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Abstract
The strong isometric dimension of a graph G is the least number k such that

G isometrically embeds into the strong product of k paths. Using Sperner’s
Theorem, the strong isometric dimension of the Hamming graphs K2¤Kn is
determined.
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1 Introduction

Motivated by an injective hull of a graph [9] and the game of “cops and robber”
[12], Fitzpatrick and Nowakowski in [5] introduced the strong isometric dimension
of a graph. Already in 1938 Schönberg [13] proved that this concept is well-defined,
more precisely, he proved that every connected graph admits an isometric embed-
ding into the strong product of paths, cf. [8, Proposition 5.2]. This result has also
been independently obtained in [5]. Thus it is natural to define the strong isomet-
ric dimension, idim(G), of a graph G, as the least number k such that G embeds
isometrically into the strong product of k paths. (For a general framework that for
any class of graphs and for any graph product gives a different dimension concept
see [11].)

Only few exact strong isometric dimensions of graphs are known: idim(Km,n) =
dlog2 me+ dlog2 ne [3], idim(Cn) = dn/2e, idim(Qn) = 2n−1 [5], and idim(P ) = 5,
where P is the Petersen graph [10]. In this note we prove the following result.

Theorem 1.1 Let k ≥ 1 and let
(

k
bk/2c

)
< n ≤ (

k+1
b(k+1)/2c

)
. Then idim(K2 ¤Kn) =

k + 1.

In the next section we first recall concepts and notations needed in this note.
Then we describe an explicit isometric embedding of K2 ¤Kn into the strong prod-
uct of paths that yields the upper bound of Theorem 1.1. In the subsequent section
we then prove the corresponding lower bound. The proof consists of two key steps.
The problem of determining idim(K2 ¤Kn) is first reduced to a covering prob-
lem of the complement of K2 ¤Kn with bicliques, and then solved using Sperner’s
Theorem. We conclude with some remarks on related covering and decomposition
problems.

2 Preliminaries and upper bound

By dG(u, v) we mean the standard graph distance, that is, the number of edges
on a shortest u, v-path. The diameter, diam(G), of a connected graph G is the
maximum distance between any two vertices of G. A subgraph H of G is an
isometric subgraph of a graph G if dH(u, v) = dG(u, v) for all u, v ∈ H. Let G and
H be arbitrary graphs. A mapping f : V (G) → V (H) is an isometric embedding if
dH(f(u), f(v)) = dG(u, v) for any u, v ∈ V (G).

The strong product G = £ k
i=1Gi of graphs G1, . . . , Gk is the graph defined

on the Cartesian product of the vertex sets of the factors, two distinct vertices
(u1, . . . , uk) and (v1, . . . , vk) being adjacent if and only if ui is equal or adjacent to
vi in Gi for i = 1, . . . , k. The Cartesian product G = ¤ k

i=1Gi of graphs G1, . . . , Gk

is the graph that is also defined on the Cartesian product of the vertex sets of the
factors. Two distinct vertices (u1, . . . , uk) and (v1, . . . , vk) are adjacent if and only
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if there exists an index j such that uj is adjacent to vj in Gj and ui = vi for all
i 6= j. Cartesian products of complete graphs are known as Hamming graphs. Note
that the subgraph of G = ¤ k

i=1Gi (as well as of G = £ k
i=1Gi) induced by the

vertices that differ from a given vertex u only in the ith coordinate is isomorphic
to Gi.

The strong isometric dimension, idim(G), of a graph G is the least number k
such that there is a set of k paths {P (1), . . . , P (k)} for which G isometrically embeds
into £ k

i=1P
(i).

Let G = (V, E) be a graph and let H1 = (V1, E1), . . . ,Hk = (Vk, Ek) be sub-
graphs of G. If E = E1 ∪ . . . ∪Ek, we say that G is covered by H1, . . . , Hk or that
the subgraphs H1, . . . , Hk form a covering of G.

The complement G of a graph G is the graph on V (G) with the edge set
{xy | x, y ∈ V (G), x 6= y, xy /∈ E(G)}, and by a biclique we mean a complete
bipartite graph.

We now give an upper bound for the strong isometric dimension of K2 ¤Kn.

Lemma 2.1 Let n ≤ (
k

bk/2c
)
. Then idim(K2 ¤Kn) ≤ k.

Proof. For the path on n vertices Pn let V (Pn) = {0, 1, . . . , n − 1}, where i is
adjacent to i + 1 for i = 0, 1, . . . , n− 2. Let n =

(
k

bk/2c
)

and set

X = {(t1, . . . , tk) | ti ∈ {0, 1},
k∑

i=1

ti = bk/2c} .

Note that |X| = (
k

bk/2c
)

= n. Let in addition

Y = {(t1 + 1, . . . , tk + 1) | (t1, . . . , tk) ∈ X} .

Now consider X and Y as vertex subsets of the graph H = £ k
i=1P

(i)
3 . We claim

that X ∪ Y induces an isometric subgraph of H isomorphic to K2 ¤Kn. Note
first that both X and Y induce a complete subgraph on n vertices. Moreover, let
u = (t1, . . . , tk) ∈ X. Then u is in H adjacent to exactly one vertex of Y , namely
to (t1 + 1, . . . , tk + 1).

For n ≤ (
k

bk/2c
)
, K2 ¤Kn is an isometric subgraph of the graph K2 ¤K( k

bk/2c)
and hence idim(K2 ¤Kn) ≤ idim(K2 ¤K( k

bk/2c)
) ≤ k. ¤

3 Lower bound

In this section we prove that the upper bound of Lemma 2.1 is sharp. For this sake
we first observe that for any n ≥ 2, K2 ¤Kn is a graph of diameter 2 and recall
the following result.
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Theorem 3.1 Let G be a graph with diam(G) = 2 and let any edge of G be con-
tained in an induced path on three vertices. Then idim(G) is equal to the smallest
r such that the edges of G can be covered with r bicliques.

Theorem 3.1 is due to Dewdney [3] who proved it in terms of the so-called
adjacent isometric dimension of a graph. The result is in terms of the strong
isometric dimension presented in [10].

Let V = {v1, . . . , vn} and W = {w1, . . . , wn} be the bipartition of the complete
bipartite graph Kn,n. Let K−

n,n, n ≥ 2, be the graph obtained from Kn,n by deleting
a perfect matching M . We will always assume that M = {(vi, wi) | i = 1, . . . , n}.
Hence, by Theorem 3.1, idim(K2 ¤Kn) is the smallest r such that the edges of K−

n,n

can be covered with r bicliques. Lemma 2.1 can therefore be rephrased as: Let
n ≤ (

k
bk/2c

)
, then K−

n,n can be covered with k bicliques. To complete the proof of
Theorem 1.1 we thus need to show that if we have a covering of K−

n,n by k bicliques,
then n ≤ (

k
bk/2c

)
. We will prove this using Sperner’s Theorem. For a recent related

approach see [14], while for more information on Sperner theory we refer to [4].
Recall that an antichain A1, . . . , An on a set A is a family of nonempty subsets

of A such that Ai ⊆ Aj implies that i = j.

Theorem 3.2 (Sperner) Let A1, . . . , An be an antichain on a k-set. Then n ≤(
k

bk/2c
)
. Moreover, for each k ≥ 1, there exists an antichain that contains n sets

for every n ≤ (
k

bk/2c
)
.

As noted above, the following lemma will complete the proof of our main result.

Lemma 3.3 Let n ≥ 2 and let H1, . . . , Hk be a covering of K−
n,n by k bicliques.

Then n ≤ (
k

bk/2c
)
.

Proof. For an arbitrary fixed covering H1, . . . , Hk we construct a corresponding
antichain in the following manner. To every vertex vi ∈ V we assign a set Ai that
will consist of the subscripts of all covering bicliques containing vi. Then we show
that such a family of sets A1, . . . , Ak is indeed an antichain on A = {1, . . . , k}. The
conclusion then follows from Theorem 3.2.

So suppose we have a fixed covering of K−
n,n by k bicliques H1, . . . ,Hk. For

i = 1, . . . , n we define Ai = {j | vi ∈ Hj}. Obviously, Ai ⊆ A as we have exactly
k bicliques. To observe that each Ai is nonempty we notice that every vertex vi

belongs to at least one biclique Hj , otherwise the edges incident with vi are not
covered. This is impossible, as we assumed that H1, . . . , Hk is a covering of K−

n,n.
Finally, we need to show that there is no pair of sets Ai and Am such that Ai ⊆ Am

while i 6= m.
To do that, we proceed by contradiction and suppose Ai ⊆ Am for some i 6= m.

But if j ∈ Ai and j ∈ Am, then vi ∈ Hj and also vm ∈ Hj . Therefore, every biclique
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that contains the vertex vi must contain also the vertex vm. However, i 6= m and
therefore the edge (vi, wm) has to belong to some biclique Hs and s ∈ Ai. Then
s ∈ Am. This means that vm ∈ Hs. But now the biclique Hs contains both vm

and wm and therefore also the edge (vm, wm). This is impossible, since (vm, wm)
is not an edge of K−

n,n. Therefore, no set Ai is contained in another set Am and
A1, . . . , An is an antichain on A (with k elements).

By Sperner’s Theorem every antichain on A contains at most
(

k
bk/2c

)
sets. Thus

n ≤ (
k

bk/2c
)

and the proof is complete. ¤

4 Concluding remarks

There are several angles from which one can look at a minimization problem related
to coverings of a graph G by bicliques. Füredi and Kündgen [7] gave general bounds
for the total number of edges used in the cover of any graph G by bicliques, as well
as sharp bounds for certain classes of graphs such as 4-colorable graphs and random
graphs.

Other graphs besides bicliques can also be used in the covering. Chung proved
in [2] that the sum of the number of vertices of cliques used in an edge-disjoint
cover of an n-vertex graph is at most bn2

2 c. Moreover, the biclique on dn/2e plus
bn/2c vertices is the only extremal graph for this problem.

Chung [1] proved a conjecture by Bermond that limn→∞ ρ(n)/n = 1, where ρ(n)
denotes the smallest integer such that any graph with n vertices can be covered
by ρ(n) bicliques. Setting τ(n) to be the smallest number with the property that
K−

n,n has a covering by τ(n) bicliques it follows from the results of this note that
limn→∞

τ(n)
n = limk→∞ k

2( k

b k
2 c

)
= 0.
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