F 1

n is in relation
Θ with any other edge. Moreover, denoting with G2 and G3 the connected components
of Sn

3 \ F 1
n , where 〈2n〉 ∈ G2, it suffices (using symmetry again) to prove that no edge

of F 1
n is in relation Θ with an edge of G2.
Note first that G2 is isometric in Sn

3 . Moreover, the graph induced by V (G2) and
vertices 〈1n〉 and 〈1n−13〉 is also isometric in Sn

3 . Then Lemma 6.4 implies that edges
〈1n〉〈1n−12〉, 〈1n〉〈1n−13〉, and 〈1n−12〉〈1n−13〉 are not in relation Θ with any edge in G2.
Let ` ∈ {0, . . . , n− 2} and consider the subgraph of Sn

3 induced by G2 and 〈132n−`−1〉.
We infer again that this subgraph is isometric, hence applying Lemma 6.4 we conclude
that 〈1n−12〉〈1n−13〉 is in relation Θ with no edge of G2. This proves (i).

It remains to prove that any two edges of F̃n are in relation Θ∗. If n = 3, it is
straightforward to check that 〈112〉〈121〉Θ〈322〉〈321〉Θ〈122〉〈123〉. By symmetry and

transitivity the result follows. Let n ≥ 4. Then because C
(n)
123 is isometric,

〈12n−1〉〈12n−23〉Θ〈321n−2〉〈321n−32〉

as well as
〈12n−23〉〈12n−332〉Θ〈321n−32〉〈321n−421〉 .

Now apply induction, symmetry, and transitive closure to conclude that F̃n is indeed a
Θ∗-class. �

Note that Sn
3 /F

i
n
∼= K2 for i ∈ {1, 2, 3}, while Sn

3 /F̃n is obtained from Sn
3 by

contracting each edge in F 1
n ∪ F 2

n ∪ F 3
n . See Fig. 6 for S4

3/F̃4.

18



Figure 6: The factor graph S4
3/F̃4
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[10] S. Gravier, S. Klavžar, M. Mollard, Codes and L(2, 1)-labelings in Sierpiński
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[17] W. Imrich, M. Kovše, Lattice embeddings of trees, European J. Combin. 30 (2009)
1142–1148.

[18] M. Jakovac, A 2-parametric generalization of Sierpiński gasket graphs, Ars Com-
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