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Abstract

Fukuda and Handa [7] asked whether every even partial cube
G is harmonic-even. It is shown that the answer is positive if the
isometric dimension of G equals its diameter which is in turn true
for partial cubes with isometric dimension at most 6. Under an
additional technical condition it is proved that an even partial cube
G is harmonic-even or has two adjacent vertices whose diametrical
vertices are at distance at least 4. Some related open problems are
posed.
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1 Introduction

A connected graph is called even if, for any vertex v ∈ V (G), there exists
a unique vertex v ∈ V (G) such that d(v, v) = diam(G), the diameter of

∗Supported by the Ministry of Science of Slovenia under the grant P1-0297.

1



G. We will call v the diametrical vertex of v. Clearly, hypercubes Qd and
even cycles are even graphs. It is also easy to observe that the Cartesian
product of even graphs is again even. Qd, 1 ≤ d ≤ 3, C6, C8, 3K2, and
4K2 are the only even graphs on at most 8 vertices [8], where G denotes
the complement of G.

Even graphs were first considered by Mulder under the name diametrical
graphs. In [15] he proved that a graph G is Qd if and only if G is a
diametrical median graph of diameter d. Even graphs were further studied
by Parthasarathy and Nandakumar in [16] under the name self-centered
unique eccentric point graphs. This class of graphs has been named even
graphs by Göbel and Veldman [8]; afterwards the name “even” seems to be
accepted.

For u, v ∈ V (G), let dG(u, v), or d(u, v) for short, denote the length
of a shortest path in G from u to v. A subgraph H of a graph G is an
isometric subgraph if dH(u, v) = dG(u, v) for all u, v ∈ V (H). The d-cube
Qd is the graph with V (Qd) = {0, 1}d, vertices u1u2 . . . ud and v1v2 . . . vd

being adjacent whenever they differ in precisely one coordinate. The class
of partial cubes consists of all isometric subgraphs of hypercubes. This
class of graphs has been extensively investigated, see [5, 11, 17] and recent
references [1–4,6,13]. The isometric dimension idim(G) of a partial cube G
is the least d for which G is an isometric subgraph of Qd.

Even graphs play an important role in the theory of oriented matroids
and partial cubes. Call an even graph harmonic-even if u v ∈ E(G) when-
ever uv ∈ E(G) for all u, v ∈ V (G). Then Fukuda and Handa proved
in [7] that a graph G is the tope graph of an acycloid if and only if G is a
harmonic-even partial cube. Moreover, G is the tope graph of an oriented
matroid of rank at most 3 if and only if G is a harmonic-even planar partial
cube. In this context we wish to add that P (10, 3) is the only (nontrivial)
generalized Petersen graph that is a tope graph of an acycloid, see [13].

Fukuda and Handa finish their paper [7] with the following question: is
every even partial cube harmonic-even? Mulder [15, Corollary 5] showed
that the only harmonic-even graphs among median graphs are hypercubes,
a fact that also easily follows from [11, Lemma 2.41]. Hence in this case
the answer is clearly affirmative. However, the variety of harmonic-even
partial cubes is much richer and also seems elusive.

In the next section we introduce the notations and concepts needed
later. In Section 3 we observe that every even partial cube with equal iso-
metric dimension and diameter is harmonic-even. Then we prove that if
G is an even partial cube fulfilling an additional technical condition then
either G is harmonic-even or there is an edge uv of G such that d(u, v) ≥ 4.
In Section 4 we use the approach using isometric dimension and diame-
ter to prove that even partial cubes of isometric dimension at most 6 are
harmonic-even. We conclude the paper with three related problems.
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2 Preliminaries

The Cartesian product G ¤ H of two graphs G and H is the graph with
vertex set V (G)× V (H) and (a, x)(b, y) ∈ E(G ¤ H) whenever either ab ∈
E(G) and x = y, or a = b and xy ∈ E(H). It is well-known that the d-cube
Qd can be represented as the Cartesian product of d copies of the complete
graph on two vertices K2.

Let G be a connected graph. Then for any edge ab of G we write

Wab = {w ∈ V (G) | dG(a,w) < dG(b, w)},
Uab = {w ∈ Wab | w has a neighbor in Wba},
Fab = {e ∈ E(G) | e is an edge between Wab and Wba}.

Note that if G is bipartite then for any edge ab, V = Wab∪Wba. Djoković [5]
characterized partial cubes as the connected bipartite graphs in which all
subgraphs Wab are convex.

The Djoković-Winkler relation Θ [5, 17] is defined on the edge set of a
graph in the following way. Edges e = xy and f = uv of a graph G are in
relation Θ if

dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u) .

Winkler [17] proved that among bipartite graphs Θ is transitive precisely
for partial cubes. The following lemma first explicitly stated in [10], see
also [11], will be used several times.

Lemma 2.1 Let G be a bipartite graph and e = uv, f = xy be two edges
of G with eΘf . Then the notation can be chosen such that

d(u, x) = d(v, y) = d(u, y)− 1 = d(v, x)− 1.

Let G be a partial cube and ab ∈ E(G). Then the Θ-equivalence class of
ab coincides with the set Fab. Hence the notation of Lemma 2.1 is selected
in such a way that x ∈ Uuv and y ∈ Uvu.

Göbel and Veldman proved in [8] the following connectivity result for
even graphs.

Theorem 2.2 Let G be an even graph on at least three vertices. Then G
is 2-connected. Moreover, if the smallest degree of G is at least 3, then G
is 3-connected.

Handa [9] followed with a related result asserting that a harmonic-even
partial cube G with more than two vertices is 3-connected unless G is an
even cycle. Finally, for later use we recall from [8] the following useful fact.

Proposition 2.3 If u and v are adjacent vertices of an even graph G of
diameter d, then d(v, u) = d− 1.
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3 Two sufficient conditions

We begin with the following observation.

Proposition 3.1 Let G be an even partial cube with idim(G) = diam(G).
Then G is harmonic-even.

Proof. Let G be an even partial cube with idim(G) = d and consider G
as an isometric subgraph of Qd. Let uv be an arbitrary edge of G, then
we need to show that u v ∈ E(G). As hypercubes are vertex-transitive, we
can assume that u = 00 . . . 0. Since diam(G) = d, we have u = 11 . . . 1. As
v is adjacent to u it has exactly one coordinate equal 1, and hence v must
have exactly k − 1 coordinates equal 1. We conclude that v is adjacent to
u. ¤

We know of no even partial cube G for which idim(G) > diam(G).
Hence Proposition 3.1 shows a possible way to attack the general case of
the Fukuda-Handa question. We will further explore this idea in the next
section. Here we follow with another result which shows that under an
additional technical condition an even partial cube is either harmonic-even
or it is “far away” from being such. For this sake we need the following
definition.

Let ab be an edge of a partial cube G. Let us call the set Uab even
if for any vertex u of Uab there exists a unique vertex v of Uab such that
d(u, v) = maxw∈Uab

d(u,w).

Theorem 3.2 Let G be an even partial cube with even Uab’s. Then either
G is harmonic-even or there is an edge uv of G such that d(u, v) ≥ 4.

Proof. Suppose that G is even but not harmonic-even and let k = diam(G).
Then for some edge uv of G we have d(u, v) ≥ 2.

Suppose u ∈ Uvu. Let w ∈ Uuv be such that d(u,w) = 1. Then
d(u,w) = k − 1 by Proposition 2.3, and hence d(v, w) = k by Lemma 2.1.
Therefore v = w, a contradiction with the assumption d(u, v) ≥ 2.

Hence u ∈ Wvu\Uvu and by the symmetry, v ∈ Wuv\Uuv. If d(u, Uvu) ≥
2 or d(v, Uuv) ≥ 2 we have d(u, v) ≥ 4. Therefore d(u,Uvu) = d(v, Uuv) = 1.

Let x be a neighbor of u in Uvu and let y be the neighbor of x in Uuv.
By Proposition 2.3, d(v, u) = k − 1. Moreover, as G is bipartite, and x is
not the diametrical vertex of v, we have d(v, x) = k − 2 (= d(u, y)). If for
some vertex w of Uuv we would have d(u,w) = k − 1, the neighbor of w
in Uvu would be at distance k from u which is not possible as u /∈ Uvu. It
follows, having in mind that Uuv is even, that y is the unique vertex from
Uuv at distance k − 2 from u. Analogously, x is the unique vertex in Uvu

with d(v, x) = k − 2.
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Consider next v. We know already that v ∈ Wuv \ Uuv and let w be a
neighbor of v in Uuv. Since d(u, v) = k− 1, we have d(u, w) = k− 2. Since
Uuv is even it follows that w = y, that is, v is adjacent to y.

Since Uuv and Uvu are both even, x ∈ Wuv \ Uuv and y ∈ Wvu \ Uvu.
Moreover, d(x,Uuv) = 1 and d(y, Uvu) = 1 for otherwise we are done by
considering the edges xy and x y. By an analogous argument as above we
infer that x is adjacent to u and y to v, see Fig. 1.

Figure 1: Diametrical vertices from the proof

Observe next that d(x, v) = k−2. Clearly, d(x, v) ≥ k−2 since d(v, v) =
k. Now, d(x, v) cannot be k, for otherwise x would have two diametrical
vertices and it is also not k − 1 because G is bipartite. Analogously we
conclude that d(u, y) = k−2. It follows that xuΘvy and yvΘux. Moreover,
d(x, x) = d(u, u) = k and by Proposition 2.3, d(u, x) = d(u, x) = k − 1.
Therefore Lemma 2.1 implies xuΘux. Transitivity of Θ thus implies vyΘux.
But then v must be adjacent to u, the final contradiction. ¤

In view of Theorem 3.2 we ask the following question: given an even
partial cube G, is it always the case that the Uab’s are even?

Note that if a partial cube G is harmonic-even, then a ∈ Uba, for oth-
erwise a would not be adjacent to b. Hence b is a unique vertex in Uab

such that d(a, b) = diam(G)−1. So harmonic-even partial cubes have even
Uab’s.
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4 Even partial cubes of small dimension

In this section we use the idea of Proposition 3.1 to show that even partial
cubes of small isometric dimension are harmonic-even.

Theorem 4.1 Let G be an even partial cube with idim(G) ≤ 6. Then G
is harmonic-even.

Proof. We will apply Proposition 3.1. More precisely, let G be an even
partial cube with idim(G) = k, k ≤ 6. Then we will prove that diam(G) =
k.

It is easy to verify that the only even partial cubes of idim at most 3
are Q1, Q2, Q3, and C6. So let 4 ≤ k ≤ 6 and let uv be an arbitrary edge
of G. As hypercubes are vertex-transitive, we can assume that u = 00 . . . 0.
Suppose on the contrary that diam(G) < k, then u 6= 11 . . . 1. We may
assume that the last coordinate of u equals 0. We will show that then in all
cases any vertex of G has the last coordinate 0 as well. But then G could
be isometrically embedded into Qk−1 just by removing the last coordinates
of vertices, hence idim(G) would be at most k − 1.

For a vertex w of G let s(w) be the number of 1s in w. We have assumed
that u contains at least one 0 and we may assume that u = 1 . . . 10 . . . 0.
Note that diam(G) = s(u).

Case 1. k = 4.
The cases s(u) = 1 and s(u) = 2 are easily seen not to be possible. Indeed,
suppose s(u) = 2 and let without loss of generality u = 1100. Let w be an
arbitrary vertex of G with the last coordinate 1. (Such a vertex exists since
idim(G) = 4.) From d(u, u) = 2 it follows d(w, u) = 1. But then w = 0001
and thus d(w, u) = 3, a contradiction.

So let s(u) = 3, that is, u = 1110. Suppose w = w1w2w31 ∈ G. Then
w 6= 0001, 0011, 0101, 1001 since any of these vertices is at distance at least
3 from u. If s(w) = 3, then d(u,w) ≥ 3, which is again not possible. Hence
the last coordinate of an arbitrary vertex of G is 0. Therefore, idim(G) ≤ 3,
a contradiction.

Case 2. k = 5.
Suppose that w = w1w2w3w41 ∈ G. Let u = 11100. Then if s(w) ≥ 3
we have d(w, u) ≥ 3, and if s(w) = 2, then d(w, u) ≥ 3. It follows that
u = 11110. If s(w) = 2 then d(w, u) = 4. Suppose next s(w) = 3 and
assume without loss of generality that w = 00111. Then 00110 is the
unique neighbor of w in G, since for any other possible neighbor y of w
we infer d(y, u) = 4. So the degree of w is 1, which is not possible as G is
2-connected by Theorem 2.2. Finally, the case s(w) = 4 is also impossible
as then d(w, u) = 4.
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Case 3. k = 6.
Suppose w = w1w2w3w4w51 ∈ G. If u = 111000, then s(w) ≤ 2. However,
d(w, u) ≥ 3 in this case. Suppose next u = 111100. Then s(w) ≤ 3. If
s(w) = 2, then d(w, u) ≥ 4. Let s(w) = 3. If w5 = 1, then d(w, u) = 5. Let
w5 = 0 and without loss of generality consider the vertex w = 110001. Then
the only possible neighbor of w is 110000, but then G is not 2-connected.

Suppose finally u = 111110. Then s(w) ≤ 4. Moreover, s(w) = 2 is not
possible for otherwise d(w, u) = 5. Assume s(w) = 4 and assume without
loss of generality that w = 001111. Vertex u has at most 5 neighbors
in G: a(1) = 011110, a(2) = 101110, a(3) = 110110, a(4) = 111010, and
a(5) = 111100.

Because d(w, u) = 3 it follows that b = 001110 ∈ V (G). Indeed, the
other two possible neighbors of w that are at distance 2 from u are both
at distance 5 from u. Moreover, at least one of the vertices a(1) = 011110
and a(2) = 101110 must belong to G.

Since G is 2-connected at least one of three possible neighbors of w
x(1) = 000111, x(2) = 001011, x(3) = 001101 belongs to G. Next, d(u, x(1)) =
d(u, x(2)) = d(u, x(3)) = 3. Since any neighbor of x(1), x(2), or x(3) on a
shortest x(i), u-path has the last coordinate equal 0 (otherwise its distance
to u is 5), at least one of the vertices y(1) = 000110, y(2) = 001010, and
y(3) = 001100 belongs to G.

Assume first that x(1) ∈ V (G). Then also y(1) ∈ V (G). In Table 1 we
have collected all possible diametrical vertices for x(1) and y(1). Next to
each of the possible diametrical vertices we give a vertex (if such a vertex
exists) at distance 5 from it or a vertex at distance 6 from it.

x(1) = 000111 y(1) = 000110
011000 011001 a(2), a(3)

101000 101001 a(1), a(3)

110000 w 110001 w
111100 = a(5) x(2) 111101 u
111010 = a(4) x(3) 111011 u
111001 y(1) 111000 x(1)

Table 1: Vertices x(1), y(1) with all possible diametrical vertices

From Table 1 we infer that only one of the top two vertices can be
the diametrical vertex of y(1). The vertex 011001 is the diametrical vertex
of a(2) and a(3). The vertex 101001 is the diametrical vertex of a(1) and
a(3). Hence a(3) /∈ V (G), for otherwise 101001 or 011001 would be the
diametrical vertex of y(1) and a(3). Similarly, only one of the vertices a(1)

and a(2) belongs to G.
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Assume first that a(1) belongs to G. It follows that y(1) = 011001.
Moreover since 011001 is at distance 3 from u (and we already know that
the vertices 010001 and 001001 do not belong to G) the vertex 011000
belongs to G as well since d(011001, u) = 3. Hence we conclude that
x(1) = 011000 and vertices a(4) and a(5) do not belong to G since their
distance to x(1) is 5. But this means that the only neighbor of u is a(1) a
contradiction with Theorem 2.2. The subcase when a(2) belongs to G is
treated similarly, only the roles of a(3), a(4), and a(5) are interchanged.

The cases when x(2) ∈ V (G) or x(3) ∈ V (G) are done analogously as
the case when x(1) ∈ V (G), and are left to the reader.

Suppose at the very end that s(w) = 3. We may assume w = 000111.
Among the vertices with four zeros the only possible neighbor of w is the
vertex 000110. Since by the above w has no neighbor with four 1s, we
conclude that the degree of w is 1, and so G is not 2-connected. Hence
idim(G) ≤ 5, the final contradiction. ¤

Note that every even partial cube with idim(G) ≥ 7 has diameter at
least 5. Hence Theorem 4.1 implies that a possible even partial cube that
is not harmonic-even has diameter at least 5.

5 Three problems

Call a graph G distance-balanced if |Wab| = |Wba| holds for any edge ab of
G, see [12, 14]. Handa [9] observed that harmonic-even graphs are distance-
balanced. The converse is not always true, even restricted to partial cubes,
as an example from [9, Fig.2] asserts. It is a distance-balanced partial cube
with idim=5 that is not even. So the following question naturally appears.

Problem 5.1 Characterize even distance-balanced partial cubes.

All regular partial cubes from [1, 3] that are also distance-balanced are
harmonic-even.

Problem 5.2 Is every regular distance-balanced partial cube harmonic-
even?

Let G be a harmonic-even partial cube. Then u ∈ Wab if and only if
u ∈ Wba. Let α be an automorphism of G defined with α(u) = u. Since G
is harmonic-even, α induces an isomorphism between the graphs induced
by Wab and Wba. Is the converse true as well? That is:

Problem 5.3 Is G a harmonic-even partial cube if and only if for every
ab ∈ E(G), Wab is isomorphic to Wba?
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[12] J. Jerebic, S. Klavžar, and D.F. Rall, Distance-balanced graphs,
manuscript, 2005.
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