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Abstract

The dstinguishing numbeb (G) of a graphG is the leasintegerd such that there is@-labeling
of the vertices ofG which is not preserved by any nontrivial automorphism. For a graplet G
be therth power ofG with respect to the Cartesian product. It is proved tBgG") = 2 for any
connected grapl with at least 3 vertices and for amy > 3. This confirms and strengthens a
conjecture of Albertson. Other graph products are also considered and a refinement of the Russell
and Sundaram motion lemma is proved.
© 2005 Elsevier Ltd. All rights reserved.

MSC: 05C25

1. Introduction

A labeling ¢ : V(G) — {1,...,d} of a graphG is d-distinguishing if no nontrivial
automorphism o6 preserves the labeling. Such a labeling thus uniquely identifies vertices
of G, that is, vertices are “distinguished” among themselves. ditténguishing number,
D(G), of a graphG, is the mhimumd suchthatG has ad-distinguishing labeling.
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Since its introduction inZ], the distinguishing number of a graph, and more generally
of a group action on a set, became an active research area within graphs and groups. The
distinguishing numbers of Cartesian products of graphs have been investigaig8.in [
Let us, as is nowadays more or less standard, denote the Cartesian product of@raphs
andH by GOH. For a gaphG and a integerr, let G' be defined as! = G and
G" = G'"1OG. Then ther-cubeQ, r > 1, is defined ax},.

Bogstad and Cower8] proved thatD (Q2) = D(Q3) = 3 andD(Qq) = 2 ford > 4.
Their result has been widely generalized by Albertsfraf fdlows. We say that a graph
is prime (with respect to the Cartesian product) if it cannot be written as the Cartesian
product of two nontrivial graphs.

Theorem 1.1 ([1]). If G is a connected prime graph, then D(G") = 2forr > 4. If, in
addition, |V (G)| > 5, then D(G3) = 2.

Then Albertson conjectured that the condition tiabe a prime graph might not be
necessary.

Conjecture1.2 ([1]). For any graph G (not necessarily prime), thereisan integer R =
R(G) suchthat D(G") = 2for anyr > R(G).

We oonfirm this conjecture by proving th&t(G") = 2 for any @nnected grapfs with
at least 3 vertices and for amy> 3. Along the way, other graph products are considered
and a refinement of the motion lemma fro8h i[s proved. We add that very recently, it has
been proved inq] that D(G?2) = 2 for any ®nnected grapts # K», K.

2. An upper bound on D(G = H)

In this section we give an upper bound on the distinguishing number of an arbitrary
graph product in which the automorphisms preserve the layer structure. This result (in the
case of the Cartesian product) will then be used in the next section to obtain our main
resut.

Let G andH be graphs. Then by graph product G % H in the sense ofd] we mean
any operation for which/ (G x H) = V(G) x V(H) and the adjacency of two vertices
in G x H depends only on the adjacencies of tlmeresponding vertices in the factors.

In particular, theCartesian product GO H of graphsG = (V, E) andH = (W, F) is
defined on the vertex ss#¢(GOH) =V x Wwhile E(GOH) = {{(a, x), (b,y)} | ab e

E andx =y, orxy € F anda = b}. Observe that the Cartesian product is commutative
and associative.

Let G andH be graphsand € V (G). Then the subgraph @«H induced by the vertex
set{(a, x) : x € V(H)}, is cdled anH-layer of G « H and denoted by1s. Analogously
one definesG-layers. Note that the layers of the Cartesian product are isomorphic to
the factor graphs. Among the four standard graph produgjtsHe strong product and
the lexicographic product also have this property. However, the automorphism groups of
lexicographic products generally do not sitithe conditions of the following theorems.

Theorem 2.1. Let G and H be connected graphswith2 < D(G) < D(H). Let G % H be
a graph product for which the layers are isomorphic to the corresponding factors. If every
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automorphism ¢ of G is of the form ¢ (a, X) = (¢pc (@), ¢H (X)), where o € Aut(G) and
¢H € Aut(H), then

D(G % H) < maxD(G), D(H) — 2P© — D(G) — 1)}.

Proof. Letn = D(G) andk = D(H). Let£g be ann-distinguishing labeling o6 and¢
ak-distinguishing labeling oH . Define a labelingg of G x H in the following way. First
set

CH(X), 1<tp(x) <k—(2"—n-1);

e = {ee(a>, e =k

We still need to defing for the verticega, x) withk —2"+n+2 < fx(x) < k — 1.
Let Az, ..., A; be the subsets dfl, 2, ..., n} with 2 < |Aj| < n — 1. To each integer in
the intervalk —2"+n+2, k — 1] assign a unique s&; . Complete the definition of such
that the vertices of the lay&@y, wherek — 2" +n+ 2 < £ (x) < k — 1, are (arbitrarily)
labeled usingll the labels from the se&; which is &signed td  (X).

We claim that¢ is a dstinguishing labeling ofc « H. Let ¢ be an automorphism of
(GxH, ¢). Then by the the@m assumptiong = (¢g, ¢H). We reed to show thap = id,
that is, the identity map.

Claim 1. Foranyx € V(H): £H (pH (X)) = £H (X).

If £y (xX) = k, thenGy receivesn labels. If£(Hyx) < k, thenGy receives at mogt — 1
labels. Asp(Hx) = Hy,,(x) andg preserves the labglg follows that if £ (x) = k, then
LH (pH (X)) = k. Similarly, if £4(X), ¢4 (y) < k, then he construction of implies that
if £4(X) # £H(Y), then he sets of labels of layeGy and Gy are different. Becausg
preserves labels and ma@slayers ontaG-layers, we conclude that (pH (X)) = €4 (X).

Claim 2. ¢pg = id.

Let x be a vertex ofH with £ (x) = k and letpy (x) = y. (It is possible thak = y.)
By Claim 1, ¢y (y) = k. Herce g induces a label preservingonorphism between the
layersGyx = G andGy = G. As (¢ is ann-distinguishing labeling o6, we mnclude that
e =id.

Claim 3. gy = id.

Let u be a vertex ofG and consider the layétd, = H. By Claim 2 ¢ mapsH, onto Hy,.

But thengy induces an ismorphismH, — Hy. Moreover, byClaim 1, this isanorphism
gives us a label preserving automorphism(Hff, £1). Thus asty is a k-distinguishing
labeling ofH, the chim follows. O

Theorem 2.Xan, for instance, be applied to the strong product of connected, prime, and
so-called thi grgphs; cf. B, Theorem 5.22]. For our purposes the most important special
case in which the conditions of the theorem are fulfilled is given in the next corollary.

Sabdussi [9] and Vizing [10] proved that every @annected graph has a unique prime
factor decomposition with respect to the Cartesian product. Hence it makes sense to define
graphsG and H to berelatively prime (with respect to the Cartesian product) if there
is no nontrivial graph that is a factam the prime factor decomposition & and in the
decomposition ofH. Clearly, two pime graphs are relatively prime. We refer the reader
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to [6, Corollary 4.17] for the fact that the automorphisms of the Cartesian product of
connected, relatively prime gohs preserve the layer structure.

Corollary 2.2. Let G and H be connected graphswith 2 < D(G) < D(H).If G and H
arerelatively prime then

D(GOH) < maxD(G), D(H) — (2P© — D(G) — 1)}.

Consider the product,0C3z and K2OCs. Since D(K2) = 2 and D(C3) =
D(Cs) = 3, Corollay 2.2 givesD(K,OC3) = D(K20Cs) = 2. On the other hand,
D(K20OCy) = 3 sinceK,OC4 = Q3. This example shows that in general we cannot
drop the assumption that thadtors are relatively prime.

When the distinguishing numbers@fandH are both small, the bound Gforollary 2.2
is often exact. For instance:

Corollary 2.3. Let G and H be connected, relatively prime graphs with D(G) = 2 and
2<DH)<3. ThenD(GOH) = 2.

Proof. Sinee Aut(G) and AuiH) are nontrivial, so is AWG O H); herceD(GOH) > 2.
Corollay 2.2 completes the argument. O

On the otler hand,D(G O H) could be much smaller than md@x(G), D(H)}. LetG
be a graph ok vertices withD(G) = 1, thatis, an asymmetric graph. Then it is easy to
see that

D(GOK,) = [n%],
while ma¥D(G), D(Kp)} = n.

3. A refinement of the motion lemma and the main result

Albertson’s proof of Theorem 1.1uses a result of Russell and Sundara@hthat is
known as the motion lemma. In this section we first prove a refinement of the motion
lemma thatmight be of independent interest. We then simplify this result for the case of
vertex trangive grgphs and complete the section with a proof of our main theorem.

For¢ € Aut(G), letm(¢) = |{Xx € V(G) : ¢(X) # X}|, andm(G) = min{m(¢p) : ¢ €
Aut(G) \ {idy }}. Then themotion lemma asserts that iﬁ%e) > |Aut(G)|, thenD(G) < d.
Before we present a refinement of thesult some preparation is needed.

Supposep € Aut(G) is decomposed into a product of disjoint cycles:

¢ = (v11v12- - - V1gy) (V21022 - - V2¢,) - - - (Vt2VE2 - - - Vi)

then thecycle norm of ¢ is defined as

t
c(p) =Yy (¢ —1).
i=1

A d-labeling¢ of G is preserved by if and only if the vertices in each cycle gf are
labeled by the same label. So the probability that a randdabeling? is preserved by
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¢ is equal tod %@ It is obvious thatc(¢) > m(¢4)/2. So the probability that a random
d-labeling? is preserved by is at mosid—m®)/2,

Lemma 3.1. Let G be a graph with |V (G)| = n. Suppose Aut(G) acting on V (G) hask
orbitsandd > 2 isaninteger. If n — m(G) > 3, and

KIAUt(G)| —n 1) e KIAUt(G)| — Ny-m©)y/2 _ 1,

('AUt(G)|  n— m(G) n—m(G)

then D(G) < d.

Proof. Let O1, Oy, ..., Ok be the orlits of Aut(G) acting onV (G), with |O;| = n; and
Ny 4+ nz + --- + ng = n. For each vertex of G, let Hy = {¢ € Aut(G) : ¢(X) = Xx}.
If x € O, then|Hx| = |Aut(G)|/n;; cf. [4, Lemma 2.2.2]. Thereforg _, .\, [Hx| =
YK 1 Y eo, IHxl = KIAULG)].

ForO< j < n—m(G), let ¢; = {¢ € Aut(G) : ¢ fixes exactlyj vertices ofG}. Let
qj = |®;|. By thedefinition of m(G), u?;{{‘“” ®; = Aut(G) \ {idy}. Note hat idy fixes

n vertices. So boti + >77*® jqj andY" .y, IHx| count the number of pairg. x)

suchthat¢ € Aut(G), x € V(G) and¢ (x) = x. Therdore
n—-m(G)
n+ Y jgi= ) [Hx=KkAutG)
j=0

xeV(G)

If ¢ € &, then the probabty that a randomd-labeling is preserved by is at most
d—(=D/2

n—-m(G) n—-m(G)
Yo Y a2 3 g2 <,
j=0 ¢e®, j=0

then there is a-labeling ¢ which is not preserved by any automorphigim=£ idy. So

to prove Lemma 3.1 it anounts to showing that iET;[)"(G) jgj = kIAut(G)| — n and

-m(G -m(G —(n—i
Z?zg‘( Vgj = IAUL(G)| - 1, thenZng’( ) gjd=(=D/2 < 1,
For non-negative real numbexsg, X1, . .., Xn—m(G). let

n—-m(G)

f (X0, X1, - - -, Xn—m(G)) = Z x;d=(=1)/2,
j=0

So it suffices to prove thaft(Xo, X1, . .., Xn—m(g)) < 1forany(Xo, X1, ..., Xn—m) With
n—m(G) n—-m(G)
Z jxj =k|Aut(G)|—n  and Z Xj = |AUt(G)| — 1.
j=0 j=0

Suppose there is an indexd j* < n — m(G) suchthatxj- > 0. Define the sequence
(Xgs X1s - -+ x,q_m(G)) as follows:

n—-m@G) —j*
X(/) = X0+ n——rn(G)Xj*’
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j*
7)(]*:
n—m(G)
= Xj, otherwise

X mG) = Xn-m +

/

]

ThenZT;B"(G) jxj = ZT;B"(G) iX] andZ?;B”(G) Xj = ZT;B"(G) xi. Sinced > 2 and
n —m(G) > 3, easy calculation shows that

X

f (X0, X1, ..., Xn—m()) < f(Xg, X1, ..., ngm(G)).
Therefore the maximum off (Xo, X1, ..., Xn—m(G)) IS attained atxp = |Aut(G)| —
7‘("35%%)‘” —1,x; =0forj =12....,n—m@G) - 1 andxn-m@c) = MAmE)n,
That s, for any(xg, X1, . .., Xn—m) With
n—m(G) n—m(G)
Z jxj =k|Aut(G)| —n  and Z Xj = |AUt(G)| — 1,
j=0 j=0
we have
kIAut(G)| — n _
f (X0, X1, ..., Xn— < [|AUt(G)| — —————— —1)d"?
(X0, X1 n m(G)) = (| ( )| n—m(G)
k|IAut(G)| — ndfm(G)/2
n—m(G)

< 1
This completes the proof dfemma 3.1 O

Corollary 3.2. Suppose G isavertex transitive graph with n verticesand withn—m(G) >
3.1fd > 2isaninteger and

(n — m(G))d™ /2
—m(G))dmG)-m/2 4 1’

IAUt(G)| < 0

then D(G) < d.

Proof. Assume
(n — m(G))dm /2

AU = T
Then
1> |Aut(G)|d~"/? + rl’*_“tin(fc);')d—m(G)/z
> <|Aut(G)| - % - 1) 42 %d—m@)ﬂ
> <|Aut(e>| - % _ 1) 42 4 %d—m@/z,

SinceG is vertex transitive, AUG) acting onV (G) has only one orbit. By.emma 3.1
D(G) <d. O
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Corollary 3.3. For anyk > 3andr > 3, D(K}) = 2.

Proof. It is obvious thatD(Ky) > 2 for anyk > 2 andr > 1. So we only need to prove
that for anyk > 3 andr > 3, D(Ky) < 2.

It was proved in {] that for G = K[, |Aut(G)| = r!(k))" andm(G) = 2k' 1. If
r > 4orr = 3andk > 5, thenit was shown in ] that an @plicaion of Russell and
Sundaram’s motion lemma shows thatK;) < 2. In the cases = 3 andk = 3, 4, the
motion lemma cannot yield the desired bound. However, an applicatiQofllary 3.2
shows thaD(Ky) <2. O

Corollary 3.4. If G is a connected prime graph with |V (G)| > 3, then for any integer
r>3,DG") =2

Proof. It was proved g Albertson [1] that for a prime graplt with |V (G)| = n, for any
integerr, D(G") < D(K])). O

Theorem 3.5. Let G be a connected graph. If G has a prime factor of cardinality at least
3, thenfor anyr > 3, D(G") = 2.

Proof. If G is prime, this isCorollay 3.4 SupposeG is not prime, then letG =
GP*OGR O --- O G bethe prime factor decomposition G, where theGi’s are prime
graphs andy > 1. By the theorem’s assumption we may assume @alhas cardinality
atleast 3. Henc®(G}™) = 2 by Corollary 3.4 Moreover,D(G{™) < 3fori =2,...,k.
AsGisnotprimek > 2. ThenG' = G} O --- OG,™, and as th&;’s are prime, the
factorsG;™ are relatively prime. Then bys[ Comwllary 4.17], the automorphisms &'
preserve the layer struge ofits factorizationG;™ O - - - 0 G, Herce byCorollary 2.2
we oonclude thaD(G") < mayD(G}™), D(G,?) —1,...,D(G ) -1} =2. O

Corollary 3.6. If G isa connected graph and G # K>, then D(G") = 2 for anyr > 3.

Proof. If G has a factor which is nd€,, then byTheorem 3.5D(G") = 2. If each factor
of G is Ko, thenG = KJ for somep > 2. So agairD(G") = D(K;,") =2. O
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