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1 Introduction

The concept of the exact distance-p graph, where p is a positive integer, was

introduced by Simić [22] in the 1980s and was recently rediscovered by Nešetřil

and Ossona de Mendez [17, Section 11.9]. If G is a graph, then the exact distance-p

graph G[\p] of G is the graph with V (G[\p]) = V (G) and two vertices in G[\p] are

adjacent if and only if they are at distance exactly p in G. Note that G[\1] = G.

The main focus in earlier investigations of exact distance graphs was on their

chromatic number. One of the main reasons for this interest is the problem asking

whether there exists a constant C such that for every odd integer p and every

planar graph G we have χ(G[\p]) ≤ C. This problem, which was explicitly stated

in [17, Problem 11.1] and attributed to van den Heuvel and Naserasr (see also [18,

Problem 1]), has been very recently answered in negative by considering the ex-

act distance graphs of large complete q-ary trees [6]. Results on the chromatic

number of exact distance graphs are in particular known for trees [6] and chordal

graphs [20]. Also very recently, van den Heuvel, Kierstead and Quiroz [11] proved

that for any graph G and odd positive integer p, χ(G[\p]) is bounded by the weak

(2p− 1)-colouring number of G. We also mention that in [2] graphs isomorphic to

their exact distance-2 graphs were investigated.

Much earlier, the exact distance-p graphs had been considered for the case

when G is a hypercube in the frame of the so-called cube-like graphs [7,10,14,

19,21,24], see also the book of Jensen and Toft [13]. Initially, the notion of the

cube-like graph was introduced by Lovász [10] who proved that every cube-like

graph has integral spectrum. Apparently, many authors had conjectured that the

chromatic number of cube-like graphs is always some power of 2. It turned out

that there is no cube-like graph of chromatic number 3 but there exists a cube-like

graph of chromatic number 7 [19]. Ziegler also studied the cube-like graphs (under

the name Hamming graphs), and determined the chromatic number in numerous

cases. Finally, the chromatic number of exact distance-2 hypercube is a problem

which has been intensively studied [14,21].

We believe that the concept of exact distance graphs is not only interesting

because of the chromatic number, but also as a general metric graph theory con-

cept. With this paper we thus hope to initiate an interest for general properties of

the construction. Actually, using a different language, back in 2001 Ziegler proved

the following property for bipartite graphs.



Exact distance graphs of product graphs 3

Lemma 1 ([24]) Let G be a bipartite graph.

(i) If p is even, then G[\p] is not connected.

(ii) If p is odd, then G[\p] is a bipartite graph (and has the same bipartition as G).

In this paper we focus on the exact distance graphs of graph products and

proceed as follows. In the rest of this section we give required definitions and

fix notation. Then, in Section 2, we present formulas describing the structure

of exact distance-p graphs of the Cartesian, the strong, and the lexicographic

product of arbitrary two graphs. In the case of the direct product of graphs only

exact distance-2 graphs could be expressible with a nice formula, which in turn

simplifies to (G × H)[\2] = G[\2] � H [\2] when G and H are both triangle-free

graphs. Nice expressions are found also for the exact distance-2 graphs of some

products of the 2-way infinite paths, which yields the chromatic number of the

corresponding grids. In Section 3, we consider the characteristic conditions for

the connectivity of exact distance graphs with respect to all four products. This

time, for the Cartesian and the direct product we can only deal with the case

p = 2, while for the other two products the result covers exact distance-p graphs

for an arbitrary integer p. In Section 4, we study the exact distance-p graphs of

hypercubes. We start by showing that Q
[\n−1]
n

∼= Qn, and by describing some

structural properties of Q
[\p]
n for an arbitrary p ≤ n. Noting that some generalized

Johnson graphs appear as induced subgraphs in Q
[\p]
n , we consider the chromatic

number of these graphs. This enables us to give upper bounds for the chromatic

number of Q
[\p]
n for p ∈ {n− 2, n− 3, n− 4}, which are 8, 15, and 26, respectively.

If G is a graph, then dG(x, y) is the standard shortest-path distance between

vertices x and y in G. The maximum distance between u and all the other vertices

is the eccentricity of u. The maximum and the minimum eccentricity among the

vertices of G are the diameter diam(G) and the radius rad(G). Let n(G) denote the

order of the graph G.

We define G
[\0]

as the graph with the vertex set V (G) and with a loop added

to each of its vertices. If G and H are graphs on the same vertex set, then G ]H

is the graph with vertex set V (G) = V (H) and edge set E(G) ∪ E(H). If G is a

graph, then kG denotes the disjoint union of k copies of the graph G.

The vertex set of each of the four standard graph products of graphs G and H

is equal to V (G)× V (H). In the direct product G×H vertices (g1, h1) and (g2, h2)

are adjacent when g1g2 ∈ E(G) and h1h2 ∈ E(H). In the lexicographic product

G ◦H, vertices (g1, h1) and (g2, h2) are adjacent if either g1g2 ∈ E(G), or g1 = g2
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and h1h2 ∈ E(H). In the strong product G � H vertices (g1, h1) and (g2, h2) are

adjacent whenever either g1g2 ∈ E(G) and h1 = h2, or g1 = g2 and h1h2 ∈ E(H),

or g1g2 ∈ E(G) and h1h2 ∈ E(H). Finally, in the Cartesian product G�H vertices

(g1, h1) and (g2, h2) are adjacent if either g1g2 ∈ E(G) and h1 = h2, or g1 = g2 and

h1h2 ∈ E(H). All these products are associative and, with the exception of the

lexicographic product, also commutative. Let G ∗ H be any of the four standard

graph products. Then the subgraph of G ∗H induced by {g} × V (H) is called an

H-layer of G ∗H and denoted gH. For more on products graphs see the book [9].

2 Exact distance graphs of graph products

We first recall the distance function of the four standard products, cf. [9].

Lemma 2 ([9]) If G and H are graphs and (g1, h1), (g2, h2) ∈ V (G)× V (H), then

(i) dG�H [(g1, h1), (g2, h2)] = dG(g1, g2) + dH(h1, h2);

(ii) dG�H [(g1, h1), (g2, h2)] = max{dG(g1, g2), dH(h1, h2)};

(iii) dG×H [(g1, h1), (g2, h2)] = k, where k is the smallest integer such that there exists

a g1, g2-walk of length k in G and an h1, h2-walk of length k in H;

(iv) dG◦H [(g1, h1), (g2, h2)] =


dG(g1, g2), if g1 6= g2;
min{dH(h1, h2), 2}, if g1 = g2 and degG(g1) > 0;
dH(h1, h2), otherwise.

Theorem 1 If G and H are graphs, then

(G�H)[\p] =

p⊎
i=0

(
G[\i] ×H [\p−i]

)
.

Equivalently,

(G�H)[\p] =

p−1⊎
i=1

(
G[\i] ×H [\p−i]

)
]
(
G[\p] �H [\p]

)
.

Proof By Lemma 2(i), dG�H [(g1, h1), (g2, h2)] = p if and only if there exists i, 0 ≤

i ≤ p, such that dG(g1, g2) = i and dH(h1, h2) = p − i. This in turn holds if and

only if g1g2 ∈ E(G[\i]) and h1h2 ∈ E(H [\p−i]). From this the first equality follows

by the definition of the direct product. The second equality follows from the fact

that
(
G[\0] ×H [\p]

)
]
(
G[\p] ×H [\0]

)
= G[\p] �H [\p]. ut

Fig. 1 illustrates Theorem 1 on the case G = P4, H = P3, and p = 2.
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(
P

[\2]
4 × P [\0]

3

)
]
(
P

[\0]
4 × P [\2]

3

)
P

[\1]
4 × P [\1]

3 (P4 �P3)[\2]

Fig. 1 Illustration of the structure of (P4 �P3)[\2] which is isomorphic to
(
P

[\2]
4 × P [\0]

3

)
](

P
[\0]
4 × P [\2]

3

)
]
(
P

[\1]
4 × P [\1]

3

)
.

Theorem 2 If G and H are graphs, then

(G�H)[\p] =

p⊎
i=0

(
(G[\p] ×H [\i]) ] (G[\i] ×H [\p])

)
.

Proof By Lemma 2(ii), dG�H [(g1, h1), (g2, h2)] = p if and only if either dG(g1, g2) =

p and dH(h1, h2) = i, where 0 ≤ i ≤ p, or dG(g1, g2) = i and dH(h1, h2) = p, where

0 ≤ i ≤ p. Hence, the theorem follows. ut

In view of Lemma 2(iii), it is not surprising that the situation with the direct

product is more tricky (as it is often the case with the direct product). To state

a formula for (G×H)[\2], we need the following concept, see [17, Section 11.9]. If

G is a graph, then G\p is the graph with V (G\p) = V (G), vertices x and y being

adjacent if and only if they are connected in G with a path of length p.

Theorem 3 If G and H are graphs without isolated vertices, then

(G×H)[\2] = (G\2�H\2) ] (G\2 ×H [\2]) ] (G[\2] ×H\2) .

In particular, if G and H are triangle-free, then

(G×H)[\2] = G[\2] �H [\2] .

Proof Let (g1, h1), (g2, h2) be vertices of G × H with dG×H [(g1, h1), (g2, h2)] = 2.

Then by Lemma 2(iii) there exists a g1, g2-walk of length 2 in G and an h1, h2-walk

of length 2 in H, and not both g1g2 ∈ E(G) and h1h2 ∈ E(H) hold.

If g1 = g2, then, dG×H [(g1, h1), (g2, h2)] = 2 if and only if there is a path of

length 2 between h1 and h2 in H. Note that the sufficiency of this assertion holds

because G is isolate-free. Similarly, if h1 = h2, then, dG×H [(g1, h1), (g2, h2)] = 2

if and only if there is a path of length 2 between g1 and g2 in G, where we use

the fact that H is isolate-free. It follows that G\2�H\2 is a spanning subgraph of

(G×H)[\2].
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Suppose next that g1 6= g2 and h1 6= h2. Then dG×H [(g1, h1), (g2, h2)] = 2 if

and only if

– either there is a path of length 2 between h1 and h2 in H and dG(g1, g2) = 2,

– or there is a path of length 2 between g1 and g2 in G and dH(h1, h2) = 2.

(Indeed, if g1g2 ∈ E(G) and h1h2 ∈ E(H), then (g1, h1)(g2, h2) ∈ E(G × H), and

if there is no g1, g2-path of length 2 in G or no h1, h2-path of length 2 in H,

then dG×H [(g1, h1), (g2, h2)] > 2.) The first possibility implies that G[\2]×H\2 is a

spanning subgraph of (G ×H)[\2], while the second possibility implies that same

for G\2 ×H [\2]. This proves the first formula of the theorem.

Suppose now that G and H are triangle-free. Then G[\2] = G\2 and H [\2] = H\2.

By the already proved formula we have

(G×H)[\2] = (G\2 �H\2) ] (G\2 ×H [\2]) ] (G[\2] ×H\2)

= (G[\2] �H [\2]) ] (G[\2] ×H [\2])

= G[\2] �H [\2] ,

where the last equality holds by the basic relation between the three products in

question. ut

For the lexicographic product, the case where G is trivial is special since we

have (K1 ◦H)[\p] = H [\p]. If G has no isolated vertex, we have the following.

Theorem 4 If G is a graph without isolated vertices and H an arbitrary graph, then

(G ◦H)[\p] =

{
G[\2] ◦H, if p = 2;

G[\p] ◦Kn(H), otherwise.

Proof By Lemma 2, dG◦H [(g1, h1), (g2, h2)] = min{dH(h1, h2), 2} if g1 = g2 or

dG(g1, g2), otherwise. First, if p = 2, then two vertices (g, h1) and (g, h2) are at dis-

tance two in G ◦H if and only if h1 6= h2 and they are not adjacent. Also, vertices

(g1, h1) and (g2, h2), where g1 6= g2, are at distance 2 if and only if dG(g1, g2) = 2.

Consequently, (G ◦H)[\2] = G[\2] ◦H.

Second, if p ≥ 3, then no vertices (g, h1) and (g, h2) are adjacent in (G ◦H)[\p].

Also, vertices (g1, h1) and (g2, h2), where g1 6= g2, are at distance p if and only if

dG(g1, g2) = p. Consequently, (G ◦H)[\p] = G[\p] ◦Kn(H). ut

We now turn to infinite graphs and state the following interesting representa-

tions of exact distance-2 graphs of infinite grids.
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Proposition 1 If P∞ is the 2-way infinite path, then

(i) (P∞�P∞)[\2] = 2(P∞ � P∞), and

(ii) (P∞ × P∞)[\2] = 4(P∞ � P∞).

Proof Throughout the proof let V (P∞) = Z, so that the vertex set of each of the

products considered as well as of their distance-2 graphs is Z× Z.

(i) A vertex (i, j) ∈ Z×Z of P∞�P∞ is adjacent to the four vertices (i, j ± 1)

and (i ± 1, j). Consequently, in (P∞�P∞)[\2], the vertex (i, j) is adjacent to the

vertices (i±1, j±1), (i, j±2), and (i±2, j). (Note that (P∞�P∞)[\2] is 8-regular). It

follows that (P∞�P∞)[\2] consists of two connected components, one component

being induced by the vertices (i, j) such that i+j is even, and the other component

being induced by the vertices (i, j) such that i + j is odd. Let these components

be called even and odd, respectively.

Consider the even component of (P∞�P∞)[\2] and for k ∈ Z set Vk = {(i, j) :

i + j = 2k}. A vertex from Vk has two neighbors in Vk, and three neighbors in

each of Vk−1 and Vk+1. Hence the set Vk induces a subgraph isomorphic to P∞

and, moreover, Vk ∪ Vk+1 (as well as Vk ∪ Vk−1) induces a subgraph isomorphic to

P2 � P∞. This fact is illustrated in Fig. 2 for k = 0, that is, for the sets V0, V1,

and V−1.

(−4, 2) (−3, 1) (−2, 0) (−1,−1) (0,−2) (1,−3) (2,−4)

(−3, 3) (−2, 2) (−1, 1) (0, 0) (1,−1) (2,−2) (3,−3)

(−2, 4) (−1, 3) (0, 2) (1, 1) (2, 0) (3,−1) (4,−2)
V1

V0

V−1 · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 2 Central parts of the sets V0, V1, and V−1 of the even component of (P∞ �P∞)[\2].

By the above local strong product structure induced by the sets Vk ∪Vk+1, k ∈

Z, we inductively conclude that the even component of (P∞�P∞)[\2] is isomorphic

to P∞ � P∞. A parallel argument applies to the odd component. This proves the

first assertion of the proposition.
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(ii) A vertex (i, j) ∈ Z×Z of P∞×P∞ is adjacent to the vertices (i±1, j±1) and

consequently the vertex (i, j) of (P∞×P∞)[\2] is adjacent to the vertices (i±2, j±2),

(i, j± 2), and (i± 2, j). Let X00 = {(i, j) : i, j even}, X01 = {(i, j) : i even, j odd},

X10 = {(i, j) : i odd, j even}, and X11 = {(i, j) : i, j odd}. Then (P∞ × P∞)[\2]

consists of four connected components Gij , i, j ∈ {0, 1}, where Gij is induced by

the vertex set Xij . It is straightforward to see that each of the Gij induces a

subgraph of (P∞ × P∞)[\2] isomorphic to P∞ � P∞, hence the second assertion of

the proposition. ut

Formula (ii) of the above proposition could also be proven in the following

way. One should first observe (and prove) that the direct product P∞ × P∞ is

isomorphic to the disjoint union of two copies of the square grid P∞�P∞, and

then apply Proposition 1(i).

Note that in view of Proposition 1 it is obvious that

χ((P∞�P∞)[\2]) = χ((P∞ × P∞)[\2]) = 4.

The graph (P∞ � P∞)[\2] is 16-regular, but its structure is not so transparent.

Nevertheless, χ((P∞ � P∞)[\2]) = 4 as can be demonstrated by first coloring the

vertices (i, j), i, j ∈ {1, 2, 3, 4}, with the following pattern:

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

and then repeatedly extending the pattern to the whole graph (P∞�P∞)[\2]. This

pattern can be generalized to an arbitrary p ≥ 1 to get a 4-coloring of (P∞�P∞)[\p]

as follows:

1 . . . 1 2 . . . 2
...

...
...

...
1 . . . 1 2 . . . 2
3 . . . 3 4 . . . 4
...

...
...

...
3 . . . 3 4 . . . 4

Hence, we infer that

χ((P∞ � P∞)[\p]) = 4

holds for every positive integer p.

It seems intriguing to find a nice expression for (P∞�P∞)[\p] and (P∞×P∞)[\p]

when p > 2.
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3 Connectivity

We start with the following easy observation.

Lemma 3 If G is a non-trivial graph and p > rad(G), then G[\p] is not connected.

Indeed, if p > rad(G), then every vertex whose eccentricity equals rad(G) is an

isolated vertex of G[\p].

Theorem 5 Let G and H be connected graphs with rad(G) ≥ rad(H), and let p ≥ 2.

The graph (G�H)[\p] is connected if and only if the following conditions hold:

(1) rad(G) ≥ p, and

(2) G[\p] is connected or diam(H) ≥ p.

Proof First, suppose that (G�H)[\p] is connected. Since rad(G�H) = max{rad(G), rad(H)} =

rad(G), it follows, by applying Lemma 3, that rad(G) ≥ p. Suppose next that con-

dition (2) does not hold, that is, G[\p] is not connected and diam(H) < p. Let P

be a shortest path between (g, h) and (g′, h′) of length p in G � H. Then, since

diam(H) < p, the projection of P on G is a (shortest) g, g′-path of length p in G.

In other words, starting from a vertex (g, h) one can reach by shortest paths of

length p in G�H only the vertices in the layers g′H, where dG(g, g′) = p. Hence, if

g1 and g2 are vertices that belong to different connected components of G[\p], and

h is an arbitrary vertex of H, then (g1, h) and (g2, h) belong to different connected

components of (G�H)[\p].

For the converse, assume that conditions (1) and (2) hold. We distinguish two

cases.

In the first case, suppose that rad(G) ≥ p, and diam(H) ≥ p. Let (g, h) be a

vertex in G�H. Now we show that all the vertices in gH are in the same connected

component of (G�H)[\p]. Let (g, h) and (g, h′) be vertices of gH, where hh′ ∈ E(H).

Since rad(G) ≥ p, there exists a vertex g′ in G such that dG(g, g′) = p. Note that

dG�H [(g, h), (g′, h)] = p = dG�H [(g′, h), (g, h′)] which implies that (g, h) and (g, h′)

have a common neighbor in (G�H)[\p]. Hence all vertices of gH are in the same

component of (G�H)[\p].

Now let g′′g ∈ E(G) for some g′′ ∈ V (G), and let h and h′′ be vertices in H at

distance p (as p ≤ diam(H) such two vertices exist). Note that dG�H [(g, h), (g′′, h′′)] =

p. Hence (g′′, h′′) is in the same connected component of (G�H)[\p] as all the ver-

tices of gH. By the same reasoning as before, all vertices in gH are in the same
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component of (G � H)[\p] as (g′′, h). As G is connected, an inductive argument

implies that all H-layers are in one and the same component.

In the second case, let G[\p] be connected (and rad(G) ≥ p). By excluding the

first case, suppose moreover that diam(H) < p. Let (g, h) be a vertex in G � H,

and let g′ ∈ V (G) be a neighbor of g in G[\p]. Hence, all vertices from the layer g′H

are adjacent in (G�H)[\p] to the vertex (g, h). In turn, by reversing the roles of g

and g′, all vertices in gH are adjacent to all vertices from the layer g′H. Since G[\p]

is connected, an inductive arguments yields that (G�H)[\p] is connected. ut

The situation of the lexicographic product is the following.

Proposition 2 If p ≥ 1 and G is a non-trivial graph, then (G ◦H)[\p] is connected if

and only if G[\p] is connected.

Proof The assertion for p = 1 follows, since G ◦H is connected if and only if G is

connected.

Let p = 2. Suppose that G[\2] is not connected. Note that any shortest path

of length 2 from a vertex in gH either ends in the same layer or in a layer g′H,

where gg′ ∈ E(G[\2]). Hence G[\2] is not connected, implies that (G ◦ H)[\2] is

not connected. Assume conversely that G[\2] is connected. Let (g, h) and (g, h′)

be arbitrary vertices from gH. If hh′ /∈ E(H), then dG◦H [(g, h), (g, h′)] = 2, which

implies that (g, h) and (g, h′) are in the same component of (G ◦H)[\2]. Now, let

hh′ ∈ E(H). Since G[\2] is connected, rad(G) ≥ 2. Hence, there exists a vertex

g′ ∈ V (G) with dG(g, g′) = 2. Then, dG◦H [(g, h), (g′, h)] = dG◦H [(g′, h), (g, h′)] = 2,

which implies that (g, h) and (g, h′) are in the same component of (G ◦H)[\2]. The

above two cases imply that all vertices from gH are in the same component of

(G ◦H)[\2]. Because G[\2] is connected, inductive argument yields that (G ◦H)[\2]

is connected.

Finally, let p ≥ 3. The projection to G of any shortest path in G ◦H of length

p is a shortest path in G of the same length. From this observation the assertion

follows immediately. ut

Proposition 3 Let G and H be connected graphs. Then,

(i) (G�H)[\2] is connected if and only if one of G or H is non-bipartite.

(ii) (G×H)[\2] is connected if and only if G[\2] and H [\2] are connected.

Proof (i) Theorem 1 implies that G × H is a spanning subgraph of (G�H)[\2].

One direction of the result now follows by Weichsel’s theorem [23] asserting that
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G×H is connected if and only if G and H are connected and at least one of them

is not bipartite. For the other direction, note that if G and H are both bipartite,

then (G�H)[\2] has two components.

(ii) By Theorem 3, (G ×H)[\2] contains G[\2] �H [\2] as a spanning subgraph

(because E(G[\2]) ⊆ E(G\2), for any graph G). One direction of the claim now

follows because the strong product is connected if and only if both factor graphs

are connected, see [9]. For the reverse direction, assume that (G × H)[\2] is con-

nected and let (g, h) and (g′, h) be two vertices of the same H-layer. Note that

the projection to G of a shortest path between (g, h) and (g′, h) in (G×H)[\2] is a

shortest path between g and g′ in G[\2]. This implies that G[\2] is connected. ut

The connectivity of (G�H)[\p] and of (G × H)[\p] where p ≥ 3 seems an in-

triguing open question. In the next result we solve it for the particular case of

hypercubes Qd, where Q1 = K2 and Qd = Qd−1 �K2 for d ≥ 2.

Theorem 6 Let d ≥ 2 and 1 ≤ p < d. Then Q
[\p]
d is connected if and only if p is odd.

Proof If p is even, then Q
[\p]
d is disconnected by Lemma 1(i).

Assume now that p is odd. The case p = 1 is trivial, hence assume that p ≥ 3.

To prove that Q
[\p]
d is connected it suffices to show that in Q

[\p]
d there exists a path

from the vertex 0d to a vertex with exactly one bit 1. Indeed, if this is proved,

then since Qd is edge-transitive, every pair of adjacent vertices of Qd is connected

by a path in Q
[\p]
d . Consequently, as Qd is connected, Q

[\p]
d is also connected.

Clearly, the vertex x0 = 0d is adjacent in Q
[\p]
d to the vertex x1 = 1p0d−p,

which is in turn adjacent to the vertex x2 = 10p−110d−p−1. By changing the first

p − 1 bits and the (p + 1)st bit of x2 we arrive to the vertex x3 = 01p−20d−p+1.

Since p − 2 is odd, we can write p − 2 = p1 + p2, where p1 − p2 = 1. Let x4 be a

neighbor of x3 in Q[\p] obtained from x3 by changing p2 of its 1s into 0s, and hence

p − p2 zero bits of x3 into 1s. In this way x4 contains p1 + (p − p2) = p + 1 bits

equal to 1. Now x4 is in Q
[\p]
d adjacent to p+ 1 vertices each of which has exactly

one bit 1. ut

4 Exact distance graphs of hypercubes

In this section we first describe the structure of exact distance graphs of hyper-

cubes by showing that they contain copies of some generalized Johnson graphs.

Afterward, we combine known results and new ones about the chromatic number
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of generalized Johnson graphs to derive upper bounds for the chromatic number

of some exact distance graphs of hypercubes.

The generalized Johnson graph J(n, k, i) (where i ≤ k ≤ n) is the graph with

the set {A ⊆ {1, . . . , n} : |A| = k} and edge set {AB : |A ∩ B| = i}. The

family of generalized Johnson graphs includes Kneser graphs K(n, k) = J(n, k, 0)

(which themselves include the odd graphs J(2k+ 1, k, 0)) and the Johnson graphs

J(n, k, k − 1)) [1].

4.1 On the structure of exact distance graphs of hypercubes

For even distance, the structure of the exact distance graph of the hypercube is

known.

Proposition 4 ([24]) Q
[\2p]
n = 2(Q

[\2p]
n−1 ]Q

[\2p−1]
n−1 ).

For odd distance n− 1 we prove the existence of the following isomorphism.

Proposition 5 For every positive even integer n, Q
[\n−1]
n

∼= Qn.

Proof For a vertex x of Q
[\n−1]
n , we denote by xi,i+1, for i ∈ {1, . . . , n − 1}, the

concatenation of the ith bit and (i + 1)th bit of x. We say that xi,i+1 is an odd

word if xi,i+1 ∈ {01, 10}, and otherwise xi,i+1 is an even word (i.e., when xi,i+1 ∈

{00, 11}). Next, if {x1,2, x3,4, . . . , xn−1,n} contains an even number of odd words,

then x is said to be of type A. Otherwise, x is said to be of type B. We set the

following function f , for i ∈ {0, . . . , (n− 2)/2} from {0, 1}n to {0, 1}n:

f(x)2i+1,2i+2 =



x2i+1,2i+2, if x2i+1,2i+2 is even and x is of type A;

x2i+1,2i+2, if x2i+1,2i+2 is odd and x is of type A;

x2i+1,2i+2, if x2i+1,2i+2 is even and x is of type B;

x2i+1,2i+2, otherwise.

We first prove that f is a bijective and, afterwards, that f is an isomorphism

between Q
[\n−1]
n and Qn. First, since f(x) is of type A if and only if x is of type A,

it can be easily noticed that x 6= x′, for x, x′ ∈ V (Q
[\n−1]
n ), implies f(x) 6= f(x′).

Thus, f is bijective.

Second, since n − 1 is odd, any adjacent vertices x and x′ in Q
[\n−1]
n are in

different partite sets ( Q
[\n−1]
n is bipartite). Suppose that x and x′ differ in n − 1

bits, i.e., have exactly one common bit xk. Suppose that x2i+1,2i+2 contains the

bit xk. It can be easily observed that for each j ∈ {0, . . . , (n−2)/2}\{i}, x2j+1,2j+2
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is an even word if and only if x′2j+1,2j+2 is an even word. Moreover, x2i+1,2i+2

is an even word if and only if x′2i+1,2i+2 is an odd word. Consequently, for each

j ∈ {0, . . . , (n− 2)/2} \ {i}, f(x)2j+1,2j+2 = f(x′)2j+1,2j+2 and since f(x)2i+1,2i+2

and f(x′)2i+1,2i+2 have exactly one common bit, f(x) and f(x′) have n−1 common

bits and, consequently, are adjacent in Qn. Finally, if x and x′ are not adjacent in

Q
[\n−1]
n , then f(x) and f(x′) are not adjacent in Qn, since both Q

[\n−1]
n and Qn

are n-regular. Thus, f is an isomorphism. ut

The following isomorphism is well known, cf. [1].

Proposition 6 If n, k, and i are positive integers, then J(n, k, i) ∼= J(n, n − k, n −

2k + i).

The set of vertices of Qn having exactly j bits 1 will be denoted by Ln
j , or

shortly Lj when the hypercube Qn is understood from context.

Proposition 7 For every integer n and even integer p, p ≤ n, the exact distance graph

Q
[\p]
n contains J(n, i, i− p/2) as an induced subgraph, for each i ∈ {p/2, . . . , n− p/2}.

Moreover, all these induced subgraphs are pairwise vertex disjoint in Q
[\p]
n .

Proof By changing p/2 bits 1 and p/2 bits 0 from a vertex of Li, we obtain another

vertex from Li with i − p/2 common bits 1. If we change k bits 1, with k > p/2

or k < p/2 from a vertex of Li, then we obtain a vertex of V (Qn) \ Li. Thus, the

vertices of Ln
i induce the graph J(n, i, i− p/2). ut

Remark 1 For every integer n and even integer p, where p ≤ n, the subgraph

induced by ∪0≤j≤bn/2cLn
2j and the subgraph induced by ∪0≤j≤b(n−1)/2cL

n
2j+1 are

the two isomorphic connected components of Q
[\p]
n .

This remark follows from two facts. First, when p is even there is no edge

between a vertex containing an even number of bits 1 and a vertex containing an

odd number of bits 1 (by parity). Second, by inverting the bits 0 and 1, we have

a trivial isomorphism between ∪0≤j≤bn/2cLn
2j and ∪0≤j≤b(n−1)/2cL

n
2j+1.

4.2 Colorings of the generalized Johnson graphs

In this section, we recall some bounds on the chromatic number of generalized

Johnson graphs to be applied in the next subsection. The determination of the

chromatic number of Kneser graphs is a classical result of graph theory [4,15,16].
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Theorem 7 ([4,15]) For any integers n and k < n/2, χ(J(n, k, 0)) = n− 2k + 2.

On the other hand, not much is known about the chromatic number of gen-

eralized Johnson graphs and related graph classes. We state a few known bounds

and values in this area.

Theorem 8 ([5]) We have χ(J(6, 3, 1)) = 6 and χ(J(8, 4, 1)) = 5.

Theorem 9 ([5]) For any positive integers n and i < n/2, i+ 2 ≤ χ(J(n, n/2, i)) ≤

2(2i+2
i+1 ).

This latter result was recently extended and improved by Balogh, Cherkashin

and Kiselev [3] who presented an upper bound which is quadratic on i even for

the generalized Kneser graphs.

We define the generalized Kneser graph K(n, k, i), where i ≤ k ≤ n, as the graph

with vertex set {A ⊆ {1, . . . , n} : |A| = k} and edge set {AB : |A ∩ B| ≤ i}.

For homogeneity, the generalized Kneser graphs are defined slightly differently

than in [3,12] (there is a shift for the third parameter). Note that the generalized

Johnson graph J(n, k, i) is a subgraph of K(n, k, i). Consequently, χ(J(n, k, i)) ≤

χ(K(n, k, i)). The following are known results about the chromatic number of gen-

eralized Kneser graphs.

Theorem 10 ([12]) For every positive integers n, k and i, χ(K(n, k, i)) ≤ (n−2k+2(i+1)
i+1 ).

Theorem 11 ([12]) For any 0 < i + 1 < k < n, we have χ(K(n + 2, k + 1, i)) ≤

χ(K(n, k, i))). In particular, for k ≥ 3:

– χ(K(2k, k, 1)) ≤ χ(K(6, 3, 1)) ≤ 6;

– χ(K(2k + 1, k, 1)) ≤ χ(K(7, 3, 1)) ≤ 9;

– χ(K(2k + 2, k, 1)) ≤ χ(K(8, 3, 1)).

In the following proposition, we present an upper bound on the chromatic

number of K(8, 3, 1). Note that by Theorem 11 this upper bound implies the same

upper bound on χ(J(2k + 2, k, 1)), for 0 < i+ 1 < k < n and k ≥ 3.

Proposition 8 ([12]) We have χ(K(8, 3, 1)) ≤ 12.

4.3 Colorings of exact distance graphs of hypercubes

Bounds or exact values are known for the chromatic number of exact distance-p

graph of the hypercube. We skip mentioning numerous results about the chromatic
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Table 1 Bounds on χ(Q
[\p]
n ). Bold numbers represent exact values, a pair a-b represents a

lower bound and an upper bound on χ(Q
[\p]
n ).

n\p 4 6 8 10
6 7 [19] 2
7 8 [24] 4 [24]
8 8 [24] 4-7 2
9 5-15 4-8
10 6-26 5-15 2

number of Q
[\2]
n since by Proposition 4 it is in relation with the chromatic number

of the second power of the hypercube.

Theorem 12 ([19,24]) If n is an odd integer, then χ(Q
[\n−1]
n ) = 4.

Theorem 13 ([24]) We have χ(Q
[\4]
6 ) = 7, χ(Q

[\4]
7 ) = 8, χ(Q

[\4]
8 ) = 8, χ(Q

[\6]
8 ) ≤ 8

and χ(Q
[\6]
9 ) ≤ 16.

Theorem 14 ([8]) We have χ(Q
[\d]
n ) ≤ 2dlog2(1+(n−1

d−1))e.

Table 1 illustrates the upper bounds obtained in this section for small values

of n. It can be observed that we have improved the results from Ziegler on Q
[\6]
8

and Q
[\6]
9 . The lower bounds from Table 1 are obtained by using Theorem 7 (by

Proposition 7, Q
[\p]
n contains J(n, p/2, 0) as an induced subgraph).

Using the structural tools of the previous subsection, we derive new results

about the chromatic number of Q
[\d]
n for n − d ≤ 4 improving some of the above

results. (The situation when n− d > 4 could be handled in a similar way.) Recall

that when d is odd, Q
[\d]
n is bipartite, hence in the following we only consider even

d.

Theorem 15 If n ≥ 4 is an even positive integer, then

χ(Q
[\n−2]
n ) ≤ χ(J(n, n/2, 1)) + 2.

Proof Note that, by Remark 1, one connected component of Q
[\n−2]
n contains the

vertices of both L(n−2)/2 and L(n+2)/2 and the other one the vertices of Ln/2.

It is possible to color the vertices of Ln/2 with χ(J(n, n/2, 1)) colors. Note that

if two vertices u and v differ in exactly n − 2 bits, u ∈ Li, for i ≤ (n − 4)/2, then

it implies v ∈ Lj for j ≥ n/2. Consequently there is no edge between two vertices

with at most (n−4)/2 bits 1. Similarly, there is no edge between two vertices with

at least (n + 4)/2 bits 1. Finally, we use two new colors to color all the vertices

in Li, for i ≤ (n− 4)/2 with the same color and to color all the vertices in Li, for

i ≥ (n+ 4)/2 with the same color. ut
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Corollary 1 If n ≥ 6 is an even positive integer, then χ(Q
[\n−2]
n ) ≤ 8. In addition,

χ(Q
[\6]
8 ) ≤ 7.

Proof The first assertion follows by combining Theorem 15 (left bound) with The-

orem 11. The second assertion follows by combining Theorem 15 (right bound)

with Theorem 8. ut

Theorem 16 If n ≥ 7 is an odd positive integer, then

χ(Q
[\n−3]
n ) ≤ χ(J(n, (n− 3)/2, 0)) + χ(J(n, (n− 1)/2, 1)) + 1 ≤ χ(K(7, 3, 1)) + 6.

Proof Note that one connected component of Q
[\n−3]
n contains the vertices of

both L(n−3)/2 and L(n+1)/2 and the other one the vertices of both L(n−1)/2 and

L(n+3)/2. By Proposition 7 and its proof, the vertices from L(n−3)/2 induce the

graph J(n, (n− 3)/2, 0) and the vertices from L(n+1)/2 induce the graph J(n, (n−

1)/2, 1). Also, by Proposition 6, we have J(n, (n− 3)/2, 0) ∼= J(n, (n+ 3)/2, 3) and

J(n, (n− 1)/2, 1) ∼= J(n, (n+ 1)/2, 2).

It is possible to color the vertices of L(n−3)/2 with χ(J(n, (n− 3)/2, 0)) colors

and to color the vertices of L(n+1)/2 with χ(J(n, (n− 1)/2, 1)) colors.

Note that for every two vertices u and v differing in exactly n− 3 bits, u ∈ Li,

for i ≤ (n− 3)/2, we have v ∈ Lj for j ≥ (n− 3)/2. Consequently there is no edge

between two vertices with at most (n − 3)/2 bits 1. Similarly, there is no edge

between two vertices with at least (n+ 3)/2 bits 1. Thus we can use just one new

color for all the vertices in Li, for i > (n + 3)/2. Finally, note that no vertex of

L(n−3)/2 is adjacent to a vertex of Li for i < (n−3)/2, hence it is possible to re-use

a color used for L(n−3)/2 to color all the vertices in Li, for i < (n− 3)/2. ut

Combining Theorem 16 with Theorem 11 we infer the following bound.

Corollary 2 If n ≥ 5 is an odd positive integer, then χ(Q
[\n−3]
n ) ≤ 15.

Theorem 17 If n ≥ 8 is an even positive integer, then

χ(Q
[\n−4]
n ) ≤ min{2χ(J(n, (n− 4)/2, 0)) + χ(J(n, n/2, 2)), 2χ(J(n, (n− 2)/2, 1)) + 2}

≤ 2χ(K(8, 3, 1)) + 2.

Proof Note that one connected component of Q
[\n−4]
n contains the vertices of both

L(n−4)/2, Ln/2 and L(n+4)/2 and the other one the vertices of both L(n−2)/2 and

L(n+2)/2. First, we begin by proving that χ(Q
[\n−4]
n ) ≤ 2χ(J(n, (n − 4)/2, 0)) +

χ(J(n, n/2, 2)). By Proposition 7, the vertices from L(n−4)/2 induce the graph
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J(n, (n−4)/2, 0), the vertices from L(n−2)/2 induce the graph J(n, (n−2)/2, 1) and

the vertices from Ln/2 induce the graph J(n, n/2, 2). By Proposition 6, J(n, (n −

4)/2, 0) ∼= J(n, (n+4)/2, 4) and J(n, (n−2)/2, 1) ∼= J(n, (n+2)/2, 3). Consequently,

it is possible to color the vertices of L(n−4)/2, Ln/2, and L(n+4)/2 with 2χ(J(n, (n−

4)/2, 0)) +χ(J(n, n/2, 2)) colors. Note that for vertices u and v differing in exactly

n−4 bits, u ∈ Li, for i ≤ (n−4)/2, we have v ∈ Lj for j ≥ (n−4)/2. Consequently

there is no edge between two vertices with at most (n − 4)/2 bits 1. Similarly,

there is no edge between two vertices with at least (n + 4)/2 bits 1. Finally, it

is possible to re-use a color used for L(n−4)/2 to color all the vertices in Li, for

i < (n− 4)/2 and to re-use a color used for L(n+4)/2 to color all the vertices in Li,

for i > (n+ 4)/2.

Second, we prove that χ(Q
[\n−4]
n ) ≤ 2χ(J(n, (n− 2)/2, 1)) + 2. It is possible to

color the vertices of L(n−2)/2 with χ(J(n, (n− 2)/2, 1)) colors. Note that for every

two vertices u and v differing in exactly n − 4 bits, u ∈ Li, for i ≤ (n − 4)/2, we

have v ∈ Lj for j ≥ (n− 2)/2. Consequently there is no edge between two vertices

with at most (n−6)/2 bits 1. Similarly, there is no edge between two vertices with

at least (n+ 6)/2 bits 1. Finally, we use two new colors to color all the vertices in

Li, for i ≤ (n − 6)/2, with the same color and to color all the vertices in Li, for

i ≥ (n+ 6)/2 with the same color. ut

Combining Proposition 8 with Theorem 17 we get

Corollary 3 If n ≥ 8 is an even positive integer, then χ(Q
[\n−4]
n ) ≤ 26.
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