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Abstract

The Fibonacci cube Γn is obtained from the n-cube Qn by removing all the
vertices that contain two consecutive 1s. If, in addition, the vertices that start
and end with 1 are removed, the Lucas cube Λn is obtained. The number of
vertex and edge orbits, the sets of the sizes of the orbits, and the number of
orbits of each size, are determined for the Fibonacci cubes and the Lucas cubes
under the action of the automorphism group. In particular, the set of vertex
orbit sizes of Λn is {k ≥ 1; k |n}∪ {k ≥ 18; k | 2n}, the number of vertex orbits
of Λn of size k, where k is odd and divides n, is equal to

∑
d | k µ

(
k
d

)
Fb d2 c+2,

and the number of edge orbits of Λn is equal to the number of vertex orbits
of Γn−3. Dihedral transformations of strings and primitive strings are essential
tools to prove these results.

Key words: Fibonacci cube; Lucas cube; dihedral transformation; primitive string,
vertex orbit; edge orbit

AMS Subj. Class: 68R15, 05C30

1 Introduction

Fibonacci cubes Γn [5] and the closely related Lucas cubes Λn [13] have been inves-
tigated from many points of view, let us briefly overview some recent achievements.
Formulas for the number of vertices of a given degree as well as the corresponding
generating functions were determined in [9], while the domination number and the 2-
packing number of these cubes were studied in [1, 16]. Motivated by the structure of
Γn and Λn as interconnection networks, Mollard [12] characterized maximal induced
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hypercubes in these cubes and also determined the number of such hypercubes.
From the metric graph theory point of view, eccentricity sequences were obtained
in [2], the Wiener index and the Hosoya polynomial were determined in [7], while
in [8] the asymptotic average eccentricity was determined. In the latter paper it is
also proved that the eccentricity of a vertex of a given Fibonacci cube is equal to the
depth of the associated leaf in the corresponding Fibonacci tree. For a connection
between Fibonacci/Lucas cubes and Hasse diagrams (of the independent subsets of
powers of paths and cycles), see [4]. From the perspective of chemical graph theory
we point out that Lucas cubes turned out to be precisely the so-called resonance
graphs of cyclic fibonacenes [24]. Very recently, several advances have been made
also from the algorithmic point of view. Linear recognition algorithm for Fibonacci
cubes and for Lucas cubes were developed by Vesel [21] and Taranenko [19], respec-
tively, while Ramras [17] studied off-line routing of linear permutations on these
cubes. For additional information on Fibonacci cubes, see the survey [6].

There are several reasons for this wide interest. These cubes are induced sub-
graphs of hypercubes that inherit many of the fine properties of the latter class. The
main tool to derive such properties for Fibonacci cubes is the so-called fundamen-
tal decomposition that decomposes Γn into Γn−1 and Γn−2, similarly as the n-cube
decomposes into two (n − 1)-cubes via the Cartesian product operation. (There
is also a similar decomposition for Lucas cubes.) On the other hand, the order of
Fibonacci/Lucas cubes grows much slower than that of hypercubes, a property im-
portant for interconnection networks. A strong source of interest for these cubes also
comes from theoretical chemistry, where Fibonacci cubes are precisely the so-called
resonance graphs of fibonacenes [10] (see [22] for a generalization of this result),
while for the role of Lucas cubes in chemistry, besides the already mentioned pa-
per [25], see also [23, 24]. Fibonacci cubes also led to the notion of the Fibonacci
dimension of a graph [3, 20].

When it comes to symmetries, it seems that only the automorphism groups of
Fibonacci and Lucas cubes have been determined so far [1]. Hence, in this paper we
take a closer look at their symmetries, more precisely at the orbits under the action
of the automorphism group. We proceed as follows. The next two sections are of
preliminary nature. In the first of them we introduce concepts and notations needed,
and recall or prove some related results. In the subsequent section we investigate
some properties of dihedral transformations of nonempty strings defined over a finite
alphabet. In Section 4, we determine the number of vertex and edge orbits, the sets
of the sizes of the orbits, and the number of orbits of each size of Fibonacci cubes,
as well as give a combinatorial interpretation for the number of vertex orbits. In
the last section we prove parallel results for Lucas cubes. Contrary to Fibonacci
cubes where there are only orbits of sizes 1 and 2, the situation with Lucas cubes
is more intriguing and complex. (We note in passing that these problems are trivial
for hypercubes (the host graphs of Fibonacci and Lucas cubes), since they are arc-
transitive, and hence vertex- and edge-transitive.)
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2 Preliminaries

In this section we formally introduce the cubes studied here, list some notation,
and prove an identity involving Lucas numbers. The n-cube Qn, n ≥ 0, is the graph
whose vertex set is the set of all binary strings of length n, two vertices being adjacent
if they differ in exactly one position. The n-dimensional Fibonacci cube Γn is the
subgraph of Qn induced by the set of all vertices that have no two consecutive 1s.
Strings with no two consecutive 1s are called Fibonacci strings. The n-dimensional
Lucas cube Λn is obtained from Γn by removing all the vertices that begin and end
with 1. The vertices of Lucas cubes are called Lucas strings. The Fibonacci numbers
Fn are defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, n ≥ 2, and the Lucas
numbers Ln by L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2, n ≥ 2. We will use the
following well-known facts about Fn, Ln, Γn, and Λn without special mention:

1. Ln = Fn−1 + Fn+1 for n ≥ 1,

2. |V (Γn)| = Fn+2 for n ≥ 0,

3. |E(Γn)| = (nFn+1 + 2(n+ 1)Fn)/5 for n ≥ 0,

4. |V (Λn)| = Ln for n ≥ 1, |V (Λ0)| = 1,

5. |E(Λn)| = nFn−1 for n ≥ 0.

Proposition 2.1

Fn+1 =

bn
2
c∑

k=0

(
n− k
k

)
for n ≥ −1, (1)

Ln =

bn
2
c∑

k=0

n

n− k

(
n− k
k

)
for n ≥ 1, (2)

n∑
i=0

FiLn−i = (n+ 1)Fn for n ≥ 0. (3)

Proof. Identities (1) and (3) are well known. To prove (2), note that by using (1)
twice and shifting the index of summation in the first sum,

Ln = Fn−1 + Fn+1 =

bn−2
2
c∑

k=0

(
n− k − 2

k

)
+

bn
2
c∑

k=0

(
n− k
k

)

=

bn
2
c∑

k=1

(
n− k − 1

k − 1

)
+

bn
2
c∑

k=0

(
n− k
k

)

=

bn
2
c∑

k=0

(
k

n− k
+ 1

)(
n− k
k

)
=

bn
2
c∑

k=0

n

n− k

(
n− k
k

)
. �
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As usual, the automorphism group of a graph G = (V,E) will be denoted by Aut(G).
The sets of orbits of Aut(G) acting on V resp. E will be denoted by OV (G) resp.
OE(G), and their cardinalities by oV (G) = |OV (G)| and oE(G) = |OE(G)|. In the
latter case, we consider the natural action of Aut(G) on E, that is, for g ∈ Aut(G)
the edge {u, v} is mapped to {g(u), g(v)}. We denote the orbit of u ∈ V resp. e ∈ E
under the action of Aut(G) by ū resp. ē, and its cardinality by |ū| resp. |ē|. In
addition, we denote the number of orbits of size k by

oV (G, k) = |{X ∈ OV (G); |X| = k}|,
oE(G, k) = |{Y ∈ OE(G); |Y | = k}|,

so that the following identities hold:∑
k

k oV (G, k) = |V (G)|,
∑
k

oV (G, k) = oV (G), (4)∑
k

k oE(G, k) = |E(G)|,
∑
k

oE(G, k) = oE(G). (5)

We denote the dihedral group of order 2n by Dn, and the set of fixed points of a
group element g acting on a set A, resp. its cardinality, by

FixA(g) = {u ∈ A; g(u) = u}, fixA(g) = |FixA(g)|.

Finally, N is the set of all positive integers {1, 2, 3, . . .}. For n ∈ N, [n] denotes the
set {1, 2, . . . , n}, and [n]0 denotes the set {0, 1, . . . , n− 1}.

3 Dihedral transformations of strings

As a preparation for what follows we investigate here some properties of dihedral
transformations of nonempty strings defined over a finite alphabet.

Let Σ be an alphabet such that 0 ∈ Σ. As usual, Σn denotes the set of all strings
of length n over Σ and Σ+ =

⋃∞
n=1 Σn denotes the set of all nonempty strings over

Σ. If u, v ∈ Σ+ and k ∈ N, we write uv for the concatenation of u and v, and uk

for the concatenation of k copies of u. For u = u1u2 · · ·un ∈ Σn, we define its length
|u|, weight w(u) ∈ [n] ∪ {0}, cyclic shift α(u) ∈ Σn, and reversal β(u) ∈ Σn by

|u| = n,

w(u) = |{i ∈ [n]; ui 6= 0}|,
α(u) = unu1u2 · · ·un−1,

β(u) = unun−1 · · ·u1.

Note that α preserves Lucas strings, while β preserves both Fibonacci and Lucas
strings. It is straightforward to verify that

x = αj(u) ⇐⇒ xi = u(i−j) mod n ⇐⇒ ui = x(i+j) mod n, (6)

x = β(u) ⇐⇒ xi = u(1−i) mod n ⇐⇒ ui = x(1−i) mod n, (7)

x = αjβ(u) ⇐⇒ xi = u(1−i+j) mod n ⇐⇒ ui = x(1−i+j) mod n, (8)

4



where a mod n is the unique i ∈ [n] such that a ≡ i (mod n). Since αn = β2 = id
and αβ = βα−1, the group generated by α and β represents the action of Dn on Σn.
We denote the orbit of u ∈ Σn under this action by ū, and its cardinality by |ū|.

Lemma 3.1 For all u ∈ Σ+, j ∈ Z, and k ∈ N, we have

(i) αj(uk) = (αj(u))k,

(ii) β(uk) = β(u)k.

Proof. Use (6), (7), and the fact that (uk)i = ui mod |u| for i ≤ k|u|. �

For u ∈ Σ+ define its period p(u) and exponent `(u) by

p(u) = min{k > 0; αk(u) = u},
`(u) = max{k > 0; ∃v ∈ Σ+ : vk = u}.

If `(u) = 1, then u is primitive. It is well known [11, Cor. 4.2] that for each u there
is a unique primitive string τ(u) ∈ Σ+ (called the root of u) such that τ(u)`(u) = u.

As an example, consider Σ = {0, 1} and the following strings u ∈ Σ4:

• u = 0000 = 04: p(u) = 1, τ(u) = 0, `(u) = 4, u is not primitive,

• u = 0101 = (01)2: p(u) = 2, τ(u) = 01, `(u) = 2, u is not primitive,

• u = 0011 = (0011)1: p(u) = 4, τ(u) = 0011, `(u) = 1, u is primitive.

Proposition 3.2 If u ∈ Σn, then

(i) p(u) = |{u, α(u), α2(u), . . . , αn−1(u)}|,

(ii) p(uk) = p(u) for all k ∈ N,

(iii) p(u) |n,

(iv) p(u) = p(τ(u)) = |τ(u)| and `(u) p(u) = n.

Proof.

(i) Immediate from the definition of p(u).

(ii) Since uk = vk if and only if u = v, this follows from (i) and Lemma 3.1(i).

(iii) By (i), p(u) is the size of the orbit of u under the action of the cyclic group of
order n generated by α, hence p(u) divides n.
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(iv) Let u = u1u2 · · ·un and v = u1u2 · · ·up(u). From αp(u)(u) = u it follows by
(6) that ui = ui+p(u) for i = 1, 2, . . . , n− p(u) (with indices taken mod n). By
induction on k, ui = ui+kp(u) for i = 1, 2, . . . , n−kp(u) and k = 0, 1, . . . , n

p(u)−1.

Hence v = u1+kp(u)u2+kp(u) · · ·up(u)+kp(u) for k = 0, 1, . . . , n
p(u) − 1, therefore

u = vn/p(u). If u is primitive, this implies that |u|/p(u) = 1 and so p(u) = |u|.
For arbitrary u we then have, by (ii),

p(u) = p(τ(u)`(u)) = p(τ(u)) = |τ(u)|,

so `(u) p(u) = `(u)|τ(u)| = |τ(u)`(u)| = |u| = n. �

Proposition 3.3 For each u ∈ Σ+,

|ū| =
{
p(u), ∃j : β(u) = αj(u),
2p(u), ∀j : β(u) 6= αj(u).

Proof. Denote

A(u) = {u, α(u), α2(u), . . . , αn−1(u)},
B(u) = {β(u), αβ(u), α2β(u), . . . , αn−1β(u)}.

Then ū = A(u) ∪ B(u). If β(u) = αj(u) for some j, it follows from αn = id that
B(u) = A(u), hence ū = A(u) and, by Proposition 3.2(i), |ū| = p(u).

Otherwise, if β(u) 6= αj(u) for all j, it follows from αn = id that B(u)∩A(u) = ∅
and |B(u)| = |A(u)|, so, by Proposition 3.2(i), |ū| = 2 |A(u)| = 2p(u). �

In order to determine the orbit size |ū| more precisely, we distinguish between
symmetric and asymmetric strings, where for n ∈ N a string u ∈ Σn will be called:

• symmetric if |ū| < 2n,

• asymmetric if |ū| = 2n.

Proposition 3.4 Every asymmetric string is primitive.

Proof. Let u ∈ Σn be asymmetric. Then |ū| = 2n, hence by Proposition 3.3,
p(u) = n. Then by Proposition 3.2(iv), `(u) = 1 and u is primitive. �

As an example, consider Σ = {0, 1} and the following strings u ∈ Σ6:

• u = 000000 is symmetric and not primitive,

• u = 001100 is symmetric and primitive,

• u = 010011 is asymmetric (and hence primitive).
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Theorem 3.5 For each u ∈ Σ+,

|ū| =
{
p(u), τ(u) symmetric,
2p(u), τ(u) asymmetric.

Proof. Using Propositions 3.3, 3.2(iv) and Lemma 3.1 repeatedly we obtain

|ū| = 2p(u) ⇐⇒ ∀j : β(u) 6= αj(u) ⇐⇒ ∀j : β(τ(u)`(u)) 6= αj(τ(u)`(u))

⇐⇒ ∀j : β(τ(u))`(u) 6= αj(τ(u))`(u)

⇐⇒ ∀j : β(τ(u)) 6= αj(τ(u)) ⇐⇒ |τ(u)| = 2p(τ(u))

⇐⇒ |τ(u)| = 2|τ(u)| ⇐⇒ τ(u) asymmetric.

Together with Proposition 3.3 this proves the claim. �

Corollary 3.6 A string u ∈ Σn is primitive symmetric if and only if it is primitive
and αjβ(u) = u for some j ∈ [n]0.

Proof. By Theorem 3.5 and Proposition 3.3, we have

u primitive symmetric ⇐⇒ u primitive ∧ |ū| = p(u)

⇐⇒ u primitive ∧ ∃j ∈ [n]0 : β(u) = αj(u)

⇐⇒ u primitive ∧ ∃j ∈ [n]0 : αjβ(u) = u. �

4 Orbits of Fibonacci cubes

According to [1], for n ≥ 1 the Fibonacci cube Γn admits exactly one non-trivial
automorphism, hence |Aut(Γn)| = 2 and the only orbit sizes are 1 and 2. For n ≥ 2,
the non-trivial automorphism coincides with the reversal map β : V (Γn) → V (Γn).
We denote the set of Fibonacci strings of length n which start with 0 resp. 1 by
V0(Γn) resp. V1(Γn). We begin by enumerating palindromic Fibonacci strings.

Proposition 4.1 For k ∈ N,

fixV (Γ2k)(β) = Fk+1, fixV (Γ2k+1)(β) = Fk+3,

fixV0(Γ2k)(β) = Fk, fixV0(Γ2k+1)(β) = Fk+2,

fixV1(Γ2k)(β) = Fk−1, fixV1(Γ2k+1)(β) = Fk+1.

Proof. Let u ∈ FixV (Γn)(β). We distinguish four cases:

1. n = 2k

(a) u starts with 0: u = 0v00β(v)0 with v ∈ V (Γk−2)

(b) u starts with 1: u = 10v00β(v)01 with v ∈ V (Γk−3)
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2. n = 2k + 1

(a) u starts with 0: u = 0v0β(v)0 with v ∈ V (Γk−1), or u = 0v010β(v)0 with
v ∈ V (Γk−2)

(b) u starts with 1: u = 10v0β(v)01 with v ∈ V (Γk−2), or u = 10v010β(v)01
with v ∈ V (Γk−3)

The stated equalities now follow from |V (Γk)| = Fk+2 and Fk + Fk+1 = Fk+2. �

4.1 Vertex orbits

Theorem 4.2 Let n ≥ 2. Then

oV (Γn, 1) = Fbn−(−1)n

2
c+2

,

oV (Γn, 2) = 1
2

(
Fn+2 − Fbn−(−1)n

2
c+2

)
,

oV (Γn) = 1
2

(
Fn+2 + Fbn−(−1)n

2
c+2

)
.

Proof. The orbits of size 1 correspond to the fixed points of β, i.e., to Fibonacci
palindromes of length n, hence by Proposition 4.1,

oV (Γn, 1) =

{
Fk+1, if n = 2k,
Fk+3, if n = 2k + 1,

which can be combined into oV (Γn, 1) = Fbn−(−1)n

2
c+2

. The remaining two equalities

now follow from (4) which in this case transforms into

oV (Γn, 1) + 2oV (Γn, 2) = Fn+2,
oV (Γn, 1) + oV (Γn, 2) = oV (Γn). �

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|V (Γn)| 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
oV (Γn) 1 2 4 5 9 12 21 30 51 76 127 195 322 504 826
oV (Γn, 1) 0 1 3 2 5 3 8 5 13 8 21 13 34 21 55
oV (Γn, 2) 1 1 1 3 4 9 13 25 38 68 106 182 288 483 771

Table 1: The numbers of vertices, all orbits, orbits of size 1, and orbits of size 2 in
V (Γn) for n ≤ 15

We remark that the numbers oV (Γn) appear as solutions of other combinatorial
enumeration problems as well. For instance, in [14], the following problem is posed
and solved: in how many ways can a 2 × (n + 1) rectangle be tiled with dominoes
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(i.e., rectangles of sizes 2 × 1 and 1 × 2)? More precisely, the problem asks for the
number of distinct tilings, where two tilings are considered distinct if one cannot be
obtained from the other by reflections and rotations. As it turns out, the answer
is given by oV (Γn) (see also [18, sequence A001224]). For n ∈ {0, 1}, this can be
checked directly (note that the 2 × 2 square has a single distinct tiling, due to the
90◦ rotation). For n ≥ 2, we present here a bijective proof of this fact:

Let u ∈ V (Γn) and v = u0 ∈ V (Γn+1). Assign to v a tiling of the 2 × (n + 1)
rectangle with dominoes as follows. Going through v from left to right, assign to
each 0 a vertical domino and to each 10 a pair of horizontal dominoes. Conversely, to
each tiling of the 2×(n+1) rectangle assign v ∈ V (Γn+1) by going through the tiling
from left to right, coding vertical dominoes with 0 and pairs of horizontal dominoes
with 10. Then v ends with 0; let u ∈ V (Γn) be v without the final 0. This establishes
a bijection between V (Γn) and the set of all tilings of the 2× (n+1) rectangle which
preserves palindromes in both directions. Hence it gives rise to a bijection between
OV (Γn) and the set of all distinct tilings of the 2× (n+ 1) rectangle.

Another family of combinatorial objects enumerated by oV (Γn) are ordered in-
teger partitions of n + 1 with parts taken from the set {1, 2} where two partitions
are considered distinct if one cannot be obtained from the other by reflection. Such
partitions are obviously in bijection with distinct domino tilings of the 2 × (n + 1)
rectangle: to each part 1 in the partition assign a vertical domino, to each part 2 in
the partition assign a pair of horizontal dominoes, and vice versa.

4.2 Edge orbits

Theorem 4.3 For all n ≥ 0,

oE(Γn, 1) = 1−(−1)n

2 Fbn+1
2
c,

oE(Γn, 2) = 1
10 (nFn+1 + 2(n+ 1)Fn)− 1−(−1)n

4 Fbn+1
2
c,

oE(Γn) = 1
10 (nFn+1 + 2(n+ 1)Fn) + 1−(−1)n

4 Fbn+1
2
c.

Proof. For n ∈ {0, 1}, this can be checked directly. Let n ≥ 2. The orbits of
size 1 correspond to the fixed points of β, i.e., to pairs {u, v} ∈ E(Γn) such that
{β(u), β(v)} = {u, v}. Since u and v differ in weight while β preserves it, this is
only possible if β(u) = u and β(v) = v. Hence u and v are Fibonacci palindromes
of length n differing in a single position. This is only possible if n = 2k + 1 and

u = x000β(x),

v = x010β(x)

or vice versa, for some x ∈ V (Γk−1). Hence

oE(Γn, 1) =

{
|V (Γk−1)| = Fk+1, if n = 2k + 1,
0, if n = 2k,

(9)
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which can be written as 1−(−1)n

2 Fbn+1
2
c. The remaining two equalities now follow

from (5) which in this case transforms into

oE(Γn, 1) + 2oE(Γn, 2) = 1
5 (nFn+1 + 2(n+ 1)Fn) ,

oE(Γn, 1) + oE(Γn, 2) = oE(Γn). �

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|E(Γn)| 1 2 5 10 20 38 71 130 235 420 744 1308 2285 3970
oE(Γn) 1 1 3 5 11 19 37 65 120 210 376 654 1149 1985
oE(Γn, 1) 1 0 1 0 2 0 3 0 5 0 8 0 13 0
oE(Γn, 2) 0 1 2 5 9 19 34 65 115 210 368 654 1136 1985

Table 2: The numbers of edges, all orbits, orbits of size 1, and orbits of size 2 in
E(Γn) for n ≤ 14

5 Orbits of Lucas cubes

Since Lucas cubes can be viewed as a symmetrization of Fibonacci cubes, the former
should possess larger automorphism groups than the latter. Indeed, as shown in [1],
Aut(Λn) is generated by the cyclic shift and reversal maps α, β : V (Λn) → V (Λn).
Hence Aut(Λn) = {id, α, α2, · · · , αn−1, β, αβ, α2β, · · · , αn−1β} ' Dn when n ≥ 3.

5.1 Vertex orbits

Theorem 5.1 For all n ∈ N,

oV (Λn) =
1

2

 1

n

∑
d|n

ϕ
(n
d

)
Ld + Fbn

2
c+2

 .

Proof. For n ≤ 2 this can be checked directly. Now let n ≥ 3. Denote by Qn,t resp.
by Λn,t the subgraph of Qn resp. of Λn induced by the vertices of weight t. Since α

and β preserve weight, we have oV (Λn) =
∑bn

2
c

t=0 oV (Λn,t). An orbit ū ∈ oV (Λn,t) can
be thought of as a bracelet consisting of n beads, t of them black and n − t white,
without adjacent black beads. Assume first that t ≥ 1. By removing one bead from
each maximal set of contiguous white beads we obtain a bracelet v̄ consisting of t
black and n − 2t white beads. Conversely, starting with v̄ and inserting a white
bead into each maximal set (possibly empty) of contiguous white beads, we regain
the original ū. Clearly this transformation is a bijection between OV (Λn,t) and
OV (Qn−t,t), the number of bracelets consisting of n − t beads, t black and n − 2t

10



white, inequivalent under the action of Dn−t. Hence oV (Λn,t) = oV (Qn−t,t) when
t ≥ 1. But oV (Λn,0) = oV (Qn,0) = 1, so the Redfield-Pólya Theorem implies that

oV (Λn) =

bn
2
c∑

t=0

oV (Λn,t) =

bn
2
c∑

t=0

oV (Qn−t,t)

=

bn
2
c∑

t=0

[xt1x
n−2t
2 ]ZDn−t(x1 + x2, x

2
1 + x2

2, . . . , x
n−t
1 + xn−t2 ) (10)

where

ZDn(y1, y2, . . . , yn) =
1

2n

∑
d |n

ϕ(d)y
n/d
d +

1

4

{
2y1y

(n−1)/2
2 , n odd,

y2
1y

(n−2)/2
2 + y

n/2
2 , n even,

(11)

is the cycle index polynomial of the natural action of Dn, and [xi1x
j
2]p(x1, x2) denotes

the coefficient of xi1x
j
2 in the polynomial p(x1, x2). From (10) and (11) it follows that

oV (Λn) = 1
2 (c(n) + d(n)) where, by several applications of the Binomial Theorem,

c(n) =

bn
2
c∑

t=0

1

n− t
∑

d| gcd(n,t)

ϕ(d)

(n−t
d
t
d

)
, (12)

d(n) =

bn
4
c∑

k=0

(
bn2 c − k

k

)
+

bn−2
4
c∑

k=0

(
bn2 c − 1− k

k

)
. (13)

By changing the order of summation on the right side of (12), writing t = kd, and
replacing d by n/d, we obtain

c(n) =
∑
d|n

ϕ(d)

b n
2d
c∑

k=0

1

n− kd

(n
d − k
k

)
=

1

n

∑
d|n

ϕ
(n
d

) b d2 c∑
k=0

d

d− k

(
d− k
k

)
.

From (2) it now follows that

c(n) =
1

n

∑
d|n

ϕ
(n
d

)
Ld. (14)

Similarly, since bn4 c = b1
2b

n
2 cc and bn−2

4 c = b1
2

(
bn2 c − 1

)
c, it follows from (1) and

(13) that d(n) = Fbn
2
c+1 + Fbn

2
c = Fbn

2
c+2, proving the claim. �

We remark that the generating functions of the sequences oV (Λn) and c(n) are
known, as is the formula (14) for c(n) (cf. [18, sequences A129526 and A000358]).

Now we determine the sizes of orbits. They must divide 2n, the order of Dn,
but the following result shows that not all divisors of 2n appear as orbit sizes.
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Theorem 5.2 For all n ∈ N,

{|X|; X ∈ OV (Λn)} = {k ≥ 1; k |n} ∪ {k ≥ 18; k | 2n}.

To prove the theorem, we first show:

Lemma 5.3 V (Λn) contains an asymmetric string if and only if n ≥ 9.

Proof. To prove that all u ∈ V (Λn) with n < 9 are symmetric we order strings ac-
cording to their weight w(u). Since strings in the same orbit are either all symmetric
or all asymmetric, it suffices to consider a single representative from each orbit:

• w(u) = 0: u = 0n is symmetric since β(u) = u.

• w(u) = 1: u = 10n−1 is symmetric since β(u) = 0n−11 = α−1(u).

• w(u) = 2: u = 10a10b where a, b ≥ 1 is symmetric since β(u) = 0b10a1 =
αb(u).

• w(u) = 3: u = 10a10b10c where a, b, c ≥ 1. If any two of a, b, c are equal,
assume without loss of generality that a = b. Then u = 10a10a10c is symmetric
since β(u) = 0c10a10a1 = αc(u). Hence in any asymmetric u of this form we
have a+ b+ c ≥ 1 + 2 + 3 = 6 and n = a+ b+ c+ 3 ≥ 9.

• w(u) = 4: u = 10a10b10c10d where a, b, c, d ≥ 1. If a = b = c = d = 1, then
u = 10101010 is symmetric since β(u) = α(u). Otherwise, a + b + c + d ≥ 5
and n = a+ b+ c+ d+ 4 ≥ 9.

• w(u) ≥ 5: any u ∈ V (Λn) with w(u) ≥ 5 contains at least 5 zeros, so in this
case n ≥ w(u) + 5 ≥ 10.

Conversely, assume that n ≥ 9 and let u = 1010010n−6. Then u ∈ V (Λn), u is
obviously primitive, and β(u) = 0n−6100101. Since n − 6 ≥ 3, the only j ∈ [n − 1]
such that αj(u) starts with 0n−6 is j = n − 6, but αn−6(u) = 0n−6101001 6= β(u).
Hence u is asymmetric. �

Proof of Theorem 5.2. For n ∈ {0, 1, 2}, this can be checked directly. Let n ≥ 3.
Which divisors k of 2n appear as orbit sizes in the action of Aut(Λn) on V (Λn)? We
distinguish two cases:

Case 1: k |n. If k = 1, take u = 0n; then u ∈ V (Λn) and |ū| = 1. For k ≥ 2,
take u = (10k−1)n/k ∈ V (Λn). Since 10k−1 is primitive, `(u) = n/k and p(u) = k, by
Proposition 3.2(iv). Since β(u) = (0k−11)n/k = αk−1(u), it follows from Proposition
3.3 that |ū| = p(u) = k. This shows that {k ≥ 1; k |n} ⊆ {|ū|; u ∈ V (Λn)}.

Case 2: k | 2n, but k 6 | n. Here k is even. Note that it suffices to prove that there
is an orbit of size k in V (Λn) if and only if k ≥ 18.

Assume first that u ∈ V (Λn) is such that |ū| = k. Then k ∈ {p(u), 2p(u)} by
Proposition 3.3. Since p(u) |n by Proposition 3.2(iii) but k 6 | n, we conclude that

12



k = 2p(u). Theorem 3.5 now implies that τ(u) is asymmetric. By Lemma 5.3,
|τ(u)| ≥ 9, hence by Proposition 3.2(iv), p(u) ≥ 9 as well, so k ≥ 18.

Conversely, assume that k ≥ 18. By Lemma 5.3, there is an asymmetric v ∈
V (Λk/2). Let u = vs where s = 2n/k. Then u ∈ V (Λn) and by Proposition 3.4,
v = τ(u). By Theorem 3.5 and Proposition 3.2(iv), |ū| = 2p(u) = 2|v| = k. �

In order to determine the number of orbits of size k, we enumerate primitive
symmetric and asymmetric Lucas strings. We denote the set of primitive Lucas
strings of length n by Vp(Λn). For n ∈ N we define

pn = |Vp(Λn)| = |{u ∈ V (Λn); u primitive}|,
sn = |{u ∈ V (Λn); u primitive symmetric}|,
tn =

∑n−1
j=0 fixVp(Λn)(α

jβ),

an = |{u ∈ V (Λn); u asymmetric}.

Lemma 5.4 Let u ∈ Σn and αjβ(u) = αkβ(u) for some j, k ∈ [n]0 with j < k.
Then u is not primitive.

Proof. Since k − j > 0, we have by Lemma 3.1(ii),

αjβ(u) = αkβ(u) =⇒ αk−jβ(u) = β(u) =⇒ p(β(u)) ≤ k − j < n
=⇒ β(u) not primitive =⇒ u not primitive. �

Corollary 5.5 (i) The sets FixVp(Λn)(α
jβ), for j ∈ [n]0, are pairwise disjoint.

(ii) For all n ∈ N, sn = tn.

Proof.

(i) Assume that u ∈ FixVp(Λn)(α
jβ)∩FixVp(Λn)(α

kβ). Then αjβ(u) = u = αkβ(u)
and u is primitive, hence Lemma 5.4 implies that j = k, proving (i).

(ii) Using (i) and Corollary 3.6, we obtain

tn =
n−1∑
j=0

|FixVp(Λn)(α
jβ)| = |

n−1⋃
j=0

FixVp(Λn)(α
jβ)| = sn. �

Lemma 5.6 Let u ∈ Σn and 0 ≤ j < n. Then αjβ(u) = u if and only if there are
x ∈ Σj and y ∈ Σn−j such that x = β(x), y = β(y), and xy = u.

Proof. Assuming that αjβ(u) = u, let x = u1 · · ·uj and y = uj+1 · · ·un. Then
xy = u = αjβ(u) = αjβ(xy) = αj(β(y)β(x)) = β(x)β(y), hence β(x) = x and
β(y) = y.

Conversely, assuming that x ∈ Σj and y ∈ Σn−j are such that x = β(x), y = β(y),
and xy = u, we have αjβ(u) = αjβ(xy) = αj(β(y)β(x)) = β(x)β(y) = xy = u. �

In the next theorem, we express the numbers of primitive, primitive symmetric,
and asymmetric Lucas strings of length n by means of the Möbius function.
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Theorem 5.7 For all n ∈ N,

(i) pn =
∑
d |n

µ
(n
d

)
Ld,

(ii) sn = n
∑
d |n

µ
(n
d

)
Fb d

2
c+2,

(iii) an =
∑
d |n

µ
(n
d

)
(Ld − nFb d

2
c+2).

Proof. If u is a Lucas string and k ∈ N, then τ(u) and uk are Lucas strings as well.
Hence we can enumerate u ∈ V (Λn) by |τ(u)| which is a divisor of n. This yields

Ln = |V (Λn)| =
∑
d |n

pd,

from which (i) follows by Möbius inversion.
To derive (ii), we compute tn and invoke Corollary 5.5(ii). By Lemma 3.1,

fixV (Λn)(α
jβ) = |{u ∈ V (Λn); αjβ(u) = u}|

= |
⋃
d |n

{u ∈ V (Λn); |τ(u)| = d ∧ αjβ(τ(u)) = τ(u)}|

= |
⋃
d |n

{v ∈ V (Λd); v primitive ∧ αjβ(v) = v}|

= |
⋃
d |n

FixVp(Λd)(α
jβ)| =

∑
d |n

fixVp(Λd)(α
jβ),

hence by Möbius inversion,

fixVp(Λn)(α
jβ) =

∑
d |n

µ
(n
d

)
fixV (Λd)(α

jβ),

and, by definition of tn,

tn =

n−1∑
j=0

∑
d |n

µ
(n
d

)
fixV (Λd)(α

jβ) =
∑
d |n

µ
(n
d

) n−1∑
j=0

fixV (Λd)(α
jβ)

=
∑
d |n

µ
(n
d

) n
d

d−1∑
j=0

fixV (Λd)(α
jβ). (15)

To evaluate
∑d−1

j=0 fixV (Λd)(α
jβ), we use Lemma 5.6 according to which we need

to count strings xy ∈ V (Λd) where x ∈ FixV (Γj)(β) and y ∈ FixV (Γd−j)(β) are
Fibonacci palindromes. We distinguish four cases according to the parities of d and
j, computing the numbers of such strings in each case by means of Proposition 4.1:
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1. d = 2k

(a) j = 2i

• x ∈ FixV0(Γ2i)(β), y ∈ FixV0(Γ2(k−i))(β): FiFk−i strings

• x ∈ FixV0(Γ2i)(β), y ∈ FixV1(Γ2(k−i))(β): FiFk−i−1 strings

• x ∈ FixV1(Γ2i)(β), y ∈ FixV0(Γ2(k−i))(β): Fi−1Fk−i strings

in all: FiFk−i+1 + Fi−1Fk−i = 1
2(FiLk−i + LiFk−i) strings

(b) j = 2i+ 1

• x ∈ FixV0(Γ2i+1)(β), y ∈ FixV0(Γ2(k−i−1)+1)(β): Fi+2Fk−i+1 strings

• x ∈ FixV0(Γ2i+1)(β), y ∈ FixV1(Γ2(k−i−1)+1)(β): Fi+2Fk−i strings

• x ∈ FixV1(Γ2i+1)(β), y ∈ FixV0(Γ2(k−i−1)+1)(β): Fi+1Fk−i+1 strings

in all: Fi+2Fk−i+2 + Fi+1Fk−i+1 = 1
2(Fi+2Lk−i+1 + Li+2Fk−i+1) strings

2. d = 2k + 1

(a) j = 2i

• x ∈ FixV0(Γ2i)(β), y ∈ FixV0(Γ2(k−i)+1)(β): FiFk−i+2 strings

• x ∈ FixV0(Γ2i)(β), y ∈ FixV1(Γ2(k−i)+1)(β): FiFk−i+1 strings

• x ∈ FixV1(Γ2i)(β), y ∈ FixV0(Γ2(k−i)+1)(β): Fi−1Fk−i+2 strings

in all: FiFk−i+3 + Fi−1Fk−i+2 = 1
2(FiLk−i+2 + LiFk−i+2) strings

(b) j = 2i+ 1

• x ∈ FixV0(Γ2i+1)(β), y ∈ FixV0(Γ2(k−i))(β): Fi+2Fk−i strings

• x ∈ FixV0(Γ2i+1)(β), y ∈ FixV1(Γ2(k−i))(β): Fi+2Fk−i−1 strings

• x ∈ FixV1(Γ2i+1)(β), y ∈ FixV0(Γ2(k−i))(β): Fi+1Fk−i strings

in all: Fi+2Fk−i+1 + Fi+1Fk−i = 1
2(Fi+2Lk−i + Li+2Fk−i) strings

Again we distinguish two cases according to the parity of d, and split the sum into
two according to the parity of the summation index:

1. d = 2k:

d−1∑
j=0

fixV (Λd)(α
jβ) =

k−1∑
i=0

fixV (Λd)(α
2iβ) +

k−1∑
i=0

fixV (Λd)(α
2i+1β)

=
1

2

(
k−1∑
i=0

FiLk−i +

k−1∑
i=0

LiFk−i +

k−1∑
i=0

Fi+2Lk−i+1 +

k−1∑
i=0

Li+2Fk−i+1

)
= 2kFk+2 = dFb d

2
c+2,

by shifting summation indices and applying (3) to each of the four sums.
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2. d = 2k + 1:

d−1∑
j=0

fixV (Λd)(α
jβ) =

k∑
i=0

fixV (Λd)(α
2iβ) +

k−1∑
i=0

fixV (Λd)(α
2i+1β)

=
1

2

(
k∑

i=0

FiLk−i+2 +

k∑
i=0

LiFk−i+2 +

k−1∑
i=0

Fi+2Lk−i +

k−1∑
i=0

Li+2Fk−i

)
= (2k + 1)Fk+2 = dFb d

2
c+2,

by shifting summation indices and applying (3) to each of the four sums.

The final expression is the same in both cases, so by (15) we obtain

sn = tn =
∑
d |n

µ
(n
d

) n
d

d−1∑
j=0

fixV (Λd)(α
jβ) = n

∑
d |n

µ
(n
d

)
Fb d

2
c+2,

proving (ii).
Finally, (iii) follows from (i) and (ii) by noting that an = pn − sn. �

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ln 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207
pn 1 2 3 4 10 12 28 40 72 110 198 300 520 812 1350 2160
sn 1 2 3 4 10 12 28 40 54 90 132 180 260 392 450 752
an 0 0 0 0 0 0 0 0 18 20 66 120 260 420 900 1408

Table 3: The numbers of all Lucas strings, primitive Lucas strings, symmetric prim-
itive Lucas strings, and asymmetric Lucas strings of length n ≤ 16

Theorem 5.8 For all n ∈ N and k | 2n,

oV (Λn, k) =



∑
d | k

µ

(
k

d

)
Fb d

2
c+2, k |n ∧ k odd

∑
d | k

µ

(
k

d

)
Fb d

2
c+2 +

1

k

∑
d | k

2

µ

(
k

2d

)
(Ld −

k

2
Fb d

2
c+2), k |n ∧ k even

1

k

∑
d | k

2

µ

(
k

2d

)
(Ld −

k

2
Fb d

2
c+2), k | 2n ∧ k 6 | n

Proof. By Theorem 3.5,

|ū| = k ⇐⇒ (|τ(u)| = k ∧ τ(u) symmetric) ∨ (2|τ(u)| = k ∧ τ(u) asymmetric).
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Since τ(u) is primitive and |τ(u)| divides n, it follows that

|ū| = k ⇐⇒
(
k |n ∧ ∃v ∈ V (Λk): (v symmetric primitive ∧ u = vn/k)

)
∨
(
k | 2n ∧ k even ∧ ∃v ∈ V (Λk/2): (v asymmetric ∧ u = v2n/k)

)
,

hence

oV (Λn, k) =
1

k


sk, k |n ∧ k odd,
sk + ak/2, k |n ∧ k even,

ak/2, k | 2n ∧ k 6 | n.
(16)

Together with Proposition 5.7, this yields the statement of the theorem. �

At first sight, it may seem surprising that the sums in Theorem 5.8 are free of
n, therefore we try to explain this phenomenon here. Since both α and β commute
with taking powers, the size of the orbit of u equals the size of the orbit of uk,
which means that |ū| depends only on |τ(u)|. Primitive strings of length n are of
two types: symmetric (with orbit size n) and asymmetric (of orbit size 2n). Hence
in order to enumerate orbits of size k in V (Λn), we need to enumerate primitive
symmetric Lucas strings of length k and asymmetric Lucas strings of length k/2,
with the latter possibility applicable only to even k. Furthermore, we wish to obtain
a string of length n as a power of our primitive string, therefore n/k (in the first
case) resp. 2n/k (in the second case) must be an integer. In summary, if k is even,
only the first case applies, hence we obtain sk such strings. If k is even and divides
n, both cases apply and there are sk + ak/2 such strings. If k is even but does not
divide n (however it must divide 2n), only the second case applies, yielding ak/2

strings. Finally, since we count orbits rather than individual strings, we divide by
the orbit size k and obtain (16).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

oV (Λn) 1 2 2 3 3 5 5 8 9 14 16 26 31 49 64 99 133 209
oV (Λn, n) 1 1 1 1 2 2 4 5 6 9 12 15 20 28 30 47 54 79
oV (Λn, 2n) 0 0 0 0 0 0 0 0 1 1 3 5 10 15 30 44 78 119

Table 4: The numbers of all orbits, orbits of size n, and orbits of size 2n in V (Λn)
for n ≤ 18

5.2 Edge orbits

We now present a surprising relationship between oE(Λn) and oV (Γn), namely that
the former sequence is just a shift of the latter.

Theorem 5.9 (i) For n ≥ 5, oE(Λn) = oV (Γn−3).
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(ii) For all n ∈ N,
oE(Λn) =

1

2

(
Fn−1 + Fbn+1+(−1)n

2
c

)
.

Proof. To prove (i), assume that n ≥ 5 and define s : E(Λn)→ V (Γn−3) as follows
(all indices will be taken mod n): For e = {u, v} ∈ E(Λn), let i ∈ [n] be such
that ui 6= vi where u = u1u2 · · ·un, v = v1v2 . . . vn. Then {ui, vi} = {0, 1} and
ui−1 = vi−1 = ui+1 = vi+1 = 0. Now set

s(e) = ui+2ui+3 · · ·ui+n−2.

Note that s(e) may contain unu1 as a substring, but as u is a Lucas string, unu1 6= 11,
hence s(e) ∈ V (Γn−3) as desired. Let f = {x, y} ∈ E(Λn) be such that ē = f̄ . We
claim that s(e) = s(f). To prove this, we distinguish two cases:

Case 1: f = αj(e) = {αj(u), αj(v)} for some j. Without loss of generality
assume that x = αj(u) and y = αj(v). By (6), xi+j 6= yi+j , hence

s(f) = xi+j+2xi+j+3 · · ·xi+j+n−2 = ui+2ui+3 · · ·ui+n−2 = s(e).

Case 2: f = αjβ(e) = {αjβ(u), αjβ(v)} for some j. Without loss of generality
assume that x = αjβ(u) and y = αjβ(v). By (8), x1−i+j 6= y1−i+j , hence

s(f) = x3−i+jx4−i+j · · ·xn−1−i+j = ui−2ui−3 · · ·ui−n+2

= β(ui−n+2 · · ·ui−3ui−2) = β(ui+2 · · ·ui+n−3ui+n−2) = β(s(e)).

In either case, s(e) = s(f) as claimed. This implies that s induces a well-defined
mapping s̃ : OE(Λn)→ OV (Γn−3) which satisfies s̃(ē) = s(e) for all e ∈ E(Λn).

Assume that s̃(ē) = s̃(f̄) for some e, f ∈ E(Λn) where e = {u, v} and f = {x, y}.
Let i, j ∈ [n] be such that ui 6= vi and xj 6= yj . Then {ui, vi} = {xj , yj} = {0, 1}
and ui−1 = vi−1 = ui+1 = vi+1 = xj−1 = yj−1 = xj+1 = yj+1 = 0. Without loss of

generality assume ui = xj = 1. Since s(e) = s(f), we distinguish two cases:
Case 1: If s(e) = s(f), then ui+2ui+3 · · ·ui+n−2 = xj+2xj+3 · · ·xj+n−2, hence

α2−i(u) = ui−1uiui+1ui+2 · · ·ui+n−2 = 010ui+2 · · ·ui+n−2

= xj−1xjxj+1xj+2xj+3 · · ·xj+n−2 = α2−j(x),

and similarly, α2−i(v) = α2−j(y). Consequently, α2−i(e) = α2−j(f).
Case 2: If s(e) = βs(f) then ui+2ui+3 · · ·ui+n−2 = xj+n−2 · · ·xj+3xj+2, hence

α2−i(u) = ui−1uiui+1ui+2 · · ·ui+n−2 = 010ui+2 · · ·ui+n−2

= xj+1xjxj−1xj+n−2 · · ·xj+3xj+2

= β(xj+2xj+3 · · ·xj+n−2xj−1xjxj+1) = βα−j−1(x)

by (6), and similarly, α2−i(v) = βα−j−1(y). Consequently, α2−i(e) = βα−j−1(f).
In either case, s̃(ē) = s̃(f̄) implies that ē = f̄ , hence s̃ is injective.
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Now let u ∈ V (Γn−3). Then e = {010u, 000u} ∈ E(Λn) and s(e) = u, implying
that s and s̃ are surjective. Thus s̃ is bijective and oE(Λn) = oV (Γn−3).

Finally, (ii) follows from (i) and Theorem 4.2 for n ≥ 5, and can be verified
directly for n ≤ 4. �

Theorem 5.10 For all n ∈ N,

{|X|; X ∈ OE(Λn)} ⊆ {n, 2n},

with equality if and only if n ≥ 5.

Proof. For n ≤ 4 this can be checked directly. Now assume that n ≥ 5 and let
e = {u, v} ∈ E(Λn). Then by [15, Corollary 2 (ii)], at least one of the strings u
and v is primitive, say u. By Proposition 3.3, |ū| = p(u) or |ū| = 2p(u). Moreover,
because u is primitive, p(u) = |u| = n. We conclude that |ū| ∈ {n, 2n}.

Denote by Su resp. Se the stabilizer of u resp. e under the action of Dn on V (Λn)
resp. E(Λn). Let g ∈ Se. Then {g(u), g(v)} = {u, v}. Since w(u) 6= w(v) and g
preserves weight, it follows that g(u) = u, so g ∈ Su. Consequently Se ⊆ Su, hence
Se ≤ Su and |Se| divides |Su|. From |ē| |Se| = |Dn| = |ū| |Su| it now follows that |ū|
divides |ē|, so n divides |ē| as well. But |ē| divides 2n, hence |ē| ∈ {n, 2n}.

To see that both n and 2n indeed appear as orbit sizes, consider the edges
e = {0n, 10n−1} and f = {10n−1, 1010n−3}. Then it is straightforward to check that
|ē| = n and |f̄ | = 2n. �

Corollary 5.11 For all n ∈ N,

oE(Λn, n) = Fbn+1+(−1)n

2
c,

oE(Λn, 2n) = 1
2

(
Fn−1 − Fbn+1+(−1)n

2
c

)
.

Proof. This follows from (5) which in this case transforms into

n oE(Λn, n) + 2n oE(Λn, 2n) = nFn−1,

oE(Λn, n) + oE(Λn, 2n) = 1
2

(
Fn−1 + Fbn+1+(−1)n

2
c

)
. �
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

oE(Λn) 0 1 1 2 2 4 5 9 12 21 30 51 76 127 195 322
oE(Λn, n) 0 1 1 2 1 3 2 5 3 8 5 13 8 21 13 34
oE(Λn, 2n) 0 0 0 0 1 1 3 4 9 13 25 38 68 106 182 288

Table 5: The numbers of all orbits, orbits of size n, and orbits of size 2n in E(Λn)
for n ≤ 16
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