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Abstract

The distinguishing numberD(G) of a graphG is the least integerd such that there is ad-labeling
of the vertices ofG which is not preserved by any nontrivial automorphism. For a graphG let Gr

be ther th power ofG with respect to the Cartesian product. It is proved thatD(Gr ) = 2 for any
connected graphG with at least 3 vertices and for anyr ≥ 3. This confirms and strengthens a
conjecture of Albertson. Other graph products are also considered and a refinement of the Russell
and Sundaram motion lemma is proved.
© 2005 Elsevier Ltd. All rights reserved.

MSC: 05C25

1. Introduction

A labeling � : V (G) → {1, . . . , d} of a graphG is d-distinguishing if no nontrivial
automorphism ofG preserves the labeling. Such a labeling thus uniquely identifies vertices
of G, that is, vertices are “distinguished” among themselves. Thedistinguishing number,
D(G), of a graphG, is the minimumd suchthatG has ad-distinguishing labeling.
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Since its introduction in [2], the distinguishing number of a graph, and more generally
of a group action on a set, became an active research area within graphs and groups. The
distinguishing numbers of Cartesian products of graphs have been investigated in [1,3].
Let us, as is nowadays more or less standard, denote the Cartesian product of graphsG
and H by G � H . For a graph G and an integerr , let Gr be defined asG1 = G and
Gr = Gr−1 � G. Then ther -cubeQr , r ≥ 1, is defined asK r

2.
Bogstad and Cowen [3] proved thatD(Q2) = D(Q3) = 3 andD(Qd ) = 2 for d ≥ 4.

Their result has been widely generalized by Albertson [1] as follows. We say that a graph
is prime (with respect to the Cartesian product) if it cannot be written as the Cartesian
product of two nontrivial graphs.

Theorem 1.1 ([1]). If G is a connected prime graph, then D(Gr ) = 2 for r ≥ 4. If, in
addition, |V (G)| ≥ 5, then D(G3) = 2.

Then Albertson conjectured that the condition thatG be a prime graph might not be
necessary.

Conjecture 1.2 ([1]). For any graph G (not necessarily prime), there is an integer R =
R(G) such that D(Gr ) = 2 for any r ≥ R(G).

We confirm this conjecture by proving thatD(Gr ) = 2 for any connected graphG with
at least 3 vertices and for anyr ≥ 3. Along the way, other graph products are considered
and a refinement of the motion lemma from [8] is proved. We add that very recently, it has
been proved in [7] that D(G2) = 2 for any connected graphG �= K2, K3.

2. An upper bound on D(G ∗ H)

In this section we give an upper bound on the distinguishing number of an arbitrary
graph product in which the automorphisms preserve the layer structure. This result (in the
case of the Cartesian product) will then be used in the next section to obtain our main
result.

Let G andH be graphs. Then by agraph product G ∗ H in the sense of [5] we mean
any operation for whichV (G ∗ H ) = V (G) × V (H ) and the adjacency of two vertices
in G ∗ H depends only on the adjacencies of the corresponding vertices in the factors.
In particular, theCartesian product G � H of graphsG = (V , E) and H = (W, F) is
defined on the vertex setV (G � H ) = V × W while E(G � H ) = {{(a, x), (b, y)} | ab ∈
E andx = y, or xy ∈ F anda = b}. Observe that the Cartesian product is commutative
and associative.

Let G andH be graphs anda ∈ V (G). Then the subgraph ofG∗H induced by the vertex
set{(a, x) : x ∈ V (H )}, is called anH -layer of G ∗ H and denoted byHa. Analogously
one definesG-layers. Note that the layers of the Cartesian product are isomorphic to
the factor graphs. Among the four standard graph products [6] the strong product and
the lexicographic product also have this property. However, the automorphism groups of
lexicographic products generally do not satisfy the conditions of the following theorems.

Theorem 2.1. Let G and H be connected graphs with 2 ≤ D(G) ≤ D(H ). Let G ∗ H be
a graph product for which the layers are isomorphic to the corresponding factors. If every
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automorphism ϕ of G is of the form ϕ(a, x) = (ϕG(a), ϕH (x)), where ϕG ∈ Aut(G) and
ϕH ∈ Aut(H ), then

D(G ∗ H ) ≤ max{D(G), D(H ) − (2D(G) − D(G) − 1)}.
Proof. Let n = D(G) andk = D(H ). Let�G be ann-distinguishing labeling ofG and�H

a k-distinguishing labeling ofH . Define a labeling� of G ∗ H in the following way. First
set

�(a, x) =
{
�H (x), 1 ≤ �H (x) ≤ k − (2n − n − 1);
�G(a), �H (x) = k.

We still need to define� for the vertices(a, x) with k − 2n + n + 2 ≤ �H (x) ≤ k − 1.
Let A1, . . . , At be the subsets of{1, 2, . . . , n} with 2 ≤ |Ai | ≤ n − 1. To each integer in
the interval[k −2n +n +2, k −1] assign a unique setAi . Complete the definition of� such
that the vertices of the layerGx , wherek − 2n + n + 2 ≤ �H (x) ≤ k − 1, are (arbitrarily)
labeled usingall the labels from the setAi which is assigned to�H (x).

We claim that� is a distinguishing labeling ofG ∗ H . Let ϕ be an automorphism of
(G ∗ H, �). Then by the theorem assumption,ϕ = (ϕG , ϕH ). We need to show thatϕ = id,
that is, the identity map.

Claim 1. For anyx ∈ V (H ): �H (ϕH (x)) = �H (x).
If �H (x) = k, thenGx receivesn labels. If�(Hx) < k, thenGx receives at mostn − 1
labels. Asϕ(Hx) = HϕH (x) andϕ preserves the labels, it follows that if �H (x) = k, then
�H (ϕH (x)) = k. Similarly, if �H (x), �H (y) < k, then the construction of� implies that
if �H (x) �= �H (y), then the sets of labels of layersGx andGy are different. Becauseϕ
preserves labels and mapsG-layers ontoG-layers, we conclude that�H (ϕH (x)) = �H (x).

Claim 2. ϕG = id.
Let x be a vertex ofH with �H (x) = k and letϕH (x) = y. (It is possible thatx = y.)
By Claim 1, �H (y) = k. HenceϕG induces a label preservingisomorphism between the
layersGx ∼= G andGy ∼= G. As �G is ann-distinguishing labeling ofG, we conclude that
ϕG = id.

Claim 3. ϕH = id.
Let u be a vertex ofG and consider the layerHu ∼= H . By Claim 2, ϕ mapsHu onto Hu.
But thenϕH induces an isomorphismHu → Hu. Moreover, byClaim 1, this isomorphism
gives us a label preserving automorphism of(H, �H ). Thus as�H is a k-distinguishing
labeling ofH , the claim follows. �

Theorem 2.1can, for instance, be applied to the strong product of connected, prime, and
so-called thin graphs; cf. [6, Theorem 5.22]. For our purposes the most important special
case in which the conditions of the theorem are fulfilled is given in the next corollary.

Sabidussi [9] and Vizing [10] proved that every connected graph has a unique prime
factor decomposition with respect to the Cartesian product. Hence it makes sense to define
graphsG and H to be relatively prime (with respect to the Cartesian product) if there
is no nontrivial graph that is a factorin the prime factor decomposition ofG and in the
decomposition ofH . Clearly, two prime graphs are relatively prime. We refer the reader
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to [6, Corollary 4.17] for the fact that the automorphisms of the Cartesian product of
connected, relatively prime graphs preserve the layer structure.

Corollary 2.2. Let G and H be connected graphs with 2 ≤ D(G) ≤ D(H ). If G and H
are relatively prime then

D(G � H ) ≤ max{D(G), D(H ) − (2D(G) − D(G) − 1)}.
Consider the productsK2 � C3 and K2 � C5. Since D(K2) = 2 and D(C3) =

D(C5) = 3, Corollary 2.2 gives D(K2 � C3) = D(K2 � C5) = 2. On the other hand,
D(K2 � C4) = 3 sinceK2 � C4 ∼= Q3. This example shows that in general we cannot
drop the assumption that the factors are relatively prime.

When the distinguishing numbers ofG andH are both small, the bound ofCorollary 2.2
is often exact. For instance:

Corollary 2.3. Let G and H be connected, relatively prime graphs with D(G) = 2 and
2 ≤ D(H ) ≤ 3. Then D(G � H ) = 2.

Proof. Since Aut(G) and Aut(H ) are nontrivial, so is Aut(G � H ); henceD(G � H ) ≥ 2.
Corollary 2.2completes the argument. �

On the other hand,D(G � H ) could be much smaller than max{D(G), D(H )}. Let G
be a graph onk vertices withD(G) = 1, thatis, an asymmetric graph. Then it is easy to
see that

D(G � Kn) =
⌈

n
1
k

⌉
,

while max{D(G), D(Kn)} = n.

3. A refinement of the motion lemma and the main result

Albertson’s proof of Theorem 1.1uses a result of Russell and Sundaram [8] that is
known as the motion lemma. In this section we first prove a refinement of the motion
lemma thatmight be of independent interest. We then simplify this result for the case of
vertex transitive graphs and complete the section with a proof of our main theorem.

For φ ∈ Aut(G), let m(φ) = |{x ∈ V (G) : φ(x) �= x}|, andm(G) = min{m(φ) : φ ∈
Aut(G)\{idV }}. Then themotion lemma asserts that ifd

m(G)
2 > |Aut(G)|, thenD(G) ≤ d.

Before we present a refinement of this result some preparation is needed.
Supposeφ ∈ Aut(G) is decomposed into a product of disjoint cycles:

φ = (v11v12 · · · v1�1)(v21v22 · · · v2�2) · · · (vt1vt2 · · · vt�t );
then thecycle norm of φ is defined as

c(φ) =
t∑

i=1

(�i − 1).

A d-labeling� of G is preserved byφ if and only if the vertices in each cycle ofφ are
labeled by the same label. So the probability that a randomd-labeling� is preserved by



S. Klavžar, X. Zhu / European Journal of Combinatorics 28 (2007) 303–310 307

φ is equal tod−c(φ). It is obvious thatc(φ) ≥ m(φ)/2. So the probability that a random
d-labeling� is preserved byφ is at mostd−m(φ)/2.

Lemma 3.1. Let G be a graph with |V (G)| = n. Suppose Aut(G) acting on V (G) has k
orbits and d ≥ 2 is an integer. If n − m(G) ≥ 3, and(

|Aut(G)| − k|Aut(G)| − n

n − m(G)
− 1

)
d−n/2 + k|Aut(G)| − n

n − m(G)
d−m(G)/2 < 1,

then D(G) ≤ d.

Proof. Let O1, O2, . . . , Ok be the orbits of Aut(G) acting onV (G), with |Oi | = ni and
n1 + n2 + · · · + nk = n. For each vertexx of G, let Hx = {φ ∈ Aut(G) : φ(x) = x}.
If x ∈ Oi , then |Hx | = |Aut(G)|/ni ; cf. [4, Lemma 2.2.2]. Therefore

∑
x∈V |Hx | =∑k

i=1
∑

x∈Oi
|Hx | = k|Aut(G)|.

For 0 ≤ j ≤ n − m(G), let Φ j = {φ ∈ Aut(G) : φ fixes exactlyj vertices ofG}. Let

q j = |Φ j |. By thedefinition of m(G), ∪n−m(G)
j=0 Φ j = Aut(G) \ {idV }. Note that idV fixes

n vertices. So bothn + ∑n−m(G)
j=0 jq j and

∑
x∈V (G) |Hx | count the number of pairs(φ, x)

suchthatφ ∈ Aut(G), x ∈ V (G) andφ(x) = x . Therefore

n +
n−m(G)∑

j=0

jq j =
∑

x∈V (G)

|Hx | = k|Aut(G)|.

If φ ∈ Φ j , then the probability that a randomd-labeling is preserved byφ is at most
d−(n− j )/2. If

n−m(G)∑
j=0

∑
φ∈Φ j

d−(n− j )/2 =
n−m(G)∑

j=0

q j d
−(n− j )/2 < 1,

then there is ad-labeling� which is not preserved by any automorphismφ �= idV . So
to proveLemma 3.1, it amounts to showing that if

∑n−m(G)
j=0 jq j = k|Aut(G)| − n and∑n−m(G)

j=0 q j = |Aut(G)| − 1, then
∑n−m(G)

j=0 q j d−(n− j )/2 < 1.
For non-negative real numbersx0, x1, . . . , xn−m(G), let

f (x0, x1, . . . , xn−m(G)) =
n−m(G)∑

j=0

x j d
−(n− j )/2.

So it suffices to prove thatf (x0, x1, . . . , xn−m(G)) < 1 for any(x0, x1, . . . , xn−m) with

n−m(G)∑
j=0

j x j = k|Aut(G)| − n and
n−m(G)∑

j=0

x j = |Aut(G)| − 1.

Suppose there is an index 0< j∗ < n − m(G) suchthatx j∗ > 0. Define the sequence
(x ′

0, x ′
1, . . . , x ′

n−m(G)) as follows:

x ′
0 = x0 + n − m(G) − j∗

n − m(G)
x j∗,
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x ′
j∗ = 0,

x ′
n−m(G) = xn−m + j∗

n − m(G)
x j∗,

x ′
j = x j , otherwise.

Then
∑n−m(G)

j=0 j x j = ∑n−m(G)
j=0 j x ′

j and
∑n−m(G)

j=0 x j = ∑n−m(G)
j=0 x ′

j . Sinced ≥ 2 and
n − m(G) ≥ 3, easy calculation shows that

f (x0, x1, . . . , xn−m(G)) < f (x ′
0, x ′

1, . . . , x ′
n−m(G)).

Therefore the maximum off (x0, x1, . . . , xn−m(G)) is attained atx0 = |Aut(G)| −
k|Aut(G)|−n

n−m(G)
− 1, x j = 0 for j = 1, 2, . . . , n − m(G) − 1 andxn−m(G) = k|Aut(G)|−n

n−m(G)
.

That is, for any(x0, x1, . . . , xn−m) with

n−m(G)∑
j=0

j x j = k|Aut(G)| − n and
n−m(G)∑

j=0

x j = |Aut(G)| − 1,

we have

f (x0, x1, . . . , xn−m(G)) ≤
(

|Aut(G)| − k|Aut(G)| − n

n − m(G)
− 1

)
d−n/2

+ k|Aut(G)| − n

n − m(G)
d−m(G)/2

< 1.

This completes the proof ofLemma 3.1. �

Corollary 3.2. Suppose G is a vertex transitive graph with n vertices and with n−m(G) ≥
3. If d ≥ 2 is an integer and

|Aut(G)| ≤ (n − m(G))dm(G)/2

(n − m(G))d(m(G)−n)/2 + 1
,

then D(G) ≤ d.

Proof. Assume

|Aut(G)| ≤ (n − m(G))dm(G)/2

(n − m(G))d(m(G)−n)/2 + 1
.

Then

1 ≥ |Aut(G)|d−n/2 + |Aut(G)|
n − m(G)

d−m(G)/2

>

(
|Aut(G)| − |Aut(G)|

n − m(G)
− 1

)
d−n/2 + |Aut(G)|

n − m(G)
d−m(G)/2

>

(
|Aut(G)| − |Aut(G)| − n

n − m(G)
− 1

)
d−n/2 + |Aut(G)| − n

n − m(G)
d−m(G)/2.

SinceG is vertex transitive, Aut(G) acting onV (G) has only one orbit. ByLemma 3.1,
D(G) ≤ d. �
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Corollary 3.3. For any k ≥ 3 and r ≥ 3, D(K r
k ) = 2.

Proof. It is obvious thatD(K r
k ) ≥ 2 for anyk ≥ 2 andr ≥ 1. So we only need to prove

that for anyk ≥ 3 andr ≥ 3, D(K r
k ) ≤ 2.

It was proved in [1] that for G = K r
k , |Aut(G)| = r !(k!)r and m(G) = 2kr−1. If

r ≥ 4 or r = 3 andk ≥ 5, thenit was shown in [1] that an application of Russell and
Sundaram’s motion lemma shows thatD(K r

k ) ≤ 2. In the casesr = 3 andk = 3, 4, the
motion lemma cannot yield the desired bound. However, an application ofCorollary 3.2
shows thatD(K r

k ) ≤ 2. �

Corollary 3.4. If G is a connected prime graph with |V (G)| ≥ 3, then for any integer
r ≥ 3, D(Gr ) = 2.

Proof. It was proved by Albertson [1] that for a prime graphG with |V (G)| = n, for any
integerr , D(Gr ) ≤ D(K r

n ). �

Theorem 3.5. Let G be a connected graph. If G has a prime factor of cardinality at least
3, then for any r ≥ 3, D(Gr ) = 2.

Proof. If G is prime, this isCorollary 3.4. SupposeG is not prime, then letG =
G p1

1 � G p2
2 � · · · � G pk

k bethe prime factor decomposition ofG, where theGi ’s are prime
graphs andpi ≥ 1. By the theorem’s assumption we may assume thatG1 has cardinality
at least 3. HenceD(Grp1

1 ) = 2 byCorollary 3.4. Moreover,D(Grpi
i ) ≤ 3 for i = 2, . . . , k.

As G is not prime,k ≥ 2. ThenGr = Grp1
1 � · · · � Grpk

k , and as theGi ’s are prime, the
factorsGrpi

i are relatively prime. Then by [6, Corollary 4.17], the automorphisms ofGr

preserve the layer structure ofits factorizationGrp1
1 � · · · � Grpk

k . Hence byCorollary 2.2
we conclude thatD(Gr ) ≤ max{D(Grp1

1 ), D(Grp2
2 ) − 1, . . . , D(Grpk

k ) − 1} = 2. �

Corollary 3.6. If G is a connected graph and G �= K2, then D(Gr ) = 2 for any r ≥ 3.

Proof. If G has a factor which is notK2, then byTheorem 3.5, D(Gr ) = 2. If each factor
of G is K2, thenG = K p

2 for somep ≥ 2. So againD(Gr ) = D(K rp
2 ) = 2. �
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