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Abstract

Given a graph G and a set X ⊆ V (G), the relative Wiener index of X in G
is defined as WX(G) =

∑
{u,v}∈(X2 )

dG(u, v) . The graphs G (of even order) in

which for every partition V (G) = V1+V2 of the vertex set V (G) such that |V1| =
|V2| we have WV1(G) = WV2(G) are called equal opportunity graphs. In this
note we prove that a graph G of even order is an equal opportunity graph if and
only if it is a distance-balanced graph. The latter graphs are known by several
characteristic properties, for instance, they are precisely the graphs G in which
all vertices u ∈ V (G) have the same total distance DG(u) =

∑
v∈V (G) dG(u, v).

Some related problems are posed along the way, and the so-called Wiener game
is introduced.
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1 Introduction

The Wiener index W (G) of a (connected) graph G is defined as the sum of the
distances between all pairs of vertices of G. It was introduced in 1947 in the seminal
chemical paper [21]. The index was extensively studied in the last decades, see,
for instance, the surveys [5, 6] on the Wiener index of trees and hexagonal graphs.
Although its main application is in mathematical chemistry, this natural concept
appears in other areas of graph theory and applications. Note that investigations of
the Wiener index are (essentially) equivalent to the studies of the average distance
in graphs, cf. [4].

A related concept was recently introduced under the name terminal Wiener
index, which is defined as sum of the distances between all leaves in a graph [10, 18].
In connection to the terminal Wiener index the so-called terminal distance matrices
were used in the mathematical modeling of proteins and genetic codes [17, 9].

In this paper we are interested in another variation of the above concept(s), the
network opportunity index. When partitioning a network topology into two equal
pieces of nodes, the halves may have very different structure, in particular their
metric properties can be very different. If we have an option to design a network
in advance (say, in the situation when two parties are competing in a common
market with an objective to minimize the cost of transport between all its nodes),
it seems fair to design a network in such a way that neither of the involved parties
has an advantage to the other. Focusing on a simple model of an undirected graph,
the opportunity index is the largest possible difference between the relative Wiener
indices of two halves, over all partitions of its vertex set into two equal parts. We are
especially interested in the so-called equal opportunity graphs, that are defined as
the graphs having opportunity index equal to 0. In graph theory equal opportunity
property yields another (metric) measure of symmetry.

Our main result asserts that equal opportunity graphs are precisely distance-
balanced graphs (of even order), a class of graphs first studied by Handa [8] in the
case of partial cubes. The concept was later generalized to all graphs in [13], where
these graphs were also named distance-balanced. In particular it was observed that
all vertex-transitive graphs are distance-balanced. Symmetry properties of distance-
balanced graphs were studied in depth in [15], see also [22]. In [2] distance-balanced
graphs were characterized as the graphs in which all vertices have the same total
distance. In the bipartite case, distance-balanced graphs can be characterized as the
extremal graphs with respect to the so-called Szeged index, a result independently
proved in [1, 11]. Distance-balanced graphs with respect to different graph oper-
ations were studied in [13, 2, 20]. Cabello and Lukšič [3] considered the problem,
which is the minimum number of edges to be added to a given graph to obtain a
distance-balanced graph. They proved that the problem is NP-hard for graphs of
diameter 3, but can be solved in polynomial time for graphs of diameter 2. Finally,
Miklavič and Šparl [16] extended connectivity studies of Handa by constructing a
bipartite distance-balanced graph that is neither a cycle nor 3-connected and clas-
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sifying non-3-connected bipartite distance-balanced graphs for which the minimum
distance between the vertices of a 2-cut equals 3.

In the next section we formally introduce the relevant concepts and give some
preliminary results. Then, in Section 3, we prove the main result of this paper:
equal opportunity graphs are precisely distance-balanced graphs of even order. We
also construct a new infinite family of such graphs. In the concluding section, we
propose a new game on graphs, called the Wiener game, which arises from a practical
electricity distribution problem and is closely related to the opportunity index.

2 Preliminaries

The graphs considered are simple and connected. The distance dG(u, v) between
vertices u and v in a graph G is the shortest path distance. For a vertex u of G
the total distance DG(u) of u is DG(u) =

∑
v∈V (G) dG(u, v). Whenever G will be

clear from the context we will write d(u, v) and D(u) instead of dG(u, v) and DG(u),
respectively.

The r-cube Qr is the graph with V (Qr) = {0, 1}r and two vertices r-tuples u
and v are adjacent if and only if they differ in exactly one coordinate. A graph G is
called a partial cube if it can be embedded as an induced subgraph into Qr such that
for each pair of vertices u, v ∈ V (G), dG(u, v) = dQr(u, v). (Note that this distance
coincides with the number of coordinates in which the r-tuples u and v differ.) We
also say that G is an isometric subgraph of the Qr.

The Wiener index W (G) of a graph G is defined with

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
u∈V (G)

DG(u).

If X ⊆ V (G) then the relative Wiener index of X in G is

WX(G) =
∑

{u,v}∈(X2 )

dG(u, v) ,

where
(
X
2

)
is the set of all 2-element subsets of X.

For an edge uv of a graph G let Wuv be the set of vertices closer to u than to v,
that is, Wuv = {x ∈ G : d(x, u) < d(x, v)}. If G is bipartite, then Wuv and Wvu form
a partition of the vertex set of G. A graph G is distance-balanced, if |Wuv| = |Wvu|
holds for any edge uv of G. We recall the following result (see also [19, Theorem 1]
for an alternative proof):

Theorem 2.1 [2, Theorem 3.1] Let G be a connected graph. Then G is distance-
balanced if and only if |{D(x) : x ∈ V (G)}| = 1.

In other words, distance-balanced graphs are precisely the graphs in which all
the vertices have the same total distance.
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Let G be a graph on 2n vertices, and let V1, V2 ⊂ V (G) be n-sets of vertices of
G such that V1 ∪ V2 = V (G) (note that this implies V1 ∩ V2 = ∅). Then we say that
{V1, V2} is a half-partition of G. The opportunity index of a graph G is defined as

opp(G) = max{|WV1(G)−WV2(G)| : {V1, V2} is a half-partition of G} .

There exist graphs G with opp(G) arbitrarily large. For instance, if G is the corona
on Kn (the graph obtained from the complete graph on n vertices by attaching a
leaf to each vertex), then opp(G) = n(n− 1).

We conclude the section with a key definition: A graph G (of even order) is an
equal opportunity graph if opp(G) = 0.

3 Characterization of equal opportunity graphs

Here is our main result:

Theorem 3.1 A graph G is an equal opportunity graph if and only if G is a distance-
balanced graph of even order.

Proof. Suppose first that G is a distance-balanced graph G of order 2n. Let V1

and V2 be any sets of size n such that V1 ∪ V2 = V (G). For any x ∈ V1 we can write
DG(x) =

∑
u∈V1

d(x, u) +
∑

v∈V2
d(x, v). Summing up for all vertices x ∈ V1 we get

W (G) =
∑
x∈V1

∑
u∈V1

d(x, u) +
∑
v∈V2

d(x, v)

 = 2WV1(G) + 2WV1,V2(G),

where WV1,V2(G) denotes the sum of all distances d(x, y) where x ∈ V1, y ∈ V2. By
applying the same reasoning for V2 we find that

2WV1(G) + 2WV1,V2(G) = 2WV2(G) + 2WV1,V2(G)

which implies that WV1(G) = WV2(G). We conclude that G is an equal opportunity
graph.

Assume now that G is an equal opportunity graph. Then by definition, G is of
even order 2n. We are going to show that DG(x) = W (G)/n holds for any vertex
x. This will imply, using Theorem 2.1, that G is a distance-balanced graph (of even
order).

Since G is an equal opportunity graph, W (X) = W (Xc) holds for any X ⊂ V (G)
with |X| = n, where Xc denotes the complement of X. Fixing x ∈ V (G) and
summing over all half sized subsets that contain x we thus have∑

x∈X⊂V (G)
|X|=n

(W (X)−W (Xc)) = 0 .
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Considering how many times a fixed pair of vertices appears in the above summation
we then get:(

2n− 2

n− 2

)∑
u̸=x

d(x, u) +

(
2n− 3

n− 3

) ∑
u,v ̸=x

d(u, v)−
(
2n− 3

n− 2

) ∑
u,v ̸=x

d(u, v) = 0 ,

which can be rewritten as(
2n− 2

n− 2

)
D(x) =

[(
2n− 3

n− 2

)
−

(
2n− 3

n− 3

)] ∑
u,v ̸=x

d(u, v) ,

or, equivalently, (
2n− 2

n− 2

)
D(x) =

1

n− 1

(
2n− 2

n− 2

) ∑
u,v ̸=x

d(u, v) .

It follows that (n − 1)D(x) =
∑

u,v ̸=x d(u, v). Adding D(x) to both sides of this
equality we get nD(x) =

∑
u,v d(u, v) = W (G). Hence G is a distance-balanced

graph. �

We have thus seen that equal opportunity graphs are precisely distance-balanced
graphs of even order. Hence it is desirable to know many interesting (infinite)
families of such graphs. There exist non-regular distance-balanced partial cubes, for
instance the Handa graph [8], see also [11]. We next construct a new infinite family
of (non-regular) distance-balanced partial cubes, and so, an infinite family of equal
opportunity graphs.

For any 3 ≤ s ≤ r, let Qr,s be the graph obtained from Qr by removing the
vertices which either have the first s coordinates equal to 1 or have the first s
coordinates equal to 0. For instance, Q3,3 = C6 because it is obtained from Q3

by removing vertices 111 and 000. (A seemingly more general construction would
be to first select some subset of s coordinates and then remove the corresponding
vertices, however due to the symmetry of Qr a graph isomorphic to Qr,s would be
constructed.) Now we have:

Proposition 3.2 If 3 ≤ s ≤ r, then Qr,s is an equal opportunity graph.

Proof. We first claim that Qr,s is a partial cube. To this end let u = u1 . . . ur
and v = v1 . . . vr be arbitrary vertices of Qr,s and suppose that u and v differ in b
coordinates. To prove the claim it suffices to show that there exists a u, v-path in
Qr,s of length b.

Let i1, . . . , ia, ia+1, . . . , ib be the coordinates in which u and v differ, where
i1, . . . , ia ∈ {1, . . . , s} and ia+1, . . . , ib ∈ {s + 1, . . . , r}. Let u′ = u1 . . . us and
v′ = v1 . . . vs. If not all ui, i ∈ Iu,s := {1, . . . , s} \ {i1, . . . , ia}, are equal, then it is
straightforward to construct a desired u, v-path of length b in Qr,s. Hence we may
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assume without loss of generality that ui = 0 for any i ∈ Iu,s (and so also vi = 0
for any i ∈ Iu,s). Then there exists at least one index i′ from {i1, . . . , ia} such that
ui′ = 0, for otherwise all the coordinates of v′ would be 0, a contradiction. But now
we can easily find a shortest u, v-path of length b in Qr,s by first changing ui′ to 1.

We have thus proved that Qr,s is a partial cube. It follows that the distance
between two vertices of Qr,s is the number of coordinates in which they differ. Since
Qr,s is obtained from Qr by removing 2 · 2r−s vertices, |V (Qr,s)| = 2r − 2r−s+1.
Moreover, by the way Qr,s is constructed, if u is an arbitrary vertex of Qr,s, then u
differs in a fixed coordinate from precisely (2r − 2r−s+1)/2 other vertices. It follows
that for any vertex u we have DQr,s(u) = r(2r − 2r−s+1)/2. From Theorem 2.1 we
thus infer that Qr,s is distance-balanced. Theorem 3.1 now implies that Qr,s is an
equal opportunity graph. �

The Fibonacci cube Γr, r ≥ 1, is obtained from Qr by removing all vertices
that contain two consecutive ones, cf. [14], while the generalized Fibonacci cube
Γr(f), where f is a given fixed binary string, is obtained from Qr by removing all
vertices that contain f as a substring [12]. Since the construction of the graphs Qr,s

introduced above is of similar nature, it seems interesting to further study this class
of partial cubes.

4 Opportunity index and Wiener game

Given a graph G it is interesting to know what its opportunity index is. Loosely
speaking, the bigger the difference, the less metric-symmetric the graph is. When
a graph is a model for a real-life problem (say in economy, location theory, or so-
cial choice phenomena) then the network opportunity measures the unfairness or
social inequality of a given topology. Thus, in many situations the design of equal
opportunity networks is highly desirable.

Let us present an example from distribution networks. Consider a network that
consists of nodes connected by transmission lines. Each node is a source of items
as well as a distribution center which supplies customers and the other nodes of
the network with items. Some of the items transmitted between the nodes are lost:
the loss rate is proportional to the number of transmission lines on a shortest path
between two nodes. We assume that all sources and distribution centers have the
same capacity and the same customer demand, respectively.

The customers are served by two distribution companies, say A and B, such that
each company is allowed to control half of the nodes of the grid. The company A
(resp. B) can use only the items obtained from the sources that belong to A (resp.
B). In order to make a selection of the nodes fair, A and B alternate taking turns
choosing a node. The goal of a company is to minimize the losses on transmission
lines. If nodes are considered as vertices with nodes being adjacent if there is a
transmission line between them, we have to minimize the sum of distances between
vertices of A (or B) in the underlying graph of a network.

6



An example of the above concept would be an electrical grid that consists of
high-voltage transmission lines that connect intermittent energy sources. An inter-
mittent energy source is a a source of energy that is not continuously available due
to some factor outside direct control, e.g. wind turbines and solar power stations.
An intermittent energy source supplies individual customers. Moreover, since the
variability of production from a single source can be high, it exchanges electrical
energy with the other intermittent energy sources of the grid.

These examples initiate an introduction of the game played on vertices of a
graph, which we call the Wiener game. (For more on combinatorial games, see the
survey [7].) This game is played on a connected graph G of even order. Vertices are
chosen, one at a time, by two players—player A and player B. Player A starts the
game and the players alternate by taking turns choosing a vertex from G until all
the vertices have been selected. Let VA and VB be the sets of vertices selected by
players A and B, respectively. Since the order of G is even, |VA| = |VB|. The goal
of both players is to make∑

{u,v}∈(VA2 )

dG(u, v) and
∑

{u,v}∈(VB2 )

dG(u, v)

as small as possible, respectively. Assuming that both were playing optimally and
that sets VA were selected by the two players, we set WA(G) =

∑
{u,v}∈(VA2 )

dG(u, v)

and WB(G) =
∑

{u,v}∈(VB2 )
dG(u, v). We say that player A (resp. B) wins the game

if WA(G) < WB(G) (resp. WB(G) < WA(G)), otherwise the game is a draw.
Note that |WA(G) − WB(G)| ≤ opp(G), and in practical situations, the player

who wins the game, often wants to maximize |WA(G)−WB(G)|. This yields another
(difficult) problem of making the advantage as big as possible, and determine its
value. Note that this difference can be arbitrarily large. For instance, WA(K1,2n−1)−
WB(K1,2n−1) = opp(K1,2n−1) = n−1. Of course, opp(G) is in general only an upper
bound for this difference. Anyway, studying opp(G) for arbitrary graphs G may be
of independent interest. Also studying lower bounds for |WA(G) − WB(G)| and
finding classes of graphs on which this lower bound is always positive (graphs on
which the game can never be a draw) will be interesting. From a complementary
point of view, graphs G in which |WA(G) − WB(G)| = 0 for some half partition
{A,B} of G are interesting in the sense that a fair half partition of their nodes can
be achieved. Again finding optimum strategies for each player in special classes of
graphs is challenging.

The following observation is a direct consequence of Theorem 3.1.

Corollary 4.1 If G is a distance-balanced graph of even order, then the Wiener
game on G is a draw, regardless of the strategy used by either of the players.

In fact, we can even allow the first player to first choose half of the vertices and
the second player is left with the other half, and the game will still be a draw.
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To conclude the paper we propose a further study of the Wiener game and the
opportunity index.
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