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Abstract

Isometric subgraphs of hypercubes are known as partial cubes. Edge-critical partial
cubes are introduced as the partial cubes G for which G — e is not a partial cube for
any edge e of G. An expansion theorem is proved by means of which one can generate
many edge-critical partial cubes. Edge-critical partial cubes are characterized among the
Cartesian product graphs. We also show that the 3-cube and the subdivision graph of K4
are the only edge-critical partial cubes on at most 10 vertices.

1 Introduction

Graphs that admit isometric embeddings into hypercubes are known as partial cubes and have
been intensively studied by now. They were introduced by Graham and Pollak [8] and soon after
characterized by Djokovié [5]. For additional characterizations of partial cubes see {2, 3, 19, 20},
for different applications of these graphs consult (4, 6, 8, 12, 16], and for the algorithmic point
of view we refer to [1, 10]. Partial cubes are presented in detail in the book [11].

Posing some additional condition(s) on partial cubes, one may ask several interesting ques-
tions. For instance, which are planar partial cubes and which are regular partial cubes? These
two questions are open at the present, in particular the second one seems to be quite difficult.
On the other hand, Weichsel [18] succeeded to determine all distance regular partial cubes. In
[13] partial cubes are characterized among the subdivision graphs and in [9] it is proved that
partial cubes different from cycles are 3-connected provided that |Was| = |Wpa| holds for all
edges ab. (For the definition of Wy see below.)

In this note we introduce the following concept. A partial cube G is called edge-critical if
for any edge e of G, G — e is not a partial cube. In the rest of this section we give necessary
definitions and preliminary observations. We follow by an expansion theorem which, from
an edge-critical partial cube, produces another such (bigger) graph by means of a peripheral
expansion obeying an additional condition. We also characterize edge-critical partial cubes
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among the Cartesian product graphs. For instance, the Cartesian product of an edge-critical
partial cube with an arbitrary partial cube is edge-critical. We conclude by showing that the
3-cube Q3 and the subdivision graph of K4, S(K4), are the only edge-critical partial cubes on
at most 10 vertices.

For a graph G, the distance dg(u,v) (or briefly d(u,v)) between vertices u and v is defined
as the number of edges on a shortest u,v-path. A subgraph H of G is called isometric if
dg(u,v) = dy(u,v) for all u,v € V(H). Isometric subgraphs of hypercubes are called partial
cubes. A set X in V(G) is called convez if for all u,v € X the vertices of any shortest v, v-path
belong to X. A subgraph H in G is conves if its vertex set is convex.

Let G = (V, E) be a connected, bipartite graph and let ab be an edge of G. Set

Was = {¢ € V(G) | d(z,0) < d(z,)}.

Djokovi¢ [5] proved that a graph is a partial cube if and only if it is bipartite and the sets Wy
are convex. Two edges zy and uv of G are in the Djokovi¢-Winkler [5, 20] relation © if

dg(z,u) + da(y,v) # do(z,v) + de(y,u).

If graph G is bipartite, then the edges ©y and uv are in relation © precisely when d(z,u) =
d(y,v) and d(z,v) = d(y,u). Winkler [20] proved that a bipartite graph is a partial cube if and
only if © is transitive.

Let G’ be a connected graph. A proper cover G, G consists of two isometric subgraphs
G},GY of G' such that G' = G{ U G} and Gy = G| NG} is a nonempty subgraph, called the
intersection of the cover. Additionally there are no edges between G \ G4 and G5 \ Gi. The
ezpansion of G' with respect to G, G4 is the graph G constructed as follows. Let G; be an
isomorphic copy of G}, for i = 1,2, and, for any vertex u’ in Gy, let u; be the corresponding
vertex in Gy, for 1 = 1,2. Then G is obtained from the disjoint union G} U G2, where for each
' in G the vertices u; and u; are joined by an edge. We denote the copy of Gj in Gy by G;,
for i = 1,2. Expansion is called peripheral if at least one of the graphs G} or G} is equal to G.
Note that then the other graph equals the intersection that is thus necessarily isometric in G.

Chepoi [3) proved that a graph is a partial cube if and only if it can be obtained from K by
a sequence of expansions. This result was later independently obtained by Fukuda and Handa
[6] and is analogous to the convex expansion theorem for median graphs [17].

The Cartesian product GOH of graphs G = (V(G), E(G)) and H = (V(H), E(H)) is the
graph with vertex set V(G) x V(H) and vertex (a,z) is adjacent to vertex (b,y) in E(GOH)
whenever ab € E(G) and z = y, or, if a = b and zy € E(H). For a fixed vertex a of G,
the vertices {(a,z) | = € V(H)} induce a subgraph isomorphic to H. We call it an H-layer.
Analogously we define G-layers. The subdivision graph S(G) of a graph G is obtained from G
by subdividing every edge of G.

Let G and H be connected graphs. Then GOH is a partial cube if and only if G and H are
partial cubes. This observation follows from the fact that the layers of the Cartesian product
are convex, which is in turn implied by the fact that the distance function of the product is the
sum of distance functions of the factors, cf. [11].

The following observation (probably part of the folklore) will be used in the sequel.

Lemma 1.1 If an edge e of a graph @ lies in o cycle, then e also lies in an isometric cycle of
G.

Proof. Let e = uv and let P be a shortest path connecting the endpoints of e. Such a path
exists since e lies in a cycle. But then C = u — ...P... = v — u is an isometric cycle
containing e, for otherwise P would not be shortest. u]
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2 Generating edge-critical partial cubes

Recall that G is an edge-critical partial cube if for any edge e of G, G — e is not a partial cube.
Clearly, an edge-critical partial cube is 2-edge-connected.

One can verify that the generalized Petersen graph P(10, 3) and a graph of Gedeonova from
[7), see Fig. 2.4 in [11}), are edge-critical partial cubes. Two more examples of such graphs are
shown in Fig. 1; the graph G was observed to be edge-critical in [15].

S(Kq) G

Figure 1: Two edge-critical partial cubes

In order to obtain more such graphs we are going to present an expansion procedure that
preserves the property. First a lemma.

Lemma 2.1 Let G be a bipartite graph, H = Cy,0K, (n > 2) an isometric subgraph of G,
and e an edge of H. Then G — e is not a partial cube.

Proof. Let v1,s,. .., v2, be the consecutive vertices of the cycle Cap, and let V(K3) = {1,2}.
Thus vertices of H are of the form (v;,7), 1<1<2n,1<j <2,
Let e be an edge of a Kj-layer of H. Then we may without loss of generality assume that
e = (v2,1)(v2,2). As H is isometric, we infer that (vi,1)(v3,1) is in relation © in G — e with
(¥na1, 1) (¥n42,1). Clearly, (vnt1,1)(vn42,1) is in relation © with (vn41,2)(vnq2,2) and using
isometry again we infer that (vn31,2)(vn42,2) is in relation © with (vy,2)(v2,2). But as G is
bipartite, (vy,2){vs,2) is not in relation © with (v1,1)(v, 1) in G —e. Hence © is not transitive
in G ~ e and so G — e cannot be a partial cube.
Let e be an edge of a Cy,-layer. We may assume that e = (vy,1)(v2,1). Then in G — e we
have
(‘Uz, 1)(‘1}2, 2)®(U31 1)(”3: 2)7
(US) 1)(1}31 2)6(U47 1)(‘[}4, 2))
(v2n) 1)(’”211) 2)®(U17 1)(“11 2)1
however, (v3,1)(vz,2) is not in relation © with (vi,1)(v1,2) in G —e. Hence © is again not
transitive in G — e. ]

Theorem 2.2 Let G’ be an edge-critical partial cube and let G be a peripheral ezpansion of G
with respect to G, Gh, where G4 = G'. Then G 1is an edge-critical partial cube if and only if
every edge of G} lies in an isometric cycle of G.
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Proof. Suppose that every edge of G lies in an isometric cycle of G} and let e be an edge of
G. We wish to show that G — e is not a partial cube.

Let e be an edge with at least one endpoint from G; \ Go;. We claim that G; — e is an
isometric subgraph of G —e. Let u and v be any vertices of G; and let P be a shortest u, v-path
in G — e. Suppose that PN Goy # . Let = be the first vertex of P in Ggp and y the last
such vertex. Let R be the z,y-subpath of P. We may without loss of generality assume that
PN Gy = R. Let ',y be the neighbors of z,y in Go1 and let R’ be the copy of R in Gy,.
Then we can replace the 2’ -2 = .- R-.+ = y — y'-subpath of P with 2’ — - R'-.. = /.
But this new subpath is shorter and does not contain e, which proves the claim., (In fact, we
have proved even more, the convexity of G; — e in G — e.) Now suppose that G — e is a partial
cube. Then G; — e would also be such. Since G; — ¢ is isomorphic to G’ — e, this contradicts
the assumption that G' is edge-critical.

In the second case, e is an edge of the subgraph of G induced by Gg; U Gpp. In the first
subcase, let e € Goi. (The case when e belongs to Goq is treated analogously.) Let C be an
isometric cycle of Gp; containing e and consider the subgraph H = COK; of Go; U Goa. Note
that H is an isometric subgraph of G. Then, using Lemma 2.1 we infer that G — e is not a
partial cube. In the second subcase, e is an edge between Go, and Goz. Let g be an edge of
Gy adjacent to e. The edge g exists since G is 2-edge-connected and as Gy, is isometric in G;.
Let C be an isometric cycle of Go; containing g. Then we have again an isometric subgraph
H = COK, of Gg; UGoz and G — e is not a partial cube.

For the converse suppose that G is an edge-critical partial cube and assume that there is
an edge u'v' in G that does not lie in an isometric cycle of G5. (Note that it may lie in an
isometric cycle of G'.} Let u and v be the copies of ' and v' in Gg; and let @ and b be the
adjacent vertices of u and v in Gyg, respectively. Let e = ab. The proof will be complete by
showing that G — e is a partial cube.

Let EF and ES be the ©-classes in G with representatives uv and ua, respectively. Let
f =122 and g = y,y; be edges of an arbitrary ©-class EC of G.

Suppose that E€ is different from EF and E§. We claim that f is in relation © with g
also in G — e. Note first that if f and g belong to G, the conclusion follows from the fact that
@, is convex. Suppose next that f € G; and g € Goz. Let P be an z, y;-geodesic in G and
assume that e € P. Let w; be the last vertex of P in G; and wy its neighbor on P in Ggs.
Path P is of the formz; - -+ - wy - wy —» ---R--- = y;, where R contains e. Let ws be
the neighbor of y; in Go;. Then the subpath wy; — wp = -+ R+ = y; can be replaced by
apath wy = -+ R +«. = w3 = y; of the same length, where R’ is a copy of R lying in Go;.
Hence, dg(z1,y1) = de—e(z1,31). Analogously we get dg(zs,y2) = do—e(z2,¥2). Hence also
in this case f is in relation © with g in G — e. The last case is when both f and g lie in Go,.
If f is not in relation © with g in G — e then we may assume that dg(z1,31) < dg—e(z1,71)
and dg(z2,y2) = dg—e(z2,y2). Thus, there is an z,,yi-geodesic in Gy, containing e and an
23, y2-geodesic in Goz not containing e. Hence there exists a cycle in Goo containing e. As Gy
is convex, by Lemma 1.1 we get an isometric cycle C in Gz containing e. Considering the copy
C' of C in Gy, that contains uv we get a contradiction.

Assume next that f and g are edges of EF different from e. Then we observe that f and
g are both in G, for otherwise we would find (similarly as above) an isometric cycle in Gog
containing e. Hence by the convexity of G;, f is in relation © with ¢ in G —e.

Consider finally the class ES. Let 21,1, € Gor and z3,y2 € Gog. Set ES™® = E§ NW,, and
ES¢ = E§ N W, and assume f,g € ES7¢. Then an ,, y;-geodesic does not contain e (since
z2,Y2 € Wep). Clearly, as G is convex, an 1, y;-geodesic also does not contain e. Therefore f
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is in relation © with g also in G — e. Analogously we see that if the edges f and g lie in Egy°,
then they are in relation © in G —e. Let f € ES ™ andge ES . We claim that f is not in
relation © with g. Let k = dg(z1,y1). As Goy is isometric in G1, dG-e(Z1,y1) = k. Let P be a
shortest g, yo-path. Note that P lies completely in Goz. If ¢ is not on P, then ab lies on a cycle
and thus also on an isometric cycle. Therefore, uv belongs to an isometric cycle of Goi, which
is not possible. Hence, ab is on every z;,y»-geodesic and consequently dg-e(z2,¥2) = k+ 2.
This proves the claim.

In conclusion, G—e is a partial cube with the following ©-classes: ET —e (obtained from E%),

ES~¢ and ES¢ (obtained from ES), while all the other classes coincide with the remaining

classes of G. a

Theorem 2.2 can be applied as follows. Take any edge-critical partial cube G' and an
isometric cycle C of G'. Then expand G' with respect to G',C' in order to obtain another edge-
critical partial cube G. Note also that as @, is a peripheral expansion of @n—1 with respect to
Qn-1, Qn—1, Theorem 2.2 also implies that all hypercubes Qn, n > 3, are edge-critical. (That
the 3-cube Q3 is edge-critical is clear.)

Another example of edge-critical partial cubes are the subdivision graphs of complete graphs
S(Kn), n > 4. We refer to [13] that they are indeed partial cubes. To see that they are edge-
critical consider an arbitrary edge e. Then e belongs to an isometric subgraph H isomorphic
to S(K4). Then in H — e we can find two isometric 6-cycles sharing two edges such that their
union is isometric. Now consider these two cycles in G — e to find out that © is not transitive.
However S(K4) can only be obtained by expansion from Q3 which is not an edge-critical partial
cube. Thus not all edge-critical partial cubes can be generated using Theorem 2.2.

We next consider the question which Cartesian products of partial cubes are edge-critical.

Proposition 2.8 Let G and H be partial cubes. Then GOH is an edge-critical partial cube if
and only if for any pair of edges f € E(G), g € E(H), f or g lies in a cycle of G or in cycle
of H.

Proof. Assume first that GOH is an edge-critical partial cube and there are edges f € E(G)
and g € E(H) such that neither f is in a cycle of G nor g lies in a cycle of H. Let f = uv
and g = zy. Clearly, the edge ¢ = (u,z)(v, ) lies in exactly one (isometric) square, that is, in
(u, z)(v, 2){v, ¥)(u,y). We claim that (GOH) — e is a partial cube. Let ESCH and EGPH be
the O-classes of GOH with representatives (u,z)(v,z) and (u,z)(x,y), respectively. We now
argue similarly as in the proof of Theorem 2.2 to infer that (GUH) — e is a partial cube with the
O-classes: ESOH ¢ (obtained from EZ7H), ECPH¢ and ESO=¢ (obtained from EF7H),
and the remaining classes that coincide with the remaining ©-classes of GOH.

For the converse assume that for any pair of edges f € E(G), g € E(H), at least one of f
or g lies in a cycle of G or in cycle of H. Let e be an arbitrary edge of GOH. We need to show
that (GOH) — e is not a partial cube. By the definition of the Cartesian product, e lies in a
square S of GOH. Let pg denotes the projection onto G and let pg(S) = h. We may without
loss of generality assume that & lies in a cycle C. Moreover, by Lemma 1.1 we may in addition
assume that C is isometric. Suppose first that pg(e) = h. Then e lies in subgraph COK? of
GOH and by Lemma 2.1 we infer that (GOH) — e is not a partial cube. In the other case,
pc(e) is a vertex. Then e is a neighbor of an edge f such that pa(f) is an edge lying in an
isometric cycle C of G. Hence also in this case e lies in subgraph isomorphic to COK3 and we

get the same conclusion. a]
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Let G be 2-edge-connected partial cube and H an arbitrary partial cube. Then Proposition
2.3 implies that GOH is an edge-critical partial cube. For example, the Cartesian products
C321 0P, k,n > 2, are edge-critical partial cubes.

3 Small edge-critical partial cubes

As we already mentioned, Handa [9] proved that partial cubes G with |W,,| = |W,,| for any
edge ab are 3-connected if G has at least two edges and G is not a cycle. For edge-critical
partial cubes we cannot prove neither 3-connectivity nor 3-edge-connectivity, as the example of
S(Kp), n > 4, demonstrates. On the other hand, for ©-classes that also form edge cutsets, we

can show:

Lemma 3.1 Let G be an edge-critical partial cube and F' a ©-class of G. Then |F| > 3.

Proof. By 2-edge-connectivity, [F| > 2. Suppose on the contrary that F = {e, f}. Let e = uv
and consider the graph G — f. Recall that W,,, and W,, induce convex subgraphs of G thus
they induce partial cubes. Since e is a cut-edge of G — f between the blocks induced by W,,,
and Wy, G — f is a partial cube and so G cannot be edge-critical. 0

Proposition 3.2 Let G be an edge-critical partial cube on at most 10 vertices. Then G fis
either Q3 or S(K,).

Proof. Let F be a ©-class of G of maximum cardinality. Let z;3; € F, i =1,...,|F|. Let G;
and (72 be subgraphs of G induced by W;,,, and Wy,,,, and let H; and H, be subgraphs of G
induced by {z1,..., 217} and {y1, ...,y F }.

Case 1: |F| = 5.

In this case V(G) = V(H;)UV (H,). Hence G is obtained by an expansion from G’ with respect
to G} = G = G' which implies that G = H;DK,. As there is no partial cube on 5 vertices
with the property that every edge would lie in a cycle, if follows from Proposition 2.3 that we
get no edge-critical partial cube in this case.

Case 2. |[F| =4.
Assume first that H, contains at most two edges. Then H; and H» are not connected and
thus there exist vertices x5 € G1 \ Hy and y5 € G \ H. It is now easy to see that in no way
we can add edges between z5 and z, 3, 23,24 and between ys and y1,yz,¥3,y4 to obtain an
edge-critical partial cube.

Let there be three edges in H,. Suppose H; = K, 3 and let ) be the vertex of H, of degree
3. As K 30K, is not edge-critical, there must be another vertex z5 € G,\ Ha. Assume |G| = 9.
By 2-edge-connectivity we may assume that x5 is adjacent to 3 and z4. If z5 is adjacent also
to zz, then G is not a partial cube, otherwise G is a partial cube that is not edge-critical. Hence
|G| = 10 and let the tenth vertex zg belong to Gy \ Hy. Then in any case G ~ z2y» is not a
partial cube. Thus, ¢ € G5 \ Hz. Again z5 must be adjacent to precisely two vertices, say
zo and z3. If zg is adjacent to y2 and ys3, then G is not a partial cube, otherwise zg must be
adjacent to, say, yz and ys, in which case G is not edge-critical.

Suppose H, is the path on four vertices z1z2z324. If any of the vertices z;, z4, 31, Or y4 is
of degree 2, then G — z1y1 or G — z4y4 is not a partial cube. But we can avoid this only by
introducing two new vertices and creating odd cycles.
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Finally, assume that there are 4 edges in Hi. Then Hy = Cs. If |Gl =8, then G is Q3 which
is edge-critical. We wish to show that there is no other edge-critical partial cube. Assume
|G| =9 and let z5 € G1\ H1. BY 9-edge-connectivity we may without loss of generality assume
that zy is adjacent t0 T1 and 3. As this gives an induced K23, |G| =10 Then we have two
adjacent vertices Ts, 6 € G\ Hi. Let 2521 € E(G). If zg22 € E(G) we would have a O-class
with at least 5 edges. Hence zgz2 ¢ E(G) and 2624 ¢ E(G) which yields the same conclusion.

Case 3: |F| =3

In this case Lemma 3.1 implies that all O-classes contain 3 edges. Suppose first that there
are two edges in H;. We may without loss of generality assume that they are z1%32 and z2T3-
Then y1y2 and ya2y3 are edges of Hy. None of vertices 1, 3, Y1, and ys is of degree 2in G
for otherwise G would not be edge-critical. Therefore we have a vertex z4 in G1 \ H1 and a
vertex vertex s in G;\ Ha. By 9-edge-connectivity £4 is then adjacent to Ty and z3, while s
is adjacent to Y1 and ys. This gives an induced @3 minus an edge in G that is not a partial

cube.
Suppose next that there is only one edge in H,, say z132. Since G, is isometric there should
be a geodesic P, in Gy from z3 to z,. Likewise, we have a yg,yl-geodesic P, in G3. Moreover,
|P1| = |Pa|. As we consider graphs on at most 10 vertices, |Pi| < 4. Let |P1| = 3 and denote
the inner vertices on P, by z4 and s, where z4 is adjacent to Zy. Let the inner vertices of P»
be y4 and s, where v is adjacent to ;. Observe that the cycle £124T5T3Y3YsYal1 is isometric
and consider the ©-class of £13y. It has to have at least three edges, so we may without loss of
generality assume that zs is adjacent to 2. Then R = y1y4Ysy3TaTsT2Y2 is a walk connecting
the endpoints of the edge y1y2. Hence R contains an edge g that is in relation © to 11Y2, cf.
[11, Lemma 2.4]. But now 2122, F4%5 1Yz, and g are different edges belonging to the same
©-class. We conclude that |P1} = |P2l = 9. Let x4 be the vertex of P, adjacent to &1 and
x5 and y4 the corresponding vertex of P,. Observe that the cycle £1T4L3y3Ys¥1%1 is convex.
To see this it suffices to observe that P; is the unique z,, z3-geodesic, as well as is P, the
unique y1, ya-geodesic, which in turn holds because otherwise © would not be transitive. As G
is edge-critical, there is another vertex Ts € G, adjacent to T2 and a vertex ys € G, adjacent
to yp. Clearly, T5 is adjacent neither to 1 ot to 3, S0 it must be adjacent to Z4. Similarly,
ys must be adjacent t0 ya. But then the edges 45, T172, Y192, and Yays belong to the same
©-class.

Finally, we need to consider the case when there are no edges between vertices in Hi.
Suppose that d($1,Z2) =3 Let P, bea 1, To-geodesic, T4 and zp its inner vertices and T4
adjacent to 1. Similarly, there is a yl,yg-geodesic P, in G with inner vertices y4 and ys. To
make Gy connected, we must either add the edge 4T3 (and yays) or the edge T5%3 (and UsY3)-
However, in both cases G is not a partial cube. Therefore, d{z:, £;) = d(y;, y;) = 2 for any pair
i,j,1# 3. The conditions d{zi,z;) = 2 can be achieved by either adding one or three vertices
in Gy \ Hi, the same holds for the conditions d(yi,¥5) = 2 Adding three vertices t0 Gy \ Hs
and three to G2 \ H; gives a graph on 12 vertices, while adding one vertex on each side we get a
graph that is not a partial cube. Hence we must add, say, three vertices of degree two to Gi1\ H1
and a vertex of degree three to Gz \ Hz. The obtained graph is S(K4) and is edge-critical. To

complete the case observe that adding edges to S(K4) yields no further (edge—cntical) partial
cube. m]

The graphs Cs QP; and CgOP; are edge-critical partial cubes on 12 vertices, while the graph
G from Fig. 1 is an example with 13 vertices. We do not know any such graph on 11 vertices.
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4 Concluding remark

We have studied partial cubes G with the property that removing any edge of G destroys
a possibility of its isometric embedding into a hypercubes. A more general question is the
following. Let e be an edge of a partial cube . Under which conditions is G ~ e a partial
cube? This problems seems to be rather involved, but the following concept might be useful in

its attack.
Let G be a connected graph with at least one cycle and let C(G) = {C',C?%, ..., C"} be the

set of isometric cycles of G. Let G(C) be the intersection graph of C(G). More precisely, the
vertex set of G(C) is C(G), and two vertices are adjacent if the corresponding cycles intersect in
at least one edge. Label the edges C*C7 of G(C) with C* N C7 where the cycles are considered
as sets of edges and denote the obtained edge-labeled graph G4(C). For an edge e € G(C), let

{(e) denote its label.
We thus pose the question if the structure of G,(C) suffices to find out whether G — ¢ a

partial cube. For example, one can show:

Proposition 4.1 Let G be a partial cube and G(C) a tree. Then G —e is a partial cube for
any edge e of G.

Proof. Since G(C) a tree, two isometric cycles of G intersect in at most one edge, for otherwise
G would not be a partial cube. Moreover, if C and C' are isometric cycles of G sharing an edge,
then C; U C; is isometric subgraph of G. Now it is straightforward to verify the assertion. O
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