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Abstract

The Fibonacci cube Γn is obtained from the n-cube Qn by removing all the
vertices that contain two consecutive 1s. It is proved that Γn admits a perfect
code if and only if n ≤ 3.
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1 Introduction

A 1-perfect code of a graph G is a subset C ⊆ V (G) such that every vertex of G is either
in C or adjacent to precisely one member of C. This concept generalizes to r-perfect
codes, r ≥ 1, but since we will exclusively deal with 1-perfect codes, we will call them
simply perfect codes. Another name frequently used for a perfect code is an efficient
dominating set.

The study of codes in graphs which was initiated by Biggs [3] presents a gen-
eralization of the problem of the existence of (classical) error-correcting codes. For
instance, Hamming codes and Lee codes correspond to codes in the Cartesian product
of complete graphs and cycles, respectively. For further results on perfect codes in
Cartesian products, lexicograpic products, and strong products see [22, 24, 1], respec-
tively. In addition, for the characterization of perfect codes in the direct product of
cycles see [18, 27].
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Classes of graphs similar to products for which perfect codes were investigated in-
clude direct graph bundles [9] and twisted tori [12]. Perfect codes were also investigated
in other classes of graphs, notably on Sierpiński graphs [5, 14], Cayley graphs [6], cubic
vertex-transitive graphs [19], circulant graphs [7, 21], and AT-free and dually chordal
graphs [4].

Kratochv́ıl [20] proved a remarkable result that there are no nontrivial perfect codes
over complete bipartite graphs with at least three vertices. In this note we establish
a similar non-existence result for Fibonacci cubes. These cubes are interesting here
from (at least) two reasons. First, as (isometric) subgraphs of hypercubes (recall that
Hamming codes are perfect codes in hypercubes) they are close to Cartesian product
graphs. Second, they form an appealing model for interconnection networks [10].

Fibonacci cubes have been extensively studied and found several applications: see
the survey [13]. The interest for Fibonacci cubes continues: recent research of them
includes asymptotic properties [15], connectivity issues [2], and the structure of their
disjoint induced hypercubes [8]. From the algorithmic point of view, Ramras [23]
investigated congestion-free routing of linear permutations on Fibonacci cubes, while
Vesel [25] designed a linear time recognition algorithm for this class of graphs.

The result of this note reads as follows.

Theorem 1.1 The Fibonacci cube Γn, n ≥ 0, admits a perfect code if and only if
n ≤ 3.

In the rest of this section we formally introduce the concepts needed, while in the
next section Theorem 1.1 is proved. We conclude this note with some ideas for further
research.

A Fibonacci string of length n is a binary string b1 . . . bn with bi · bi+1 = 0 for
1 ≤ i < n. Fibonacci strings are thus binary strings that contain no consecutive 1s. A
Fibonacci string of weight k is a Fibonacci string with precisely k ones. The Fibonacci
cube Γn, n ≥ 1, is the graph whose vertices are all the Fibonacci strings of length n, two
vertices being adjacent if they differ in precisely one position. (In other words, Γn is
the subgraph of the n-cube Qn induced by all vertices that contain no two consecutive
1s.) For convenience we also set Γ0 = K1.

By Γn,k we denote the vertices of Γn of weight k. It is easy to observe that

|Γn,k| =
(
n− k + 1

k

)
.

For a more general result of this type see [16]. For i ∈ {0, 1} we denote by Γi
n,k the

vertices of Γn,k that start with i. Observe that the vertices of Γ0
n,k are of the form 0α,

where α is a Fibonacci string of weight k and length n− 1. Consequently,

|Γ0
n,k| = |Γn−1,k| =

(
n− k
k

)
.
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By a similar argument we infer that

|Γ1
n,k| = |Γn−2,k−1| =

(
n− k
k − 1

)
.

2 Proof of Theorem 1.1

It can be easily checked by hand that each of Γ0,Γ1,Γ2,Γ3 contains a perfect code and
that none of Γ4 and Γ5 does. It remains to prove that Γn does not admit a perfect code
for any n ≥ 6. For the sake of this we first show:

Lemma 2.1 If n ≥ 6 and C is a perfect code of Γn, then 0n 6∈ C.

Proof. Suppose on the contrary that 0n ∈ C. Then all the vertices in Γn,1 are dominated
by 0n. Hence Γn,2 ∩ C = ∅. Consequently, each vertex of Γn,2 must be dominated by a
vertex of Γn,3. The only vertices in Γn,3 that dominate the vertices in Γ1

n,2 are in Γ1
n,3.

Since each vertex v ∈ Γ1
n,3 has precisely two neighbors in Γ1

n,2 we have

|C ∩ Γ1
n,3| =

|Γ1
n,2|
2

=
n− 2

2
.

Therefore, the number of undominated vertices in Γ1
n,3 so far is

|Γ1
n,3| −

(n− 2)

2
=

(
n− 3

2

)
− (n− 2)

2
=
n2 − 8n+ 14

2
.

These vertices can only be dominated by the vertices of Γ1
n,4. Moreover, each such

vertex dominates precisely three of the undominated vertices of Γ1
n,3. Hence we have

that

|C ∩ Γ1
n,4| =

n2 − 8n+ 14

6
.

But the last expression is not an integer. This contradiction proves the lemma. �

Suppose now that C is a perfect code of Γn. Then by Lemma 2.1 we have that
0n 6∈ C. This implies that |C ∩ Γn,1| = 1. Denote with a this unique vertex. The
remaining n − 1 vertices of Γn,1 must be dominated by the vertices of Γn,2. Since a
vertex of Γn,2 dominates precisely two vertices of Γn,1, it follows that n is odd and that
there are

|Γn,2| − (n− 1)/2− (d− 1) =

(
n− 1

2

)
− (n− 1)/2− (d− 1)

= (n2 − 4n− 2d+ 5)/2 (1)

undominated vertices in Γn,2 where d ∈ {n−2, n−1} is the degree of a. These vertices
must be dominated by the vertices of Γn,3 and hence the expression (1) must be divisible
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by 3. Setting d = n − 1 and using the fact that n = 2k + 1 for some integer k, (1) is
reduced to 2k2 − 4k + 1. Since 3 does not divide 2k2 − 4k + 1 for any k > 0, it follows
that d = n − 2. Consequently, a 6∈ {10n−1, 0n−11}. The fact that d = n − 2 implies
that there are (n − 3)2/2 undominated vertices in Γn,2 that need to be dominated by
the vertices of Γn,3. This implies that 6|(n− 3)2, that is, n = 6k + 3 for some k > 0.

In what follows we split the proof into two parts depending on whether a starts with
00 or 01. Suppose first that a starts with 00. Then it dominates precisely n−4 vertices
of Γ0

n,2 and a single vertex of Γ1
n,2 (see Fig. 1.) In order to dominate Γ1

n,1 = {10n−1}, the

perfect code C must contain at least one vertex of Γ1
n,2. Moreover, since every vertex

of Γ1
n,2 is adjacent to 10n−1, we must have |C ∩Γ1

n,2| = 1. Since the vertex a dominates

precisely one vertex in Γ1
n,2, there are |Γ1

n,2| − 2 = n − 4 vertices in Γ1
n,2 that must be

dominated by the vertices in Γ1
n,3 and since each such vertex dominates precisely two

elements of Γ1
n,2 it follows that C must contain (n− 4)/2 vertices of Γ1

n,3. The fact that
n is odd implies that the last expression is not an integer thus deriving a contradiction.

Figure 1: The case when a starts with 00

We are left with the case for which a starts with 01. In this case a actually starts
with 010 and dominates precisely n−3 vertices of Γ0

n,2. As before, in order to dominate

{10n−1} = Γ1
n,1, the set C must contain precisely one vertex of Γ1

n,2, call it b. Notice that

this vertex dominates 10n−1 as well as precisely one vertex in Γ0
n,1. Observe furthermore

that the number of undominated vertices in Γ1
n,2 is (n−2)−1 which in turn imply that

|C ∩ Γ1
n,3| =

n− 3

2
.

4



Finally, we compute the number of undominated vertices of Γ1
n,3. Observe that b

dominates n − 4 − t vertices in Γ1
n,3, where t ∈ {0, 1} depending on whether b starts

with 100 or not. Since a ∈ C, every vertex of C ∩ Γ0
n,2 starts with 00 and hence has

precisely one neighbor in Γ1
n,3. The set Γn,1 contains precisely one vertex of C namely

a. In addition, the vertex b dominates precisely two vertices of Γn,1. Therefore there
are n − 3 undominated vertices in Γn,1 implying that |C ∩ Γ0

n,2| = (n − 3)/2. It thus

follows that (n− 3)/2 vertices of Γ1
n,3 are dominated by Γ0

n,2 and that consequently

|Γ1
n,3| − (n− 3)− (n− 4− t) =

(
n− 3

2

)
− n− 3

2
− n− 3

2
− (n− 4− t)

= (n2 − 11n+ 2t+ 26)/2 (2)

vertices of Γ1
n,3 remain undominated by C. These vertices must be dominated by the

vertices in Γ1
n,4, each vertex dominating precisely 3 vertices. Since n = 6k+ 3 for some

integer k the expression (2) reduces to 18k2 − 15k + t+ 1 which is equivalent to t+ 1
(mod 3) 6≡ 0 for t ∈ {0, 1}. Hence the expression (2) is not divisible by 3 and we have
derived a final contradiction which proves Theorem 1.1.

3 Concluding remarks

Fibonacci cubes Γn generalize to generalized Fibonacci cubes Γn(f), where f is a for-
bidden binary string [11], see also [17, 26]. More precisely, the graph Γn(f) is obtained
from the n-cube Qn by removing all strings that contain f as a substring. Note that
in this notation, Γn = Γn(11). If would be interesting to see whether some generalized
Fibonacci cubes admit perfect codes.

Note that the proof of Theorem 1.1 showed that for any n ≥ 6, no perfect code of
Γn can dominate the vertices in Γn,3. Since vertices in Γn,3 can only be dominated by
vertices in Γn,2 ∪Γn,4 this shows that a very small local structure of Γn already forbids
the existence of a perfect code. In the case of the non-existence of perfect codes in
generalized Fibonacci cubes maybe such local obstructions can also be constructed.
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[15] S. Klavžar, M. Mollard, Asymptotic properties of Fibonacci cubes and Lucas cubes,
Ann. Comb. 18 (2014) 447–457.

6
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