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Abstract

The convex excess ce(G) of a graph G is introduced as
∑

(|C| − 4)/2 where
the summation goes over all convex cycles of G. It is proved that for a partial
cube G with n vertices, m edges, and isometric dimension i(G), inequality
2n − m − i(G) − ce(G) ≤ 2 holds. Moreover, the equality holds if and only if
the so-called zone graphs of G are trees. This answers the question from [9]
whether partial cubes admit this kind of inequalities. It is also shown that a
suggested inequality from [9] does not hold.
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1 Introduction

Partial cubes present one of the central and most studied classes of graphs in metric
graph theory. They were introduced by Graham and Pollak [27] as a model for
interconnection networks but found many additional applications afterwards. For
instance, they form the key graph class in media theory, see the recent book [24].
For classical results on partial cubes we refer to the books [18, 29] and the semi-
survey [39].

Many important classes of graphs are partial cubes. First of all, hypercubes,
trees, and median graphs form very special, but at the same time very striking
examples. The list of other significant classes of partial cubes include: tope graphs
of oriented matroids (in particular graphs of regions of hyperplane arrangements) [8,
25]; benzenoid graphs [14, 16, 31] and more generally bipartite (6, 3)-graphs [5, 15];
tiled partial cubes and several related classes [9, 28]; netlike partial cubes, a class
that forms a common generalization of median graphs and even cycles [41, 42, 43];
flip graphs of point sets that have no empty pentagons [22]; and special subdivisions
of graphs [1, 7, 17]. For more information on several of these classes of partial cubes
and related classes of graphs (as well as on more aspects of metric graph theory) see
the survey [5].

Among numerous recent results on partial cubes we mention the following. A lot
of effort was made in order to classify cubic partial cubes, see [21, 30, 35]. Several
types of graphs derived from partial cubes were studied, see, for instance, [11, 20, 32,
33]. For two additional recent aspects of partial cubes see [26, 40, 47]. Eppstein [23]
gives a quadratic algorithm for recognizing partial cubes.

Among subclasses of partial cubes, median graphs deserve special attention. (In
fact, they were studied as much as general partial cubes.) It was proved in [34] that
for a median graph G with n vertices and m edges,

2n − m − i(G) ≤ 2 , (1)

where i(G) stands for the isometric dimension of G (i.e., the number of the classes
of the Djoković-Winkler relation Θ). Moreover, the equality holds if and only if G is
a cube-free median graph. This theorem was extended in [9] to those partial cubes
that can be obtained by means of a connected expansion procedure. A similar result
was established by Bandelt and Chepoi for another class of partial cubes—bipartite
cellular graphs (graphs obtainable from a collection of single edges and even cycles
by successive gated amalgamations). In [4] they proved that for these graphs the
equality

n − m + g = 1

holds, where g is the number of gated cycles. In addition, Soltan and Chepoi [45,
Theorem 4.2.(6)] proved that for a median graph G the following Euler-type formula
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holds: ∑

i≥0

(−1)i αi(G) = 1 ,

where αi(G) denotes the number of induced i-cubes of G. We refer to [6] for a
generalization of this formula to the graphs of lopsided sets and to [12] for a gen-
eral approach for obtaining such equalities. The above equality was independently
obtained in [44]. In the same paper it is also proved that for a median graph G,

k = −
∑

i≥0

(−1)i i αi(G) ,

where k = i(G) is the isometric dimension of G.

2 Main result and related concepts

To answer the above question, we introduce the following concepts. For a graph G
let

C(G) = {C | C is a convex cycle of G}

and set

ce(G) =
∑

C∈C(G)

|C| − 4

2
.

We call ce(G) the convex excess of G. Let F be a Θ-class of a partial cube G.
Then the F -zone graph, ZF , is the graph with V (ZF ) = F , vertices f and f ′ being
adjacent in ZF if they belong to a common convex cycle of G. Let us call partial
cubes whose all zone graphs are trees tree-zone partial cubes.

Now we can state the main result of this paper:

Theorem 2.1 For a partial cube G with n vertices and m edges,

2n − m − i(G) − ce(G) ≤ 2 . (2)

Moreover the equality holds if and only if G is a tree-zone partial cube.

Let C = C2r be an isometric cycle of a median graph G. Then, as proved by
Bandelt [3], the convex closure of C is Qr. Therefore all convex cycles of median
graphs have length four and consequently ce(G) = 0. Thus Theorem 2.1 immediately
implies (1). The cubes Qd also show that no lower bound on 2n−m− i(G)− ce(G)
is possible. Indeed, since i(Qd) = d and ce(Qd) = 0, we have

2n − m − i(Qd) − ce(Qd) = 2d+1 − d2d−1 − d = 2d−1(4 − d) − d

which tends to −∞ when d → ∞.
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The key to the inequality part of Theorem 2.1 is the fact that during an expansion
step convex cycles lift to convex cycles, cf. Proposition 4.2. This property is not true
for isometric cycles, see Fig. 1 for an example. This fact might be one of the reasons
why a desired inequality for partial cubes was so elusive.

Figure 1: An isometric cycle need not expand to an isometric cycle

The equality in (2) is achieved precisely on tree-zone partial cubes. Examples
of such graphs are bipartite cellular graphs and bipartite plane graphs in which all
inner faces have lengths at least 6 and all inner vertices have degrees at least 3,
cf. [5]. Along the way we will prove that the zone graphs of partial cubes are always
connected. It seems an interesting project to further study these graphs and their
relation to partial cubes.

It was further asked in [9] if it is true that 2n − m − 2i(G) ≤ 0 holds for partial
cubes with more than two vertices. We next show that the answer is negative. With
Theorem 2.1 in hand it seems plausible to search for possible counterexamples among
graphs with convex excess bigger than their isometric dimension. Such examples
can indeed be constructed, for instance, as follows. Let P (r, s), 1 ≤ s ≤ r, be the
parallelogram hexagonal graph, see Fig. 2 for P (5, 3).

Figure 2: The parallelogram hexagonal graph P (5, 3)

Then P (r, s) has n = (r+1)(2s+2)−2 vertices, m = (r+1)(2s+1)−2+r(s+1)
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edges, while i(P (r, s)) = 2r + 2s − 1. Consequently,

2n − m − 2i(P (r, s)) = rs − 2(r + s) + 3 .

In particular, for r = s this reduces to r2 − 4r + 3 which is strictly positive for any
r ≥ 4 and in fact arbitrarily large.

In the next section we define the concepts and introduce the techniques needed
in this paper. In Section 4 we consider the position of convex cycles in partial cubes
and in particular prove that they always expand to convex cycles. In Section 5 we
prove the inequality part of Theorem 2.1 while the equality part of the theorem is
demonstrated in the concluding section.

3 Preliminaries

The graph distance dG(u, v) between vertices u and v of a connected graph G is the
usual shortest path distance. If H and H ′ are subgraphs of G, the distance between
the subgraphs is defined as d(H,H ′) = min{d(u, u′) | u ∈ H,u′ ∈ H ′}. A shortest
path between vertices u and v will be briefly called a (u, v)-geodesic.

A subgraph H of G is called isometric if dH(u, v) = dG(u, v) for all u, v ∈ V (H).
Partial cubes are isometric subgraphs of hypercubes. H is convex, if for all u, v ∈
V (H), all shortest (u, v)-paths from G belong to H. A convex subgraph is isometric
but the converse need not be true. The convex closure of H is the smallest convex
subgraph of G containing H.

The interval IG(u, v) between vertices u and v of a graph G consists of all ver-
tices on shortest paths between u and v. In partial cubes, intervals induce convex
subgraphs, we will simply say that intervals are convex. To see this, note first that
cubes have convex intervals and then use the definition of partial cubes. On the
other hand, a bipartite graph with convex intervals need not be a partial cubes [10].

A graph G is a median graph [2, 36, 38] if there exists a unique vertex x to every
triple of vertices u, v, and w such that x lies simultaneously on a shortest (u, v)-path,
shortest (u,w)-path, and shortest (w, v)-path.

An important concept that yields a characterization of partial cubes is the
Djoković-Winkler relation Θ defined on the edge set of a connected graph G as fol-
lows. Two edges e = xy and f = uv of G are in the relation Θ if dG(x, u)+dG(y, v) 6=
dG(x, v) + dG(y, u). Relation Θ is reflexive and symmetric. Moreover, a connected
bipartite graph is a partial cube if and only if Θ is also transitive [19, 46]. Hence
Θ is an equivalence relation on the edge set E(G) of a partial cube G. It partitions
E(G) into the so-called Θ-classes. The isometric dimension i(G) of a partial cube
G is the number of its Θ-classes. Equivalently, i(G) equals the dimension of the
smallest hypercube into which G embeds isometrically.

We say that two nonempty isometric subgraphs G1 and G2 form an isometric

cover of a graph G provided that G = G1 ∪ G2, by which we mean that V (G) =
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V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). If G is connected then G1 ∩ G2 6= ∅
for every isometric cover G1, G2.

Suppose G1, G2 is an isometric cover of G. For i = 1, 2, let G̃i be an isomorphic
copy of Gi, and for a vertex u ∈ G1 ∩ G2, let ui be the corresponding vertex in G̃i.
The expansion of G with respect to G1, G2 is the graph G̃ obtained from the disjoint
union of G̃1 and G̃2, where for each u ∈ G1 ∩ G2 the vertices u1 and u2 are joined
by a new edge in G̃. We say that the expansion is connected provided that G1 ∩G2

is a connected graph. Chepoi [13] proved that a graph is a partial cube if and only
if it can be obtained from K1 by a sequence of expansions.

The prism over a graph G is the Cartesian product G� K2. Note that in the
expansion of G with respect to G1, G2, G1 ∩ G2 expands to (G1 ∩ G2)� K2 and in
particular each cycle C from G1 ∩ G2 expands to the prism C � K2.

The concept of expansion is due to Mulder [36, 37] in the context of median
graphs and Chepoi [13] in the context of partial cubes (and partial Hamming graphs).

The reverse operation to the expansion is defined as follows. Let G be a partial
cube and F its Θ-class. Contracting every edge of F , a partial cube is obtained that
is called the contraction of G (with respect to F ).

We will need the following well-known facts about partial cubes.

Lemma 3.1 Let C be an isometric cycle of a partial cube G and e an edge of C.

Then e is in relation Θ to exactly one edge of C, namely, its antipodal edge.

Lemma 3.2 Let G be a partial cube and let G̃ be the expansion of G with respect

to an isometric cover G1, G2. Then the edges between G̃1 and G̃2 form a Θ-class

of G̃, while the other Θ-classes of G̃ are induced by those of G. In particular,

i(G̃) = i(G) + 1.

4 Convex cycles in partial cubes

In this section we have a closer look at convex cycles in partial cubes. We particularly
address the question how such cycles are transformed when expanding or contracting
a partial cube. We begin with the following general property.

Proposition 4.1 Let G1, G2 be an isometric cover of a partial cube G and let C be

a convex cycle of G. Then C is either completely contained in at least one of the

Gi’s or C meets G1 ∩ G2 in two antipodal vertices.

Proof. Let G0 = G1 ∩ G2. Suppose C meets G1 − G2 as well as G2 − G1. Let y
be a vertex of C that lies in G1 − G2 and z a vertex of C from G2 − G1. Let u be
the first vertex from C ∩ G0 on one of the two (y, z)-paths along C and let v be
the first vertex from C ∩ G0 on the other (y, z)-path. Let P be the (u, v)-path that
goes along C and contains y. Let Q be the other (u, v)-path along C, that is, the
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one that contains z. Since C is convex and hence d(u, v) = dC(u, v), at least one
of P and Q is a geodesic. Furthermore, since G1 and G2 are isometric and hence
k = dG1

(u, v) = dG2
(u, v), and because C is convex, we infer that |P | = |Q| = k.

Therefore u and v are antipodal vertices of C. Suppose there is a vertex w ∈ C∩G0,
w 6= u, v. Then w ∈ Q and d(w, v) < d. Since z /∈ G1 and G1 is isometric, there
must be a (v,w)-geodesic contained in G1. But this is not possible as C is convex.
Hence we conclude that C ∩ G0 = {u, v}. �

According to Proposition 4.1 we classify convex cycles of G with respect to the
isometric cover G1, G2 into the following three types.

(i) A convex cycle that meets G1 ∩ G2 in two antipodal vertices will be called a
cross cycle (with respect to G1, G2).

(ii) A convex cycle that lies in G1 ∩G2 will be called an intersection cycle (with
respect to G1, G2).

(iii) The remaining convex cycles will be called lateral cycles (with respect to
G1, G2). Such a cycle either contains a vertex from G1 − G2 in which case it lies
completely in G1, or contains a vertex from G2 − G1 in which case it lies in G2.

Let G̃ be the expansion of the partial cube G with respect to the isometric cover
G1, G2. If C is a lateral cycle contained in Gi then it lifts to a cycle C̃ in G̃i, of the
same length as C. We call C̃ the expansion of C. Suppose C is a cross cycle and let
y and z be its (antipodal) vertices from G1 ∩ G2. Then C naturally expands to a
cycle C̃ of G̃ that consists of the copy of the (y, z)-subpath of C in G̃1, the copy of
the (z, y)-subpath of C in G̃2, and the edges y1y2 and z1z2. Note that |C̃| = |C|+2.
Again we refer to C̃ as to the expansion of C. Finally, let C be an intersection cycle.
Then the expansion of C is a prism C � K2, where the C-layers of this prism are
cycles C1 and C2 of the same length as C and lie in G̃1 and G̃2, respectively.

Proposition 4.2 Let G be a partial cube and let G̃ be the expansion of G with

respect to an isometric cover G1, G2. If C is a lateral or cross cycle of G, then its

expansion C̃ is a convex cycle of G̃. If C is an intersection cycle of G, then the

cycles C1 and C2 of its expansion are both convex.

Proof. Suppose that C is a lateral cycle and assume without loss of generality that
C lies in G1. Then C̃ lies in G̃1. As G̃1 is convex in G̃, the expansion C̃ of C is
convex, for otherwise C would not be convex in G. By the same argument, the
cycles C1 and C2 of the prism C � K2 that is the expansion of an intersection cycle
C are convex.

Suppose that C is a cross cycle. Let C meet G0 = G1 ∩G2 in antipodal vertices
y and z and suppose C̃ is not convex. Then there are vertices u, v ∈ C̃ and a (u, v)-
geodesic P such that P is not contained in C̃. Assume that d(u, v) is as small as
possible, so that P meets C̃ only in u and v. Suppose u, v ∈ G̃i for some i. Since
the distance function dGi

coincides with the distance function d
G̃i

we infer that C is
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not convex. Hence we may assume that u ∈ G̃1 and v ∈ G̃2. But now P necessarily
contains an edge x1x2 where x1 ∈ G̃1 and x2 ∈ G̃2. Since the contraction shorten
the length of P we infer again that C is not convex. �

Thus convex cycles expand into convex cycles or into pairs of convex cycles
forming prisms. On the other hand, it need not be the case that a convex cycle
contracts to a convex cycle. To see this, let G be an arbitrary partial cube that
contains an isometric but not convex cycle C of length 2n, n ≥ 3 (for instance,
G can be Qn). Let G̃ be the expansion of G with respect to the isometric cover
G1 = G,G2 = C. Then C̃ = G̃2 is a convex cycle of G̃, while its contraction C is
not convex.

5 Proof of the inequality

To prove the inequality part of Theorem 2.1 we will make use of the following general
statement that might be of independent interest.

Proposition 5.1 The zone graphs of partial cubes are connected.

Proof. Let G be a partial cube, F its Θ-class and let G1, G2 be the connected
components of G \ F . We recall that G1 and G2 are convex subgraphs of G. For
any edge x ∈ F we will denote its end vertices with xi, i = 1, 2, where xi ∈ Gi.

Suppose that ZF is not connected. Select two vertices e and f (that is, two edges
of F ) from ZF from different connected components of the zone graph, such that e
and f are in G as close as possible. Clearly, e and f do not lie in a square. Let P1

be a shortest (e1, f1)-path in G1 and P2 a shortest (e2, f2)-path in G2. Since G1 and
G2 are convex, P1 and P2 lie in G1 and G2, respectively. We claim that the cycle C
consisting of e, f , and the paths P1 and P2 is convex.

Suppose C is not convex. Consider a shortest path P between vertices u and v
of C that is not contained in C. Select u and v to be as close as possible, so that
only the end points u and v of P lie on C.

Let us first assume that u ∈ P1 and v ∈ P2. Then there is an edge g ∈ F ,
g 6= e, f , that lies on P . We observe that C fully lies inside I = I(e1, f2), which
is convex. Hence P is also contained in I, thus g lies in I. In particular, d(e, g) =
d(e1, g) < d(e1, f) = d(e, f). By our choice of e and f this means that e and g lie in
the same component of ZF . Symmetrically, also f and g are in the same component,
but then e and f are in the same component of ZF , a contradiction.

Note that the above argument already implies that C is isometric.
Now assume that u and v are in the same Gi, say in G1. The path P gives

us a second geodesic P ′
1 from e1 to f1. Form a second cycle C ′ combining e, f ,

P ′
1, and P2. By the above, C ′ is also isometric. If a and b are the first different

edges (incident to u, say) on C and C ′, then these edges are opposite (in C and
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C ′, respectively) to the same edge and hence they belong to the same Θ-class by
Lemma 3.1, a contradiction.

We have proved that C is convex. Hence C is an edge of ZF that connects
components containing e and f , the final contradiction. �

With Proposition 5.1 in hand we can now prove:

Lemma 5.2 For a partial cube G with n vertices and m edges,

2n − m − i(G) − ce(G) ≤ 2 .

Proof. The result clearly holds for the smallest partial cubes K1 and K2. Suppose
the inequality holds for a partial cube G and let G̃ be the expansion of G with respect
to an isometric cover G1, G2. Let F be the newly created Θ-class. By assumption we
have 2n−m−i(G)−ce(G) ≤ 2. Let G0 = G1∩G2, n0 = |V (G0)|, and m0 = |E(G0)|.
Setting ñ = |V (G̃)| and m̃ = |E(G̃)| we have

ñ = n + n0 and m̃ = m + n0 + m0 .

From Lemma 3.2 we also know that

i(G̃) = i(G) + 1 .

By Proposition 4.2, any convex lateral cycle of G expands to an identical convex
cycle in G̃ and any convex intersection cycle of G expands to two convex cycles of
the same length in G̃. Since ZF is connected by Proposition 5.1, G̃ contains at least
t − 1 convex cross cycles (with respect to G1, G2) of length at least six, where t is
the number of connected components of G0. Let C̃ be such a cycle of G̃, that is, a
cross cycle of length at least six, and let C be its contraction. If C is convex, then
since |C̃| = |C|+2, the contribution of C̃ to ce(G̃) is one more than the contribution
of C to ce(G). If C is not convex, the contribution of C to ce(G) is zero, while the
contribution of C̃ to ce(G̃) is at least one. Therefore,

ce(G̃) ≥ ce(G) + t − 1 .

Note also that m0 ≥ n0 − t. Having all these relations in mind we obtain:

2ñ − m̃ − i(G̃) − ce(G̃)

≤ 2(n + n0) − (m + n0 + m0) − (i(G) + 1) − (ce(G) + t − 1)

= (2n − m − i(G) − ce(G)) + (n0 − m0 − t)

≤ 2 + (n0 − (n0 − t) − t)

= 2 .

�

We remark that the above proof shows that for the equality to hold we must
have the following three statements at the same time:
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1. 2n − m − i(G) − ce(G) = 2, that is, the contraction G satisfies the equality;

2. m0 = n0 − t, that is, G0 must be a forest; and

3. ce(G̃) = ce(G) + t − 1, that is, among the edges of the zone graph ZF there
are exactly t − 1 cycles of length at least six and, furthermore, every convex
cycle of G̃ contracts to a convex cycle in G.

Conditions 2 and 3 together imply that ZF is a tree. Since this can be said about
each Θ-class we conclude that for the equality to hold G must be a tree-zone partial
cube. In Section 6 we establish that this is also sufficient.

Notice also that Condition 3 includes the following interesting property.

Corollary 5.3 Let G be a partial cube that satisfies equality in (2). Then a con-

traction of a convex cycle of G of length at least six is a convex cycle.

Recall from the end of Section 4 that this property is not shared by all partial
cubes.

6 Proof of the equality part

It remains to prove that when G is a tree-zone partial cube then (2) holds with
equality. For this same we first state another general property of zone graphs.

Proposition 6.1 The zone graphs of partial cubes have no multiple edges.

Proof. Let G be a partial cube, F its Θ-class and let G1, G2 be the connected
components of G\F . Let e, f ∈ F and suppose that ZF contain two edges connecting
e with f . Let C and C ′ be the corresponding convex cycles of G containing e and
f . Clearly, C and C ′ are of length at least 6. Let Ri = C ∩ Gi and R′

i = C ′ ∩ Gi,
i = 1, 2. Since C 6= C ′ we may without loss of generality assume that R1 6= R′

1. As
G1, C and C ′ are all convex, |R1| = |R′

1|. But then neither C nor C ′ is convex, a
contradiction. �

We continue with some general properties of how zone graphs intersect.

Lemma 6.2 Let F and F ′ be different Θ-classes of a partial cube G and let G1, G2

be the connected components of G \ F . Then F ′ ∩ G1 is either empty or a Θ-class

of the partial cube G1.

Proof. Follows since G1 is convex in G and hence all the distances can be computed
within G1. �

Note that when we remove edges from F , then in the zone graph ZF ′ all vertices
are preserved but some edges are removed, namely the edges of ZF ′ which correspond
to the convex cycles of G sharing edges with F and F ′. We call this operation the
F -splitting of ZF ′ .
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Lemma 6.3 Let F and F ′ be different Θ-classes of a partial cube G. Either the

F -splitting of ZF ′ leaves ZF ′ unchanged or it splits it into exactly two connected

components.

Proof. Let G1, G2 be the connected components of G \ F . Suppose that the F -
splitting does remove at least one convex cycle C, that is an edge of ZF ′ . Then C
is a cross cycle with respect to G1, G2, and hence the edges of F ′ can be found in
both G1 and G2. Hence by Lemma 6.2, F ′ ∩ G1 is a Θ-class of G1 and F ′ ∩ G2 is
a Θ-class of G2. The assertion now follows since ZF ′∩G1

and ZF ′∩G2
are connected

graphs by Proposition 5.1. �

For our proof the following observation is essential.

Lemma 6.4 Suppose G is a tree-zone partial cube. Then for any two different Θ-

classes F and F ′ there is at most one convex cycle such that it is an edge in both

ZF and ZF ′.

Proof. Indeed, removing two edges from a tree leaves more than two connected
components. �

Corollary 6.5 Suppose G is a tree-zone partial cube. Let C and C ′ be different

convex cycles that are edges of ZF . Then these cycles share no edges outside F .

Proof. If C and C ′ share an edge e which is not in F , then setting F ′ to be the
Θ-class containing e we would have a contradiction with Lemma 6.4. �

Proposition 6.6 Let G be a partial cube with n vertices and m edges. Then 2n −
m − i(G) − ce(G) = 2 if and only if G is a tree-zone partial cube.

Proof. We have already shown that if for a partial cube the equality holds in (2)
then it is a tree-zone partial cube.

Suppose now that G is a tree-zone partial cube. We are going to prove that
2n − m − i(G) − ce(G) = 2 by induction on i(G). The statement is clearly true for
i(G) ≤ 2.

Select an arbitrary Θ-class F of G and let G1 and G2 be the connected compo-
nents of G \F . Then G1 and G2 are partial cubes of lower isometric dimension and
furthermore their zone graphs are subgraphs of the corresponding zone graphs of G
(cf. Lemma 6.2) which are trees, hence the zone graphs of G1 and G2 are also trees.
By induction we have 2n1−m1−i(G1)−ce(G1) = 2 and 2n2−m2−i(G2)−ce(G2) = 2,
where n1, n2,m1,m2 are the number of vertices and edges of G1 and G2. Let G10 be
the subgraph of G1 induced on the vertices that have a neighbor in G2 and let G20

be the corresponding (isomorphic) subgraph of G2. Let n0 = |V (G10)| = |V (G20)|.
Note that G10 is a forest because it is isomorphic to a subgraph of ZF .
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Let t be the number of connected components of G10 (and of G20). Since
ZF is a tree, Proposition 6.1 implies that there exist exactly t − 1 convex cycles
C(1), . . . , C(t−1) of length at least six that are edges of ZF . Note that each of these
cycles contains two edges of F while its other edges lie in G1 or in G2 but not in
G10 or G20. Clearly, we have:

n = n1 + n2 and m = m1 + m2 + n0 .

Also

i(G) = 1 + i(G1) + i(G2) − (n0 − 1) −
t−1∑

j=1

ce(C(j)) .

Indeed, every Θ-class of G is either F , or is fully contained in one of the G1 or G2, or
intersects both G1 and G2 in one of their Θ-classes (cf. Lemma 6.3). Furthermore,
by Lemma 6.4 and Corollary 6.5 each of the latter classes corresponds to a unique
pair of opposite edges on a convex cycle that is an edge of ZF . Thus the number of
such classes is equal to

∑

C∈E(ZF )

|C| − 2

2
=

∑

C∈E(ZF )

(ce(C) + 1) = n0 − 1 +
t−1∑

j=1

ce(C(j)) .

The last equality holds because the number of edges in ZF is n0 −1 and ce(C4) = 0,
hence only the cycles of length more than four count.

Again, using that every convex cycle in G lies either fully in G1, or fully in G2,
or is an edge in ZF , we get that

ce(G) = ce(G1) + ce(G2) +

t−1∑

j=1

(ce(C(j))) ,

because in the sum the 4-cycles can be ignored. Using these equalities, we obtain
for u = 2n − m − i(G) − ce(G) the following:

u = 2(n1 + n2) − (m1 + m2 + n0)

−
(
1 + i(G1) + i(G2) − (n0 − 1) −

t−1∑

j=1

ce(C(j))
)

−
(
ce(G1) + ce(G2) +

t−1∑

j=1

ce(C(j))
)

= (2n1 − m1 − i(G1) − ce(G1)) + (2n2 − m2 − i(G2) − ce(G2)) − 2

= 2 + 2 − 2 = 2 .

�

This concludes the proof of Theorem 2.1.
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