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Abstract

Let γ(G) and γg(G) be the domination number and the game domination
number of a graph G, respectively. In this paper γg-maximal graphs are in-
troduced as the graphs G for which γg(G) = 2γ(G) − 1 holds. Large families
of γg-maximal graphs are constructed among the graphs in which their sets of
support vertices are minimum dominating sets. γg-maximal graphs are also
characterized among the starlike trees, that is, trees which have exactly one
vertex of degree at least 3.
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1 Introduction

If G = (V (G), E(G)) is a graph, then a vertex u ∈ V (G) dominates a vertex v ∈
V (G) if u = v or u is adjacent to v. S ⊆ V (G) is a dominating set of G if every
vertex in G is dominated by a vertex in S. The size of a smallest dominating set of
G is the domination number γ(G) of G. A smallest dominating set will be briefly
called a γ-set.

The domination game is played on a graph G by two players that are usually
called Dominator and Staller. They take turns choosing a vertex from G such that
at least one previously undominated vertex becomes dominated until no move is
possible. The score of the game is the total number of vertices chosen by them
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in this game. The players have opposite goals: Dominator wants to minimize the
score and Staller wants to maximize it. A game is called a D-game (resp. S-game) if
Dominator (resp. Staller) has the first move. The game domination number γg(G) of
G is the score of a D-game played on G assuming that both players play optimally,
the Staller-start game domination number γ′g(G) is the score of an optimal S-game.

This game was introduced in [3] and investigated by now in about 30 papers.
One of the reasons for this large interest is the 3/5-conjecture due to Kinnersley,
West and Zamani asserting that γg(G) ≤ 3|V (G)|/5 holds for any isolate-free graph
G [15, Conjecture 6.2]. (Related conjectures were stated also for the S-game, as
well as for both games played on forests.) Bujtás [6, 7] developed an innovative
discharging-like method to attack this conjecture. Using the method, the conjecture
was confirmed by Henning and Kinnersley on the class of graphs with minimum
degree at least two [11]. Along these lines Schmidt [21] determined a largest known
class of trees for which the conjecture holds. Moreover, Marcus and Peleg reported
in arXiv [20] that the conjecture holds on all isolate-free forests. Among the other
aspects of the domination game we list here: domination game critical graphs [8];
the somehow peculiar behaviour of the game on unions of graphs [10]; graphs with
small game domination number [16]; different realizations of the game domination
number [17]; a characterization of forests with the game domination number equal
to the domination number [19]; bluffing aspects of the domination game [1]; and
the PSPACE-completeness of the game domination number [2]. We also mention
two related games that were introduced based on the domination game: the total
domination game [12] and the disjoint domination game [9].

It was shown in [3, Theorem 1] that γ(G) ≤ γg(G) ≤ 2γ(G) − 1 holds for any
graph G. Moreover, all possible values for γg are eventually realizable [3, Theorem
10]. It is hence natural to ask for which graphs G the equalities γg(G) = γ(G) and
γg(G) = 2γ(G) − 1 hold, respectively. The former problem was solved for the case
of trees in [19], where it was also conjectured that if G is a connected graph with
γg(G) = γ(G), then G is either a tree or has girth at most 7. The general problem to
characterize the graphs G with γg(G) = γ(G) seems highly difficult though. In this
paper we consider the other extreme case, that is, which graphs G have the largest
possible game domination number 2γ(G)− 1. We will call such graphs γg-maximal.

In the next section additional concepts needed are introduced, several known
results to be used later recalled, and a couple of useful facts deduced. In Section 3
large families of γg-maximal graphs are constructed among the graphs in which
their sets of support vertices (vertices adjacent to leaves) are γ-sets. In the last two
sections we consider trees which have exactly one vertex of degree at least 3, called
starlike trees. In Section 4 we characterize γg-maximal starlike trees among the
starlike trees with at least one 1-arm, while in Section 5 we characterize γg-maximal
starlike trees among the other starlike trees. In the concluding section we observe
that the graphs considered in this paper support the 3/5-conjecture.
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2 Preliminaries

We will use the notation [k] = {1, . . . , k} for a positive integer k. The maximum
degree and the minimum degree in a graph G are denoted by ∆(G) and δ(G),
respectively. A vertex v of G with degG(v) = 1 is called a pendant vertex (alias
leaf), the vertex adjacent to v is a support vertex (to v). Let L(G) and Supp(G)
denote the set of pendant and support vertices of G, respectively. For a vertex v
of G let L(v) = L(G) ∩N(v), where N(v) is the open neighborhood of v. Clearly,
L(v) 6= ∅ if and only if v ∈ Supp(G). Note also that L(K2) = Supp(K2) = V (K2).
On the other hand, if G is connected and of order at least 3, then a support vertex
is of degree at least 2, so that L(G) ∩ Supp(G) = ∅.

Suppose that a D-game is played. Then we will denote the sequence of vertices
selected by Dominator with d1, d2, . . ., and with s1, s2, . . . the sequence chosen by
Staller. A partially-dominated graph is a graph G together with a declaration that
some vertices S ⊆ V (G) are already dominated in the sense that they need not be
dominated in the rest of the game. It is denoted with G|S.

We next recall the following fundamental results to be used later.

Lemma 2.1 (Continuation Principle, [15]) Let G be a graph with A,B ⊆ V (G). If
B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).

Theorem 2.2 ([15]) If F is a forest with S ⊆ V (F ), then γg(F |S) ≤ γ′g(F |S).

Theorem 2.3 ([3, 15]) If G is any graph, then |γg(G)− γ′g(G)| ≤ 1.

Setting S = ∅ in Theorem 2.2 and specializing to trees we get:

Corollary 2.4 If T is a tree, then γg(T ) ≤ γ′g(T ).

Denoting with G∪H the disjoint union of graphs G and H we have the following
result that will be useful to us.

Lemma 2.5 ([15, Lemma 5.4]) If F1 and F2 are partially dominated forests, then

γg(F1 ∪ F2) ≤ γg(F1) + γ′g(F2) and γ′g(F1 ∪ F2) ≤ γ′g(F1) + γ′g(F2) .

The next result was first proved in the unpublished manuscript [14]. Five years
later the first published proof appeared in [18].

Theorem 2.6 ([14, 18]) If n ≥ 1, then

(i) γg(Pn) =







⌈

n
2

⌉

− 1; n ≡ 3 (mod 4) ,

⌈

n
2

⌉

; otherwise .

(ii) γ′g(Pn) =
⌈

n
2

⌉

.
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Following the notation from [18], let P ′
n denote the partially dominated path of

order n + 1 with one of its leaves dominated. Then from Košmrlj’s proof of [18,
Theorem 2.6] we extract the following information useful to us.

Lemma 2.7 If S-game is played on P ′
n or a union of some P ′

ni
s, then some domi-

nated leaf is an optimal move for Staller. Moreover, if n ≥ 1, then
(i) γg(Pn) = γg(P

′
n), and

(ii) γg(Pn+3) = 1 + γ′g(P
′
n).

Proof. The first assertion can be found in [18, p. 132]. The assertion (i) follows
from the facts that in a D-game, a vertex adjacent to a leaf in Pn is an optimal first
move for Dominator, and that choosing a vertex at distance 2 from a dominated leaf
in P ′

n is always optimal for Dominator, see [18, p. 132] again. The first of these two
facts also implies the last assertion of the lemma. �

3 Graphs with supportive dominating sets

It this section we consider graphs G such that Supp(G) forms a dominating set of G.
In such a case Supp(G) is called a supportive dominating set. Clearly, a supportive
dominating set of a graph G must be a γ-set of G.

Ideally we wish to determine γg(G) for any graph G that contains a supportive
dominating set. But this task seems to be quite demanding. For instance, for combs
(a k-comb is obtained from Pk by attaching a separate pendant vertex to each of
the vertices of Pk), which form a simple class of graphs with supportive dominating
sets, the task to determine γg turned out to be quite tricky, see [17, Theorem 4.1].

We first establish a large class of graphs with supportive dominating sets that
are γg-maximal.

Theorem 3.1 Let G be a connected graph of order at least 3. If G has a supportive
dominating set and there are at least ⌈log2 γ(G)⌉ + 1 pendant vertices adjacent to
each vertex of Supp(G), then G is γg-maximal.

Proof. Let γ(G) = t and let Supp(G) = {x1, . . . , xt}. If t = 1, then G has a
universal vertex and consequently γg(G) = 2γ(G)− 1 = 1 holds. Henceforth assume
that t ≥ 2. Set Vi = {xi}∪L(xi), i ∈ [t]. By the Continuation Principle (Lemma 2.1)
we may assume that during the game in which Dominator is playing optimally, he
never chooses a pendant vertex of G. Indeed, if a pendant vertex is a legal move for
Dominator, then the support vertex to it is also legal and is at least as effective.

We only need to prove that γg(G) ≥ 2t− 1. For this sake consider the following
strategy of Staller:

Rule A: When it is Staller’s turn, she plays a legal vertex from L(xi), where i
is selected such that the number of vertices played so far in L(xi) is as small as
possible.
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When t = 2k for some positive integer k, after the first 2k−1 moves of Dominator,
Rule A implies that Staller will play one vertex from distinct sets L(xi). Inductively,
after 2k−1 + 2k−2 + · · · + 2k−j moves, j ∈ [k], Dominator may have dominated all
but 2k−j families L(xi) of leaves, and, at that stage, Staller will have used at most j
leaves in each family. There is still a legal pendant vertex for Staller after Dominator
has played 2k − 1 vertices, hence Staller plays such a vertex then. At that point of
the game there is at least one vertex xi ∈ Supp(G) not yet played by Dominator
(nor by Staller), such that in L(xi) at most log2 t = k vertices were played by Staller.
Since |L(xi)| ≥ ⌈log2 t⌉+ 1, Dominator will be forced to play one more move. Then
we have γg(G) ≥ 2(2k − 1) + 1 = 2t− 1 as desired.

When t = 2k + t0, where 0 < t0 < 2k, by a similar argument as above, we find
that there is still one pendant vertex which can be played by Staller after Dominator
has played t − 1 vertices. Moreover, at least one xi ∈ Supp(G) has not yet been
played by Dominator, and in L(xi) at most ⌈log2 t⌉ = k + 1 vertices were played by
Staller. Hence at least one more move is needed which implies that γg(G) ≥ 2t− 1.

Hence in any case Rule A guarantees that at least 2γ(G)−1 moves will be played
which completes the argument. �

Denoting by c(n) the number of connected graphs of order n, Theorem 3.1 yields
the following consequence.

Corollary 3.2 If n ≥ 2 and k ≥ 1, then there exist c(n) graphs G of order n(k +
⌈log2 n⌉+ 1) that are γg-maximal.

Proof. Let n ≥ 2, k ≥ 1, and let G be a connected graph of order n. Let G′ be
the graph obtained from G by attaching ⌈log2 n⌉+ k pendant vertices to each of the
vertices of G, respectively. Then Supp(G′) = V (G), so that γ(G′) = n = |Supp(G′)|.
The assertion now follows directly from Theorem 3.1. �

A special case of the construction from Corollary 3.2 (attaching n+ 1 leaves to
each vertex of the complete graph Kn) was earlier applied in [15] in order to show
that all the values between γ and 2γ − 1 are possible values for γg.

In the rest of the section we restrict ourself to trees and first strengthen Theo-
rem 3.1 in a special case as follows.

Theorem 3.3 Let T be a tree with γ(T ) = t ≥ 2 in which Supp(T ) = {x1, . . . , xt}
forms a γ-set. If the vertices other than the support vertices and their attached
leaves induce a subtree of order a, and |L(xi)| ≥ ⌈log2(t− ⌊a2⌋)⌉+ 1 for i ∈ [t], then
γg(T ) = 2t− 1.

Proof. Let Vi = {xi} ∪ L(xi), i ∈ [t]. Then by the premise of this theorem the

vertices V (T ) \
t
⋃

i=1
Vi induce a subtree of T ; denote this subtree with T ′. It again

suffices to prove that γg(T ) ≥ 2t− 1.

5



Since T ′ is a tree, we find that

N(u) ∩N(w) ∩ Supp(T ) = ∅ for any distinct u,w ∈ V (T ′). (1)

This is equivalent to saying that each vertex from Supp(T ) has at most one neighbor
in T ′. Moreover, since Supp(T ) forms a γ-set of T , we also infer that

N(u) ∩ Supp(T ) 6= ∅ for any u ∈ V (T ′). (2)

By (1) and (2) there exists a matching between V (T ′) and Supp(T ) that covers
all the vertices of T ′. Let V (T ′) = {w1, . . . , wa}, where wi is the vertex of V (T ′)
matched to xi. We now claim that the vertices x1, . . . , xa form an independent set.
Suppose on the contrary that xixj ∈ E(T ) for some i 6= j. Let P be the unique
wi, wj-path in T ′. Then P together with the edges wixi, xixj , and xjwj form a
cycle of T , a contradiction. In addition, from the same reason, a vertex xi, i > a, is
adjacent to at most one vertex among the vertices x1, . . . , xa.

The starting strategy of Staller is to reply to the first ⌊a2⌋ moves of Dominator
with a vertex in Supp(T ) ∪ V (T ′) in such a way that when this stage of the game
is finished, at most ⌊a2⌋ vertices from Supp(T ) are played. By the above described
structure this is possible, because whichever move is played by Dominator, he domi-
nates at most one vertex among the vertices x1, . . . , xa in each move. More precisely,
the strategy of Staller is the following. If Dominator plays a vertex from Supp(T ),
she replies with a vertex wi, such that xi has not yet been dominated. And if Dom-
inator plays a vertex from T ′, then Staller plays a vertex xi that has not yet been
dominated.

After the first part of the game is finished, at most ⌊a2⌋ vertices from Supp(T )
were played. Therefore, there are at least t − ⌊a2⌋ sets Vi such that no vertex of
L(xi) has yet been dominated. Recall that |L(xi)| ≥ ⌈log2(t− ⌊a2⌋)⌉ + 1, i ∈ [t]. In
the second part of the game Staller now applies the same strategy as she used in
the proof of Theorem 3.1. In this way at least 2(t− ⌊a2⌋) − 1 additional moves will
be played. Hence at least 2(t − ⌊a2⌋) − 1 + 2⌊a2⌋ = 2t − 1 moves will be played all
together. �

Consider the following examples. Let k ≥ 2 and let ai > 0 for i ∈ [k]. A
comb-like tree Co(a1, . . . , ak) is a tree obtained from the path Pk = v1 . . . vk by
attaching ai pendant vertices to vi, i ∈ [k]. In particular, if a1 = a2 = · · · =
ak = 1, then Co(a1, . . . , ak) is exactly an ordinary comb. A 1-generalized comb-
like tree Co(1)(a1, . . . , ak) is a tree obtained by attaching ai pendant vertices to
the i-th leaf, i ∈ [k], of Co(1, . . . , 1). In Fig. 1 the 1-generalized comb-like tree
Co(1)(2, 1, 3, 1, 1, 2, 1, 3) is shown. If a1 = · · · = ak = a, then Co(1)(a1, . . . , ak) will
be called a balanced 1-generalized comb-like tree and briefly denoted with Co(1)(a(k)).

If ai ≥ ⌈log2 k⌉+ 1, i ∈ [k], then Theorem 3.1 implies that γg(Co(a1, . . . , ak)) =
2γ(Co(a1, . . . , ak)) − 1. Similarly, if ai ≥ ⌈log2⌈

k
2⌉⌉ + 1, i ∈ [k], then Theorem 3.3

implies that γg(Co
(1)(a1, . . . , ak)) = 2γ(Co(1)(a1, . . . , ak))− 1.
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Figure 1: The 1-generalized comb-like tree Co(1)(2, 1, 3, 1, 1, 2, 1, 3)

It was proved in [5] that if T is a tree of order n, then

γg(T ) ≥

⌈

2n

∆(T ) + 3

⌉

− 1 . (3)

Let k ≥ 2 and a ≥ 4k − 3, and set Tk = Co(1)
(

a(k)
)

. Then using (3) we get:

γg(Tk) = 2k − 1 =

⌈

2|V (Tk)|

∆(Tk) + 3

⌉

− 1 . (4)

Indeed,
⌈

2|V (Tk)|
∆(Tk)+3

⌉

=
⌈

2k(a+2)
a+4

⌉

= 2k, where the latter equality holds because ∆(T ) =

a+ 1 ≥ 4k − 2 and hence 2k ≥
⌈

2k(a+2)
a+4

⌉

> 2k − 1. This proves the second equality

of (4). The first equality follows from (3) and the fact that γ(Tk) = k, so that
γg(Tk) ≤ 2k − 1.

Clearly, 4k − 3 >
⌈

log2
⌈

k
2

⌉⌉

+ 1. Hence Theorem 3.3 yields a larger class of
balanced 1-generalized comb-like trees with a maximum game domination number
than the above argument.

Let T be a tree that fulfils the assumptions of Theorem 3.3 with |L(xi)| = ℓ+1,
i ∈ [t]. Does T attain the 3/5 bound from the 3/5-conjecture? If so, then since
|V (T )| = t+ t(ℓ+ 1) + a, the equality γg(T ) = 2t− 1 = 3(t+ t(ℓ+ 1) + a)/5 yields
t = (3a+5)/(4− 3ℓ). Hence ℓ = 1 must hold and consequently t = 3a+5. But then
log2(t− ⌊a2⌋) ≤ 1 cannot hold. We conclude that T does not attain the 3/5 bound.
For trees that do attain the bound see [4] and [13].

4 γg-maximal starlike trees with at least one 1-arm

A tree is starlike if it contains exactly one vertex of degree at least 3. We will use
the notation T (k1, . . . , kt) to denote the starlike tree obtained by attaching to an
isolated vertex t ≥ 3 paths of lengths k1, . . . , kt. A pendant path of length kx in
T (k1, . . . , kt) is called a kx-arm. Note that |V (T (k1, . . . , kt))| = k1 + · · · + kt + 1.

We first determine the γg-maximal paths.

Lemma 4.1 Let n ≥ 1. Then γg(Pn) = 2γ(Pn)−1 if and only if n ∈ {1, 2, 3, 5, 6, 9}.
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Proof. Combining the well known fact that γ(Pn) =
⌈

n
3

⌉

(n ≥ 1) with Theorem 2.6
it follows that γg(Pn) = 2γ(Pn)− 1 if and only if

2
⌈n

3

⌉

− 1 =







⌈

n
2

⌉

− 1; n ≡ 3(mod 4) ,

⌈

n
2

⌉

; otherwise .

This equality can hold only for n ≤ 10, hence the result follows by checking these
small values. �

Lemma 4.2 If T = T (k1, . . . , kt, 1, . . . , 1), where ki > 1, i ∈ [t], then γ(T ) =

1 +
t
∑

i=1

⌈

ki−1
3

⌉

.

Proof. Let v be the unique vertex in T of maximum degree. Since T is a starlike
tree with at least one 1-arm, there exists a γ-set D of T with v ∈ D. Since T \N [v]
consists of a disjoint union of paths Pki−1, i ∈ [t], the result follows from the fact

that γ(Pki−1) =
⌈

ki−1
3

⌉

. �

Lemma 4.3 Let T = T (k1, . . . , ks) (s ≥ 3), be a starlike tree with at least one
1-arm. If γg(T ) = 2γ(T ) − 1, then ki ∈ {1, 3, 4, 7}.

Proof. If T is a star, then the conclusion is clear. Suppose that T has t arms of
length ki ≥ 2. We may assume without loss of generality that i = 1, . . . , t. Suppose
that k1 /∈ {3, 4, 7}. Then by Lemma 4.1,

γg(Pk1+2) ≤ 2γ(Pk1+2)− 2 . (5)

Moreover, from Lemma 4.2 we infer that γ(T ) =
t
∑

i=1
γ(Pki+2) − (t − 1) and conse-

quently

2
t

∑

i=1

γ(Pki+2)− 2t+ 1 = 2γ(T )− 1 . (6)
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Let d1 be the vertex of T of degree at least 3. Then

γg(T ) ≤ 1 + γ′g

(

t
⋃

i=1

P ′
ki−1

)

≤ 1 +

t
∑

i=1

γ′g(P
′
ki−1) (by Lemma 2.5)

=

t
∑

i=2

γg(Pki+2) + γg(Pk1+2)− (t− 1) (by Lemma 2.7(ii))

≤
t

∑

i=2

[

2γ(Pki+2)− 1
]

+
[

2γ(Pk1+2)− 2
]

− (t− 1) (by (5))

=

t
∑

i=1

[

2γ(Pki+2)− 1
]

− t

= 2

t
∑

i=1

γ(Pki+2)− 2t

< 2γ(T ) − 1 (by (6)).

This contradiction proves the lemma. �

Lemma 4.3 thus asserts that a γg-maximal starlike tree T with at least one 1-arm
has at most 4 different lengths of arms. To simplify the notation we will write x(j) to
briefly denote that there are j arms of length x. For instance, using this convention
T (1, 2, 2, 2, 2, 3, 3) is briefly denoted with T (1, 2(4), 3(2)). For convenience, the star
Sn = T (1(n−1)) will also be written as T (1(n−2), 1). To formulate the main result of
this section we set:

ST 1 = {T (1(ℓ), k) : ℓ ≥ 1, k ∈ {1, 3, 4, 7}} ,

ST 2 = {T (1(ℓ), 3, 4), T (1(ℓ) , 4(2)), T (1(ℓ), 4(3)), T (1(ℓ), 4, 7) : ℓ ≥ 1} , and

ST ∗ = ST 1 ∪ ST 2 .

We can now formulate the main result of this section.

Theorem 4.4 A starlike tree T with at least one 1-arm is γg-maximal if and only
if T ∈ ST ∗.

Proof. If all the arms of T are 1-arms, then T is a star and hence γg(T ) = 1 =
2γ(T ) − 1. Assume henceforth that T has t ≥ 1 arms of length at least 2, let their
lengths be k1, . . . , kt. Let u be the vertex of T of degree at least 3, and let vij be
the vertex in the ki-arm (i ∈ [t]) in T at distance j from u.

Using Lemma 4.2 we deduce that γ(T (1(ℓ), 3)) = γ(T (1(ℓ), 4)) = 2, γ(T (1(ℓ), 7)) =
γ(T (1(ℓ), 3, 4)) = γ(T (1(ℓ), 4(2))) = 3, and γ(T (1(ℓ), 4(3))) = γ(T (1(ℓ), 4, 7)) = 4. For
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any tree T ∈ ST ∗ it can be exhaustively checked that γg(T ) = 2γ(T ) − 1 holds. It
thus remains to prove the “only if” part of the statement.

Suppose thus that T is a γg-maximal starlike tree with at least one 1-arm (and
at least one arm longer than 1). By Lemma 4.3 we know that ki ∈ {3, 4, 7} for
i ∈ [t]. If t = 1, then using Lemma 4.1 we infer that k1 ∈ {3, 4, 7}. Hence assume
henceforth that t ≥ 2.

Claim 1. 4 ∈ {k1, . . . , kt}.

Proof (of Claim 1). Suppose on the contrary that 4 /∈ {k1, . . . , kt}. Let d1 = u.
Then, by Lemma 2.5,

γg(T ) ≤ 1 + γ′g

(

t
⋃

i=1

P ′
ki−1

)

≤ 1 +

t
∑

i=1

γ′g(P
′
ki−1) .

By Lemma 2.7, we may without loss of generality assume (by re-indexing the arms
if necessary) that s1 = v11 is an optimal reply of Staller to d1 = u. Setting d2 = v23
and applying Lemma 2.7 (ii) we can then estimate as follows:

γg(T ) ≤ 3 +

t
∑

i=3

γ′g(P
′
ki−1) + γ′g(P

′
k1−2) + γ′g(P

′
k2−4)

= 3 +

t
∑

i=3

γg(Pki+2)− (t− 2) + γg(Pk1+1)− 1 + γ′g(P
′
k2−4)

= 3 +

t
∑

i=3

[

2γ(Pki+2)− 1
]

− (t− 2) + γg(Pk1+1)− 1 + γ′g(P
′
k2−4)

= 2

t
∑

i=3

γ(Pki+2)− 2t+ γg(Pk1+1) + γ′g(P
′
k2−4) + 6.

Since 2γ(T )−1 = 2
t
∑

i=1
γ(Pki+2)−2t+1 and γg(T ) < 2γ(T )−1 holds by Theorem 2.6

for each pair (k1, k2) ∈ {(3, 3), (3, 7), (7, 3), (7, 7)}, we conclude that the set [kt] must
contain 4. � (Claim 1)

By the final part of the proof of Claim 1, we have k1 = 4 or k2 = 4 when
d1 = u, s1 = v11 and d2 = v23. Moreover, if k1 6= 4, then k2 = 4. But now by a

similar reasoning as that in the proof of Claim 1 we get γg(T ) ≤ 2
t
∑

i=3
γ(Pki+2)−2t+

γg(Pk1+1) + γ′g(P
′
k2−4) + 6 < 2γ(T ) − 1, where γ′g(P

′
0) = 0. This is a contradiction.

Thus, by Lemma 2.7, s1 must be on a 4-arm in T as an optimal move. Without
loss of generality, assume that s1 = v11 where v11 is in a k1-arm with k1 = 4 in the
following.

If t = 2, by Claim 1 and the proof of the “if” part, we deduce that T must belong
to the following set {T (1(ℓ), 3, 4), T (1(ℓ) , 4(2)), T (1(ℓ), 4, 7) : ℓ ≥ 1} ⊆ ST ∗. So we

10



only need to consider the case t ≥ 3 in the following. Let h ≥ 1 be the number of
4-arms in T . Now we can check that γg(T ) = 2γ(T ) − 1 if T ∼= T (1(ℓ), 4(3)) and
γg(T ) = 2t− 2 < 2t− 1 = 2γ(T )− 1 if T ∼= T (1(ℓ), 4(t)) with t ≥ 4. So we only need
to prove that γg(T ) < 2γ(T ) − 1 for t > h ≥ 1 and t ≥ 3.

First we prove the result for h = 1. Note that s1 = v11. Let d2 = v13. Hence

we have γg(T ) ≤ 3 + γ′g(
t
⋃

i=2
P ′
ki−1). Denote by T1 the subtree of T obtained by

deleting all vertices but u of the k1-arm of T . Since h = 1, we infer that T1 is a
starlike tree without 4-arms. By the reasoning from the proof of Claim 1 we get

γg(T1) ≤ 1 + γ′g(
t
⋃

i=2
P ′
ki−1) < 2γ(T1)− 1. Then γg(T ) < 2 + 2γ(T1)− 1 = 2γ(T )− 1.

Assume that t > h ≥ 2. Recall that d1 = u and s1 = v11. Also let d2 = v13.
Denote by T2 the subtree obtained by deleting all vertices but u of the k1-arm of T .
Then T2 is a starlike tree with h − 1 4-arms. By a similar reasoning iteratively on

the number h, we have γg(T2) ≤ 1 + γ′g(
t
⋃

i=2
P ′
ki−1) < 2γ(T2)− 1. Therefore, we have

γg(T ) ≤ 3 + γ′g(

t
⋃

i=2

P ′
ki−1)

< 2 + 2γ(T2)− 1

= 2γ(T )− 1.

This completes the proof of the theorem. �

5 γg-maximal starlike trees without 1-arms

In this section we characterize the γg-maximal starlike trees T without 1-arms. In
view of Lemma 4.1, we only need to consider the starlike trees with maximum degree
at least 3. Hereafter we denote by P ′′

k the path of order k+2 with both leaves already
dominated.

Theorem 5.1 Let T be a starlike tree without 1-arms. Then T is γg-maximal if
and only if T is one of the trees T (4(3)) and T (2, 3(2)).

Proof. One can check directly (or by computer) that γ(T (4(3))) = 4 and γg(T (4
(3))) =

7, as well as that γ(T (2, 3(2))) = 3 and γg(T (2, 3
(2))) = 5. Hence T (4(3)) and

T (2, 3(2)) are γg-maximal. In the rest we thus need to prove that among the starlike
trees without 1-arms there is no additional γg-maximal tree.

Assume henceforth that T is a starlike tree without 1-arms and with γg(T ) =
2γ(T )− 1. Let u be the maximum-degree vertex of T . We divide our argument into
the following two cases.

Case 1. u lies in some γ-set of T .
Let T have t ≥ 3 arms of lengths k1, . . . , kt with ki ≥ 2 for i ∈ [t]. Let T ′ be
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a tree obtained from T by attaching a pendant vertex to u. Then, by the case
assumption, γ(T ) = γ(T ′). Since T has t ≥ 3 arms of length at least 2, T ′ can
only be isomorphic to T (1, 4(3)) among the trees from ST ∗. If T ′ ≇ T (1, 4(3)),
then setting d1 = u in a game played on T ′ we have, using a similar reasoning as

that in the proof of Theorem 4.4, that γg(T
′) ≤ 1 + γ′g(

t
⋃

i=1
P ′
ki−1) < 2γ(T ′) − 1.

Hence if T ≇ T (4(3)), then by setting d1 = u in the game played on T , we have

γg(T ) ≤ 1 + γ′g(
t
⋃

i=1
P ′
ki−1) < 2γ(T ′) − 1 = 2γ(T ) − 1. By the proof of the “if” part

we conclude that T ∼= T (4(3)).

Case 2. No γ-set of T contains u.
In this case we first assert that there is no arm of length k in T with k ≡ 1 (mod 3).
Indeed, suppose on the contrary that T contains an arm P of length 3k+1. If D is
a γ-set of T , then |D ∩ P | = k + 1. But then D can be modified to a γ-set D′ of T
such that u ∈ D′, a contradiction.

Consider now an arbitrary γ-set D of T . By the case assumption, there is a
neighbor v of u such that v ∈ D. Then v dominates one more vertex, call it v′, of
the arm in which it lies. Since no γ-set of T contains u, the arm with v on it contains
u, v, v′ and 3p additional vertices, for otherwise we can easily construct a γ-set of T
containing u. It follows that the arm on which v lies is of length m, where m ≡ 2
(mod 3).

Assume that T has a arms of lengths 3t1 + 2, . . . , 3ta + 2 and b arms of lengths

3ℓ1, . . . , 3ℓb, where a ≥ 1, b ≥ 0. Thus we have γ(T ) =
a
∑

i=1
(ti + 1) +

b
∑

j=1
ℓj, that is,

2γ(T )− 1 = 2

a
∑

i=1

ti + 2

b
∑

j=1

ℓj + 2a− 1 . (7)

Below we prove three claims.

Claim 1. b 6= 0.

Proof (of Claim 1). If not, we have b = 0. Then 2γ(T ) − 1 = 2
a
∑

i=1
ti + 2a − 1

and a ≥ 3, since the maximum degree of T is at least 3. Let the first move of
Dominator be just u. By Lemma 2.7, without loss of generality, we may assume
that s1 is a neighbor of u on the (3t1 + 2)-arm in T . By Lemma 2.7 (i) we have
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γg(P
′
3k1

) = γg(P3k1). Then, by Lemma 2.5, we have

γg(T ) ≤ 2 + γg
(

∪a
i=2P

′
3ti+1 ∪ P ′

3t1

)

≤ 2 + γg(P
′
3t1) +

a
∑

i=2

γ′g(P
′
3ti+1)

= 2 + γg(P3t1) +

a
∑

i=2

γg(P3ti+4)− (a− 1)

< 2 + 2γ(P3t1)− 1 + 2
a

∑

i=2

γ(P3ti+4)− 2(a − 1)

(as γg(P3ti+4) < 2γ(P3ti+4)− 1 with ti ≥ 0 by Lemma 4.1)

= 2

a
∑

i=2

(ti + 2) + 2t1 − 2a+ 3

= 2

a
∑

i=1

ti + 2a− 1

= 2γ(T )− 1 (by (7)).

This is a contradiction. So b ≥ 1 holds. � (Claim 1)

From Claim 1, we have b > 0. If d1 = u, then similarly as above we conclude
that s1 must be on a neighbor of u on a (3ℓi)-arm in T .

Claim 2. ti = 0 for i ∈ [a].
Proof (of Claim 2). Otherwise assume without loss of generality that t1 ≥ 1. Let
d1 = u. Then we may without loss of generality assume that s1 is a neighbor of u
on the (3ℓ1)-arm in T . Let d2 be the vertex of the (3t1 + 2)-arm at distance 4 to u
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in T . Note that γ′g(P
′′
1 ) = 1. Then, by Lemmas 2.5 and 2.7(ii), we have

γg(T ) ≤ 3 + γ′g

(

∪a
i=2P

′
3ti+1 ∪ ∪b

j=2P
′
3ℓj−1 ∪ P ′

3t1−5 ∪ P ′
3ℓ1−2 ∪ P ′′

1

)

≤ 3 +

a
∑

i=2

γ′g(P
′
3ti+1) +

b
∑

j=2

γ′g(P
′
3ℓj−1) + γ′g(P

′
3t1−5) + γ′g(P

′
3ℓ1−2) + γ′g(P

′′
1 )

= 4 +

a
∑

i=2

γg(P3ti+4)− (a− 1) +

b
∑

j=2

γg(P3ℓj+2)− (b− 1)

+γg(P3t1−2)− 1 + γg(P3ℓ1+1)− 1

≤ 2 + 2

a
∑

i=2

γ(P3ti+4)− 2(a− 1) + 2

b
∑

j=2

γ(P3ℓj+2)− 2(b− 1)

+2γ(P3t1−2)− 1 + 2γ(P3ℓ1+1)− 1

= 2
a

∑

i=2

(ti + 2)− 2a+ 2
b

∑

j=2

(ℓj + 1)− 2b+ 2t1 + 2ℓ1 + 4

= 2

a
∑

i=1

ti + 2

b
∑

j=1

ℓj + 2a− 2

< 2γ(T ) − 1.

A contradiction occurs again. � (Claim 2)

By Claims 1 and 2 we have 2γ(T )− 1 = 2
b
∑

j=1
ℓj + 2a− 1 with a ≥ 1, b ≥ 1 and

ℓj ≥ 1 for j ∈ [b]. Moreover, if d1 = u, then one optimal vertex s1, which is adjacent
to u, will be a vertex in a (3ℓi)-arm as an optimal move of Staller, since she always
wants to prolong the game.

Claim 3. ℓj = 1 for j ∈ [b].
Proof (of Claim 3). Otherwise, we have ℓj ≥ 2 for some j ∈ [b]. Similarly as
above, let d1 = u. Then we can assume that s1 lies on a (3ℓ1)-arm as a neighbor of
u in T . Next we distinguish the following two subcases.

Subcase 1. j = 1.
In this subcase, if b = 1, then a ≥ 2 since T has maximum degree at least 3. Now
T has only one (3ℓ1)-arm and a 2-arms with γ(T ) = a + ℓ1. Note that γ′g(P

′
1) = 1

and γg(P
′
3ℓ1−2) ≤ γ′g(P

′
3ℓ1−2) from Corollary 2.4. Then, considering that a ≥ 2 and
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by Lemma 2.5, we have

γg(T ) ≤ 2 + γg
(

∪a
i=1P

′
1 ∪ P ′

3ℓ1−2

)

≤ 2 +

a
∑

i=1

γ′g(P
′
1) + γg(P

′
3ℓ1−2)

≤ 2 +

a
∑

i=1

γ′g(P
′
1) + γ′g(P

′
3ℓ1−2)

= a+ 2 + γ′g(P
′
3ℓ1−2)

= a+ 3 + γg(P
′
3ℓ1−3)

(since γ′g(P
′
3ℓ1−2) = 1 + γg(P3ℓ1−3) by Lemma 2.7)

≤ a+ 3 + 2γ(P3ℓ1−3)− 1

= 2ℓ1 + a

< 2γ(T )− 1.

If b ≥ 2, then let d2 be the vertex of the (3ℓ2)-arm at distance 2 from u. Note
that γ′g(P

′
3ℓ1−2) = 1 + γg(P3ℓ1−3). Similarly as above we now have

γg(T ) ≤ 3 + γ′g

(

∪a
i=1P

′
1 ∪ ∪b

j=3P
′
3ℓj−1 ∪ P ′

3ℓ1−2 ∪ P ′
3ℓ2−3

)

≤ 3 +

a
∑

i=1

γ′g(P
′
1) +

b
∑

j=3

γ′g(P
′
3ℓj−1) + γ′g(P

′
3ℓ1−2) + γ′g(P

′
3ℓ2−3)

= a+ 3 +
b

∑

j=3

γg(P3ℓj+2)− (b− 2) + γg(P3ℓ1−3) + 1 + γg(P3ℓ2)− 1

≤ a+ 3 + 2
b

∑

j=3

γ(P3ℓj+2)− 2(b− 2) + 2γ(P3ℓ1−3)− 1 + 2γ(P3ℓ2)− 1

= 2
b

∑

j=1

ℓj + a− 1

< 2γ(T )− 1.

This finishes the proof of Subcase 1.

Subcase 2. j 6= 1.
Without loss of generality assume that j = 2. Let d2 be the vertex on the (3ℓ2)-
arm in T at distance 4 from u. Note that γ′g(P

′′
1 ) = 1 = γ′g(P

′
1), γ′g(P

′
3ℓ1−2) =
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1 + γg(P3ℓ1−3) and γ′g(P
′
3ℓ2−5) = 1 + γg(P3ℓ2−6). Then, by Lemma 2.5, we have

γg(T ) ≤ 3 + γ′g

(

∪a
i=1P

′
1 ∪ ∪b

j=3P
′
3ℓj−1 ∪ P ′

3ℓ1−2 ∪ P ′
3ℓ2−5 ∪ P ′′

1

)

≤ 3 +
a

∑

i=1

γ′g(P
′
1) +

b
∑

j=3

γ′g(P
′
3ℓj−1) + γ′g(P

′
3ℓ1−2) + γ′g(P

′
3ℓ2−5) + γ′g(P

′′
1 )

= a+ 4 +
b

∑

j=3

γg(P3ℓj+2)− (b− 2) + 1 + γg(P3ℓ1−3) + 1 + γg(P3ℓ2−6)

≤ a+ 6 + 2
b

∑

j=3

γ(P3ℓj+2)− 2(b− 2) + 2γ(P3ℓ1−3)− 1 + 2γ(P3ℓ2−6)− 1

= a+ 4 + 2

b
∑

j=3

ℓj + 2(ℓ1 − 1) + 2(ℓ2 − 2)

= 2

b
∑

j=1

ℓj + a− 2

< 2γ(T )− 1.

This is also a contradiction. � (Claim 3)

By Claims 1, 2 and 3, we conclude that T ∼= T (2(a), 3(b)) with n = 2a + 3b + 1.
Note that a ≥ 1, b ≥ 1, and a+b ≥ 3. From the structure of T , we have γ(T ) = a+b,
that is, 2γ(T )− 1 = 2a+2b− 1. Assume that the D-game is played on T . Let d1 be
the vertex with maximum degree in T . Afterwards Dominator can guarantee that
the game will be finished in the total of

⌈

b
2

⌉

+ a+ b+ 1 moves. The move d1 might

not be optimal for Dominator, but in any case we have γg(T ) ≤
⌈

b
2

⌉

+a+b+1. Thus

T can only be γg-maximal if γg(T ) =
⌈

b
2

⌉

+a+ b+1 = 2a+2b− 1. From the second

equality, we have (a, b) ∈ {(1, 2), (2, 1)}. But it can be verified that γg(T (2
(2), 3)) =

4 < 2γ(T ) − 1. Therefore, T is γg-maximal if and only if T ∼= T (2, 3(2)). This
completes the proof of the theorem. �

Let
ST = ST ∗

⋃

{

T (4(3)), T (2, 3(2))
}

.

Then combining Theorems 4.2 and 5.1 we arrive at the following result.

Theorem 5.2 Let T be a starlike tree. Then T is γg-maximal if and only if T ∈ ST .

6 Concluding remarks

As already mentioned in the introduction, the 3/5-conjecture was confirmed by
Henning and Kinnersley on the class of graphs with minimum degree at least two [11].
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Hence the conjecture remains to be verified (or disproved) on the class of graphs that
contain pendant vertices. In Theorem 3.1 we have determined the game domination
number for such a class of graphs. Let us check that these graphs support the
conjecture.

Let G be a connected graph of order at least 3 and with a supportive dominating
set of order t such that there are at least ⌈log2 t⌉ + 1 pendant vertices adjacent
to each vertex of the supportive dominating set. Then Theorem 3.1 asserts that
γg(G) = 2t − 1. Since |V (G)| ≥ t + t(⌈log2 t⌉ + 1), to verify the 3/5-conjecture for
G it suffices to show that 2t− 1 ≤ 3

5 (t+ t (⌈log2 t⌉+ 1)). This inequality reduces to
4t ≤ 3⌈log2 t⌉+ 5 which holds for any t ≥ 1. Hence the 3/5-conjecture holds for G.

In the introduction we have also mentioned that in [20] it is reported that the
3/5-conjecture holds for trees. Hence let us just state that similarly as above one
can check that the starlike trees from Sections 4 and 5 also support the conjecture.
Therefore, the remaining task for the 3/5-conjecture is to check (or disprove) it for
the graphs with at least one cycle and minimum degree 1.
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