Strong isometric dimension, biclique coverings, and Sperner's Theorem

Dalibor Fronček * Department of Mathematics and Statistics University of Minnesota Duluth 1117 University Drive, Duluth, MN 55812, U.S.A. dfroncek@d.umn.edu

Janja Jerebic Department of Mathematics and Computer Science PeF, University of Maribor Koroška cesta 160, 2000 Maribor, Slovenia janja.jerebic@uni-mb.si

Sandi Klavžar[†] Department of Mathematics and Computer Science PeF, University of Maribor Koroška cesta 160, 2000 Maribor, Slovenia sandi.klavzar@uni-mb.si

Petr Kovář Department of Mathematics and Descriptive Geometry Technical University of Ostrava 17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic petr.kovar@vsb.cz

Abstract

The strong isometric dimension of a graph G is the least number k such that G isometrically embeds into the strong product of k paths. Using Sperner's Theorem, the strong isometric dimension of the Hamming graphs $K_2 \Box K_n$ is determined.

Keywords: strong isometric dimension; biclique covering; Sperner's Theorem

AMS subject classification (2000): 05C12, 05C70, 05D05

^{*}Supported by the University of Minnesota Duluth Grant Grant 177–1009.

 $^{^{\}dagger} \rm Supported$ by the Ministry of Education, Science and Sport of Slovenia under the grant P1-0297.

1 Introduction

Motivated by an injective hull of a graph [9] and the game of "cops and robber" [12], Fitzpatrick and Nowakowski in [5] introduced the strong isometric dimension of a graph. Already in 1938 Schönberg [13] proved that this concept is well-defined, more precisely, he proved that every connected graph admits an isometric embedding into the strong product of paths, cf. [8, Proposition 5.2]. This result has also been independently obtained in [5]. Thus it is natural to define the strong isometric dimension, $\operatorname{idim}(G)$, of a graph G, as the least number k such that G embeds isometrically into the strong product of k paths. (For a general framework that for any class of graphs and for any graph product gives a different dimension concept see [11].)

Only few exact strong isometric dimensions of graphs are known: $\operatorname{idim}(K_{m,n}) = \lceil \log_2 m \rceil + \lceil \log_2 n \rceil$ [3], $\operatorname{idim}(C_n) = \lceil n/2 \rceil$, $\operatorname{idim}(Q_n) = 2^{n-1}$ [5], and $\operatorname{idim}(P) = 5$, where P is the Petersen graph [10]. In this note we prove the following result.

Theorem 1.1 Let $k \ge 1$ and let $\binom{k}{\lfloor k/2 \rfloor} < n \le \binom{k+1}{\lfloor (k+1)/2 \rfloor}$. Then $\operatorname{idim}(K_2 \Box K_n) = k+1$.

In the next section we first recall concepts and notations needed in this note. Then we describe an explicit isometric embedding of $K_2 \square K_n$ into the strong product of paths that yields the upper bound of Theorem 1.1. In the subsequent section we then prove the corresponding lower bound. The proof consists of two key steps. The problem of determining $\operatorname{idim}(K_2 \square K_n)$ is first reduced to a covering problem of the complement of $K_2 \square K_n$ with bicliques, and then solved using Sperner's Theorem. We conclude with some remarks on related covering and decomposition problems.

2 Preliminaries and upper bound

By $d_G(u, v)$ we mean the standard graph distance, that is, the number of edges on a shortest u, v-path. The diameter, diam(G), of a connected graph G is the maximum distance between any two vertices of G. A subgraph H of G is an isometric subgraph of a graph G if $d_H(u, v) = d_G(u, v)$ for all $u, v \in H$. Let G and H be arbitrary graphs. A mapping $f: V(G) \to V(H)$ is an isometric embedding if $d_H(f(u), f(v)) = d_G(u, v)$ for any $u, v \in V(G)$.

The strong product $G = \boxtimes_{i=1}^{k} G_i$ of graphs G_1, \ldots, G_k is the graph defined on the Cartesian product of the vertex sets of the factors, two distinct vertices (u_1, \ldots, u_k) and (v_1, \ldots, v_k) being adjacent if and only if u_i is equal or adjacent to v_i in G_i for $i = 1, \ldots, k$. The Cartesian product $G = \Box_{i=1}^{k} G_i$ of graphs G_1, \ldots, G_k is the graph that is also defined on the Cartesian product of the vertex sets of the factors. Two distinct vertices (u_1, \ldots, u_k) and (v_1, \ldots, v_k) are adjacent if and only if there exists an index j such that u_j is adjacent to v_j in G_j and $u_i = v_i$ for all $i \neq j$. Cartesian products of complete graphs are known as *Hamming graphs*. Note that the subgraph of $G = \Box_{i=1}^k G_i$ (as well as of $G = \boxtimes_{i=1}^k G_i$) induced by the vertices that differ from a given vertex u only in the *i*th coordinate is isomorphic to G_i .

The strong isometric dimension, $\operatorname{idim}(G)$, of a graph G is the least number k such that there is a set of k paths $\{P^{(1)}, \ldots, P^{(k)}\}$ for which G isometrically embeds into $\boxtimes_{i=1}^{k} P^{(i)}$.

Let G = (V, E) be a graph and let $H_1 = (V_1, E_1), \ldots, H_k = (V_k, E_k)$ be subgraphs of G. If $E = E_1 \cup \ldots \cup E_k$, we say that G is *covered* by H_1, \ldots, H_k or that the subgraphs H_1, \ldots, H_k form a *covering* of G.

The complement \overline{G} of a graph G is the graph on V(G) with the edge set $\{xy \mid x, y \in V(G), x \neq y, xy \notin E(G)\}$, and by a *biclique* we mean a complete bipartite graph.

We now give an upper bound for the strong isometric dimension of $K_2 \square K_n$.

Lemma 2.1 Let $n \leq \binom{k}{\lfloor k/2 \rfloor}$. Then $\operatorname{idim}(K_2 \Box K_n) \leq k$.

Proof. For the path on *n* vertices P_n let $V(P_n) = \{0, 1, \ldots, n-1\}$, where *i* is adjacent to i + 1 for $i = 0, 1, \ldots, n-2$. Let $n = \binom{k}{\lfloor k/2 \rfloor}$ and set

$$X = \{(t_1, \dots, t_k) \mid t_i \in \{0, 1\}, \sum_{i=1}^k t_i = \lfloor k/2 \rfloor \}.$$

Note that $|X| = \binom{k}{\lfloor k/2 \rfloor} = n$. Let in addition

$$Y = \{(t_1 + 1, \dots, t_k + 1) \mid (t_1, \dots, t_k) \in X\}.$$

Now consider X and Y as vertex subsets of the graph $H = \boxtimes_{i=1}^{k} P_3^{(i)}$. We claim that $X \cup Y$ induces an isometric subgraph of H isomorphic to $K_2 \square K_n$. Note first that both X and Y induce a complete subgraph on n vertices. Moreover, let $u = (t_1, \ldots, t_k) \in X$. Then u is in H adjacent to exactly one vertex of Y, namely to $(t_1 + 1, \ldots, t_k + 1)$.

For $n \leq {\binom{k}{\lfloor k/2 \rfloor}}$, $K_2 \square K_n$ is an isometric subgraph of the graph $K_2 \square K_{\binom{k}{\lfloor k/2 \rfloor}}$ and hence $\operatorname{idim}(K_2 \square K_n) \leq \operatorname{idim}(K_2 \square K_{\binom{k}{\lfloor k/2 \rfloor}}) \leq k$. \square

3 Lower bound

In this section we prove that the upper bound of Lemma 2.1 is sharp. For this sake we first observe that for any $n \ge 2$, $K_2 \square K_n$ is a graph of diameter 2 and recall the following result.

Theorem 3.1 Let G be a graph with $\operatorname{diam}(G) = 2$ and let any edge of G be contained in an induced path on three vertices. Then $\operatorname{idim}(G)$ is equal to the smallest r such that the edges of \overline{G} can be covered with r bicliques.

Theorem 3.1 is due to Dewdney [3] who proved it in terms of the so-called adjacent isometric dimension of a graph. The result is in terms of the strong isometric dimension presented in [10].

Let $V = \{v_1, \ldots, v_n\}$ and $W = \{w_1, \ldots, w_n\}$ be the bipartition of the complete bipartite graph $K_{n,n}$. Let $K_{n,n}^-$, $n \ge 2$, be the graph obtained from $K_{n,n}$ by deleting a perfect matching M. We will always assume that $M = \{(v_i, w_i) \mid i = 1, \ldots, n\}$. Hence, by Theorem 3.1, $\operatorname{idim}(K_2 \Box K_n)$ is the smallest r such that the edges of $K_{n,n}^$ can be covered with r bicliques. Lemma 2.1 can therefore be rephrased as: Let $n \le {\binom{k}{\lfloor k/2 \rfloor}}$, then $K_{n,n}^-$ can be covered with k bicliques. To complete the proof of Theorem 1.1 we thus need to show that if we have a covering of $K_{n,n}^-$ by k bicliques, then $n \le {\binom{k}{\lfloor k/2 \rfloor}}$. We will prove this using Sperner's Theorem. For a recent related approach see [14], while for more information on Sperner theory we refer to [4].

Recall that an *antichain* A_1, \ldots, A_n on a set A is a family of nonempty subsets of A such that $A_i \subseteq A_j$ implies that i = j.

Theorem 3.2 (Sperner) Let A_1, \ldots, A_n be an antichain on a k-set. Then $n \leq \binom{k}{\lfloor k/2 \rfloor}$. Moreover, for each $k \geq 1$, there exists an antichain that contains n sets for every $n \leq \binom{k}{\lfloor k/2 \rfloor}$.

As noted above, the following lemma will complete the proof of our main result.

Lemma 3.3 Let $n \ge 2$ and let H_1, \ldots, H_k be a covering of $K_{n,n}^-$ by k bicliques. Then $n \le \binom{k}{\lfloor k/2 \rfloor}$.

Proof. For an arbitrary fixed covering H_1, \ldots, H_k we construct a corresponding antichain in the following manner. To every vertex $v_i \in V$ we assign a set A_i that will consist of the subscripts of all covering bicliques containing v_i . Then we show that such a family of sets A_1, \ldots, A_k is indeed an antichain on $A = \{1, \ldots, k\}$. The conclusion then follows from Theorem 3.2.

So suppose we have a fixed covering of $K_{n,n}^-$ by k bicliques H_1, \ldots, H_k . For $i = 1, \ldots, n$ we define $A_i = \{j \mid v_i \in H_j\}$. Obviously, $A_i \subseteq A$ as we have exactly k bicliques. To observe that each A_i is nonempty we notice that every vertex v_i belongs to at least one biclique H_j , otherwise the edges incident with v_i are not covered. This is impossible, as we assumed that H_1, \ldots, H_k is a covering of $K_{n,n}^-$. Finally, we need to show that there is no pair of sets A_i and A_m such that $A_i \subseteq A_m$ while $i \neq m$.

To do that, we proceed by contradiction and suppose $A_i \subseteq A_m$ for some $i \neq m$. But if $j \in A_i$ and $j \in A_m$, then $v_i \in H_j$ and also $v_m \in H_j$. Therefore, every biclique that contains the vertex v_i must contain also the vertex v_m . However, $i \neq m$ and therefore the edge (v_i, w_m) has to belong to some biclique H_s and $s \in A_i$. Then $s \in A_m$. This means that $v_m \in H_s$. But now the biclique H_s contains both v_m and w_m and therefore also the edge (v_m, w_m) . This is impossible, since (v_m, w_m) is not an edge of $K_{n,n}^-$. Therefore, no set A_i is contained in another set A_m and A_1, \ldots, A_n is an antichain on A (with k elements).

By Sperner's Theorem every antichain on A contains at most $\binom{k}{\lfloor k/2 \rfloor}$ sets. Thus $n \leq \binom{k}{\lfloor k/2 \rfloor}$ and the proof is complete. \Box

4 Concluding remarks

There are several angles from which one can look at a minimization problem related to coverings of a graph G by bicliques. Füredi and Kündgen [7] gave general bounds for the total number of edges used in the cover of any graph G by bicliques, as well as sharp bounds for certain classes of graphs such as 4-colorable graphs and random graphs.

Other graphs besides bicliques can also be used in the covering. Chung proved in [2] that the sum of the number of vertices of cliques used in an edge-disjoint cover of an *n*-vertex graph is at most $\lfloor \frac{n^2}{2} \rfloor$. Moreover, the biclique on $\lceil n/2 \rceil$ plus $\lfloor n/2 \rfloor$ vertices is the only extremal graph for this problem.

Chung [1] proved a conjecture by Bermond that $\lim_{n\to\infty} \rho(n)/n = 1$, where $\rho(n)$ denotes the smallest integer such that any graph with n vertices can be covered by $\rho(n)$ bicliques. Setting $\tau(n)$ to be the smallest number with the property that $K_{n,n}^-$ has a covering by $\tau(n)$ bicliques it follows from the results of this note that $\lim_{n\to\infty} \frac{\tau(n)}{n} = \lim_{k\to\infty} \frac{k}{2\binom{k}{\lfloor \frac{k}{2} \rfloor}} = 0.$

References

- [1] F.R.K. Chung, On the coverings of graphs, Discrete Math. 30 (1980) 89–93.
- [2] F.R.K. Chung, On the decomposition of graphs, SIAM J. Algebraic Discrete Methods 2 (1981) 1–12.
- [3] A.K. Dewdney, The embedding dimension of a graph, Ars Combin. 9 (1980) 77–90.
- [4] K. Engel, Sperner Theory. Encyclopedia of Mathematics and its Applications, 65. Cambridge University Press, Cambridge, 1997.
- [5] S.L. Fitzpatrick and R.J. Nowakowski, The strong isometric dimension of finite reflexive graphs, Discuss. Math. Graph Theory 20 (2000) 23–38.

- [6] S.L. Fitzpatrick and R.J. Nowakowski, Copnumber of graphs with strong isometric dimension two, Ars Combin. 59 (2001) 65–73.
- [7] Z. Füredi and A. Kündgen, Covering a graph with cuts of minimum total size, Discrete Math. 237 (2001) 129–148.
- [8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, J. Wiley & Sons, New York, 2000.
- [9] J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65–76.
- [10] J. Jerebic and S. Klavžar, The strong isometric dimension of graphs of diameter two, Preprint Ser. Dept. Math., Univ. Ljubljana 41 (2003) 876.
- [11] J. Nešetřil and V. Rödl, Three remarks on dimensions of graphs, Ann. Discrete Math. 28 (1985) 199–207.
- [12] R.J. Nowakowski and P. Winkler, Vertex to vertex persuit in a graph, Discrete Math. 43 (1983) 235–239.
- [13] I.J. Schönberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938) 522–536.
- [14] I. Tomescu, Irreducible coverings by cliques and Sperner's theorem, Electron.
 J. Combin. 9 (2002) #N11, 4 pp.