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Abstract

Supramolecular chemistry explores non-covalent interactions between molecules, and it has facili-

tated the design of functional materials and understanding of molecular self-assembly processes. We

investigate a captivating class of supramolecular structures, the guanidinium and hydrogen carbonate

rosette layers. These rosette layers are composed of guanidinium cations and carbonate anions, exhibit-

ing intricate hydrogen-bonding networks that lead to their unique structural properties. Topological

and entropy indices unveil the connectivity and complexity of the structures, providing valuable insights

for diverse applications. We have developed the cut method technique to deconstruct the guanidinium

and hydrogen carbonate rosette layers into smaller components and obtain the distance, Szeged-type

and entropy measures. Subsequently, we conducted a comparative analysis between topological indices

and entropies which contributes to a deeper understanding of the structural complexity of these in-

triguing supramolecular systems. We have derived the degree based topological indices and entropies

of the underlying rosette layers. Furthermore, our computations reveal several isentropic structures

associated with degree and entropy indices. We have employed distance vector sequence-based graph

theoretical techniques in conjunction with symmetry-based combinatorial methods to enumerate and

construct the various NMR spectral patterns which are demonstrated to contrast the isomers and

networks of the rosettes.
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1 Introduction

Non-covalent interactions play significant roles in determining the structure, stability, and various mecha-

nisms associated with biological macromolecules, such as protein folding, DNA replication, ligand-receptor

binding, and the associated biochemical processes [1–5]. While these interactions are individually weak

their cumulative effects can significantly influence the performance and properties of these molecular sys-

tems. Hydrogen bonds, in particular, are relatively strong compared to other non-covalent interactions

and hence these bonds play a significant role in various biological processes [6–8]. As is well known, oxygen

and nitrogen, among other electronegative elements, are often involved in hydrogen bonding due to their

ability to form strong partial negative charges as a consequence of their electronegativity. Supramolecular

chemistry is the study of assemblies of molecules or ions based on non-covalent interactions such as hydro-

gen bonding, van der Waals forces, π− π stacking, and electrostatic and hydrophobic interactions [9–12].

Supramolecular assemblies have a wide range of applications, including drug delivery systems, catalysis,

nanotechnology and the development of molecular machines and switches [13–17]. Many biological pro-

cesses, such as enzyme-substrate interactions, antibody-antigen recognition, and DNA base pairing, are

based on supramolecular host-guest complexes [18–22]. One of the most fascinating aspects of supramolec-

ular chemistry is its self-assembly. It explores how molecules with complementary functional groups tend

to spontaneously organize themselves into larger, well-defined structures through non-covalent interac-

tions [23–25]. This self-organization feature is harnessed in designing complex architectures and functional

materials at the nanoscale. The supramolecular assembly is also observed in nature, for instance, when

proteins fold into specific three-dimensional structures through non-covalent interactions, and when lipid

bilayers self-assemble to form cell membranes [26, 27]. Similarly, DNA molecules can self-assemble into

intricate nanostructures through complementary base-pairing interactions [28–30]. In recent years mathe-

matical and artificial intelligence techniques including big data, neural networks, combinatorial, and graph

theoretical methods have been shown to have several applications in drug discovery, dynamic reaction

networks and so forth [31–34].

The guanidinium ion, denoted as CH6N
+
6 , is the cationic form of guanidine (NH2C(NH)NH2) and hence

contains three amino groups (NH2), which can take part in the H-bonding due to the available lone pair

on the nitrogens. Consequently, the guanidinium ion plays a significant role in supramolecular chemistry

due to strong intramolecular and intermolecular hydrogen bonding with a variety of molecular species,
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including anions, polar organic compounds, and water molecules [35, 36]. It is often influences biological

and chemical processes such as gene therapy, protein and DNA assmeblies, and protein crystallization.

Guanidinium carbonate consists of guanidinium cations and carbonate anions held together by ionic

bonds. A unit cell of guanidinium carbonate has been illustrated in Figure 1.

Figure 1: A unit cell of guanidinium carbonate (GC)

A rosette layer arrangement in a material refers to a circular or radial pattern, analogous to the petals

of a rose flower. In the context of nanomaterials or molecular assemblies, a rosette layer is comprised of

a pattern where certain molecules or molecular groups are arranged in a flower-like configuration [25].

Guanidinium and hydrogen carbonate rosette layers are white or colorless crystalline solids formed by

a self-assembly of guanidinium carbonate ribbons by joining through hydrogen bonds to form a several

layered sheet like structure with a rosette kind of appearance [37, 38]. This assemblage of rosette layers

leads to a bitrapezium shaped structure as shown in Figure 2. Researchers are exploring its potential

applications in various fields, ranging from electronics and catalysis to energy storage and biomedical

applications [39,40].

Chemical graph theory is a branch of theoretical chemistry and mathematics where chemical com-

pounds are represented as graphs, with atoms as nodes (vertices) and chemical bonds as edges (node

connectors). This graph-based representation provides a mathematical framework for analyzing and

modeling the various structural and molecular characteristics [41, 42]. Topological indices are numerical

values associated with a chemical graph that provide significant information about the graph’s under-

lying connectivity with the aid of quantitative structure-activity relationship (QSAR) and quantitative

structure property relationship (QSPR) studies [43–50]. There are numerous types of topological in-
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dices based on factors like distance, atomic-bond connectivity, vertex degree, ring structure, or branching

patterns [51–54]. Each index is tailored to capture specific aspects of a molecular structure.

Figure 2: Bi-trapezium type BT-GC(6, 4)

Distance-based topological indices, pioneered by the introduction of the Wiener index, quantifies struc-

tural characteristics based on the topological distance between atoms in the molecular graph, and these

indices have been widely used to describe the physical density or compactness of chemical networks [55,56].

These indices provide quantitative measures of the structural aspects of molecules and compounds, includ-

ing their branching patterns. Degree-based topological indices are a class of topological descriptors used

particularly in QSAR studies, cheminformatics, and molecular graph theory. These indices are derived

based on the number of edges connected to a node, which in turn provides valuable information about the

connectivity and branching patterns of atoms for further study [47,57–62]. Information-theoretic entropy,
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such as Shannon entropy, is a versatile tool that allows researchers to quantify the structural complexity

and uncertainty in chemical networks, making it applicable to a wide range of domains within chemistry,

biology, and data science [63]. In this study, we discuss the different distance and degree-based indices

along with Shannon entropy and its modified measure in detail. As various supramolecular assemblies

exhibit complex and intricate networks, it becomes necessary to develop network-based mathematical

techniques to contrast closely related structures. In this study, it is shown that the title networks ex-

hibit both isentropic and isomeric networks. Thus, it becomes necessary to develop the needed tools

to juxtapose their properties, such as spectroscopic properties. We have applied distance degree vector

sequence methods in conjunction with symmetry-based combinatorial methods to generate the various

NMR spectral patterns of these networks, such as proton NMR spectra, 13C NMR spectra, 14N NMR and

17O NMR spectra of these networks.

2 Computational Techniques

To study the distance-based topological indices [64–70] and gain comprehensive insights into the struc-

tural traits of guanidinium carbonate (GC), we depict its two-dimensional layout as a simple, connected

chemical graph, taking into account the presence of hydrogen atoms, typically disregarded in graph the-

oretical studies. The graphical representation involves organizing the atoms such as hydrogen, carbon,

oxygen, and nitrogen into a distinct assemblage known as the vertex set V (GC), with the interconnecting

bonds among these atoms forming the edges denoted by the edge set E(GC). For any vertex p1 ∈ V (GC),

we define its degree, denoted by dGC(p1), as the number of edges that are linked to p1 and the open neigh-

borhood NGC(p1) encompasses the set of vertices that are directly connected to vertex p1 through edges.

Moreover, when considering any two vertices p1, p2 ∈ V (GC), we set dGC(p1, p2) to denote the length of

a shortest path between these two vertices, where the length of a path is the number of its edges. The

distance dGC(p1, q1q2) between the vertex p1 and the edge q1q2 is defined as min{dGC(p1, q1), dGC(p1, q2)},

while the distanceDGC(e1, e2) between two edges e1 = p1p2 and e2 = q1q2 is min{dGC(p1, e2), dGC(p2, e2)}.

We define the neighborhood vertex elements associated with the terminal vertices of e1 = p1p2 as

follows: Np1(e1|GC) = {u ∈ V (GC) : dGC(p1, u) < dGC(p2, u)} and Np2(e1|GC) = {u ∈ V (GC) :

dGC(p2, u) < dGC(p1, u)}. Let np1(e1|GC) and np2(e1|GC) be the number of elements in the sets

Np1(e1|GC) and Np2(e1|GC), respectively. Similarly, we define the neighborhood edge elements asso-

ciated with the terminal vertices of e1 as Mp1(e1|GC) = {uv ∈ E(GC) : dGC(p1, uv) < dGC(p2, uv)} and

Mp2(e1|GC) = {uv ∈ E(GC) : dGC(p2, uv) < dGC(p1, uv)}. Further, mp1(e1|GC) and mp2(e1|GC) stand

for the number of elements in the sets Mp1(e1|GC) and Mp2(e1|GC), respectively.

Recently, there has been an emergence of topological indices tailored for strength-weighted graphs,
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which have been extensively explored and discussed in various research papers [52, 64, 65, 67, 70–73]. For

this purpose, the GC structure was assembled to be the strength-weighted graph GCsw = (GC, (wv, sv), se)

where the vertex weight and strength functions are wv : V (GCsw) → R+
0 , sv : V (GCsw) → R+

0 and the

edge strength function is se : E(GCsw) → R+
0 . The basic graph theoretical terminologies of GCsw are

relatively connected to GC structure that are defined as follows: NGCsw(p1) = NGC(p1), dGCsw(p1, p2) =

dGC(p1, p2), dGCsw(p1, q1q2) = dGC(p1, q1q2), DGCsw(e1, e2) = DGC(e1, e2), Np1(e1|GCsw) = Np1(e1|GC),

and Mp1(e1|GCsw) = Mp1(e1|GC). The degree of vertex p1 in GCsw is defined by the expression

dGCsw(p1) =
∑

x∈NGCsw (p1)

se(p1x). The cardinality of the closeness measures of the edge e1 = p1p2 is calcu-

lated by np1(e1|GCsw) =
∑

u∈Np1 (e1|GCsw)

wv(u),mp1(e1|GCsw) =
∑

u∈Np1 (e1|GCsw)

sv(u)+
∑

uv∈Mp1 (e1|GCsw)

se(uv).

The computations of np2(e1|GCsw) and mp2(e1|GCsw) are carried out analogously.

We introduce the notation TI(GCsw) to symbolize the distance-based topological indices for the

guanidinium and hydrogen carbonate rosette layers. This notation encompasses vertex and edge-based

contributions, including indices such as Wiener, Szeged, PI, Schultz, Gutman, and Mostar, which are

stated below.

1. W (GCsw) =
∑

{p1,p2}⊆V (GCsw)

wv(p1)wv(p2)dGCsw(p1, p2)

2. We(GCsw) =
∑

{p1,p2}⊆V (GCsw)

sv(p1)sv(p2)dGCsw(p1, p2) +
∑

{e1,e2}⊆E(GCsw)

se(e1)se(e2)DGCsw(e1, e2)

+
∑

p1∈V (GCsw)

∑
e1∈E(GCsw)

sv(p1) se(e1) dGCsw(p1, e1)

3. Wev(GCsw) =
1
2

[ ∑
{p1,p2}⊆V (GCsw)

{wv(p1)sv(p2) + wv(p2)sv(p1)}dGCsw(p1, p2)

+
∑

p1∈V (GCsw)

∑
e1∈E(GCsw)

wv(p1) se(e1) dGCsw(p1, e1)

]

4. S(GCsw) =
∑

{p1,p2}⊆V (GCsw)

[
wv(p2)(dGCsw(p1)+2sv(p1))+wv(p1)(dGCsw(p2)+2sv(p2))

]
dGCsw(p1, p2)

5. Gut(GCsw) =
∑

{p1,p2}⊆V (GCsw)

(dGCsw(p1) + 2sv(p1))(dGCsw(p2) + 2sv(p2))dGCsw(p1, p2)

6. Szv(GCsw) =
∑

e1=p1p2∈E(GCsw)

se(e1)np1(e1|GCsw)np2(e1|GCsw)

7. Sze(GCsw) =
∑

e1=p1p2∈E(GCsw)

se(e1)mp1(e1|GCsw)mp2(e1|GCsw)
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8. PIv(GCsw) =
∑

e1=p1p2∈E(GCsw)

se(e1)
[
np1(e1|GCsw) + np2(e1|GCsw)

]

9. PIe(GCsw) =
∑

e1=p1p2∈E(GCsw)

se(e1)
[
mp1(e1|GCsw) +mp2(e1|GCsw)

]

10. Mov(GCsw) =
∑

e1=p1p2∈E(GCsw)

se(e1)|np1(e1|GCsw)− np2(e1|GCsw)|

11. Moe(GCsw) =
∑

e1=p1p2∈E(GCsw)

se(e1)|mp1(e1|GCsw)−mp2(e1|GCsw)|

The distance-based topological indices of GC structures can be easily deduced from GCsw by con-

sidering wv = 1, sv = 0, and se = 1. To enhance the efficiency of our computational procedures, we

have incorporated the cut method technique [65, 67, 70, 74, 75] for the calculation of topological indices

for hydrogen-bonded guanidinium carbonate structures. A subgraph denoted as H(GC) within the graph

GC is considered isometric when the distances between vertices p1 and p2 in GC is equal to the distances

between the same vertices in H(GC). Any isometric subgraph of binary hypercubes is called a partial

cube, and in the case of GC structures, it is not a partial cube. Hence, we employ the transitive closure

of Djoković-Winkler relation to compute the distance based indices, the technique that was proposed for

the first time in [69] for the case of the Wiener index.

The Djoković-Winkler relation Θ is defined by saying that two edges e1 = p1p2 and e2 = q1q2 of GC

are in relation Θ if dGC(p1, q1) + dGC(p2, q2) ̸= dGC(p1, q2) + dGC(p2, q1). The transitive closure Θ∗ of Θ

is a reflexive, symmetric, and transitive relation. Let B = {B1, B2, . . . , Br} be the partition of the edge

set of GC induced by the relation Θ∗, the sets Bi are called the Θ∗-classes. For 1 ≤ i ≤ r, the quotient

graph GC/Bi has the connected components of GC − Bi as vertices. Two vertices X and Y of GC/Bi

(that is, components of GC−Bi) are adjacent in GC/Bi if there exists an edge xy ∈ Bi such that vertex

x lies in the component X and y lies in the component Y .

Let us apply the above concepts to the unit cell of guanidinium carbonate; at the same time we add

that the treatment in general cases is analogous. First, an edge e of an even cycle is in relation Θ to

another edge f of the cycle if and only if e and f are opposite edges on the cycle. This property remains

valid for each 8-cycle and each 12-cycle of the molecular structures considered in this paper because each

of these cycles is an isometric (in fact, even convex) subgraph of the structure. Consider now an arbitrary

edge of the unit cell of guanidinium carbonate that lies on the boundary of two 8-cycles, such as the edge

e′ in Figure 3. Then e′ is in relation Θ to the two respective oposite edges e and e′′ on the two 8-cycles in

which e′ lies. Then {e, e′, e′′} form the Θ∗-class (equivalently, the Θ-class) containing e′. Consequently,

the quotient graph of this Θ∗-class is the complete graph on two vertices K2. Consider next an edge of the
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unit cell of guanidinium carbonate that simultaneously lies on the boundary of an 8-cycle and a 12-cycle,

such as the edge f ′ from Figure 3. On the corresponding 8-cycle f ′ is in relation Θ with the edge f from

the figure, while on the 12-cycle, f ′ is in relation Θ with the edge f ′′. Further we have f ′′Θf ′′′. We

get analogous conclusions for the edges g, g′, g′′ and g′′′ from the figure. Moreover, since we can easily

infer that f is in relation Θ with g′′, we can conclude that {f, f ′, f ′′, f ′′′, g, g′, g′′, g′′′} form the Θ∗-class

containing f ′. It follows that the quotient graph of this Θ∗-class is the complete bipartite graph K2,4.

Figure 3: Two Θ∗-classes of the unit cell of guanidinium carbonate

Let TI denote a generic topological index such as W , We, Wev, S, Gut, Szv, Sze, PIv, PIe, Mov, and

Moe. Then

TI(GC) =
r∑

i=1

TI(GC/Bi, (w
i
v, s

i
v), s

i
e)

where

• wi
v : V (GC/Bi) → R+

0 , w
i
v(A) =

∑
a∈A

wv(a), ∀ A ∈ GC/Bi,

• siv : E(GC/Bi) → R+
0 , s

i
v(A) =

∑
ax∈A

se(ax) +
∑
a∈A

sv(a), ∀ A ∈ GC/Bi,

• sie : E(GC/Bi) → R+
0 , s

i
e(AB) =

∑
ab∈Bi

a∈A, b∈B

se(ab), ∀ AB ∈ E(GC/Bi).

Now, we discuss the special cases of quotient graphs such as the complete graph on two vertices K2

and complete bipartite graph K2,m, as shown in Figure 4, and their associated topological formulas.

Let GC1
sw be the strength weighted graph

(
K2, (w1, s1), (w2, s2), se

)
as shown in Figure 4a. Then

W (GC1
sw) = w1w2, We(GC1

sw) = s1s2, Wev(GC1
sw) =

1
2 [w1s2+ s1w2], S(GC1

sw) = w2(2s1+ se)+w1(2s2+

se), Gut(GC1
sw) = (2s1 + se)(2s2 + se), Szv(GC1

sw) = sew1w2, Sze(GC1
sw) = ses1s2, PIv(GC1

sw) =

se(w1 + w2), PIe(GC1
sw) = se(s1 + s2), Mov(GC1

sw) = se|w1 − w2|, and Moe(GC1
sw) = se|s1 − s2|.
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(a) (b)

Figure 4: Special cases of strength weighted graphs (a) K2 (b) K2,m

Let GC2
sw be the strength weighted graph

(
K2,m, (w1, s1), (w2, s2), (w3, s3), se

)
as shown in Figure 4b.

Then,

� W (GC2
sw) = w2

3m
2 + (w1w3 + w2w3–w

2
3)m+ 2w1w2

� We(GC2
sw) = m(s1 + s2)s3 +2(s1s2) +m(m− 1)s23 +m(s2e(m− 1)) +mse(s1 + s2) + 2m(m− 1)ses3

� Wev(GC2
sw) =

1
2

(
(2s3w3+2sew3)m

2+(w1(s3+se)+s1w3+s2w3+s3w2−2s3w3+sew2−2sew3)m+

2s1w2 + 2s2w1

)
� S(GC2

sw) = (2dGCsw(w3)w3+4s3w3)m
2+(dGCsw(w1)w3+dGCsw(w2)w3+dGCsw(w3)w2−2dGCsw(w3)w3+

2s1w3+2s2w3+2s3w2−4s3w3+w1(dGCsw(w3)+2s3))m+2dGCsw(w1)w2+4s1w2+w1(2dGCsw(w2)+

4s2)

� Gut(GC2
sw) = m((dGCsw(w3) + 2s3)((dGCsw(w1) + s1) + (dGCsw(w2) + 2s2))) + 2((dGCsw(w1) +

2s1)(dGCsw(w2) + 2s2)) +m(m− 1)(dGCsw(w3) + 2s3)
2

� Szv(GC2
sw) = mse

(
(w1w3 + w2w3 + 2w2

3)m− 2w2
3 + 2w1w2

)
� Sze(GC2

sw) = mse
(
(s1(s3 + se) + s2s3 + s2se + 4s3se + 2s23 + 2s2e)m− 2s23 − 4s3se − 2s2e + 2s1s2

)
� PIv(GC2

sw) = 2mse
(
w1 + w2 +mw3

)
� PIe(GC2

sw) = 2mse
(
s1 + s2 + (s3 + se)m

)
� Mov(GC2

sw) = mse
(
|w1–w2 − 2w3 +mw3|+|w2–w1 − 2w3 +mw3|

)
� Moe(GC2

sw) = mse
(
|s1 − s2 − s3 − se + (s3 + se)(m− 1)|+|s2 − s1 − s3 − se + (s3 + se)(m− 1)|

)
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As we see that the quotient graph GC/Bi reduces to either K2 or K2,m, the above-discussed formulas will

be used for the calculation of distance-based indices of the GC structure.

3 Results and Discussion

We examine the various distance based topological and entropy indices for the guanidinium and hydrogen

carbonate rosette layers, as they add a unique platform for understanding self-assembly processes and

also provide a powerful toolbox for engineering complex structures and unlocking innovative solutions to

real-world challenges. The arrangement of GC units in varied ways give rise to different structural pattern

of guanidinium carbonate layers in which bi-trapezium shaped structures comprising of large number of

GC units. We denote such structure by BT-GC(m,h), where the base layer of trapezium consists of m

units in linear pattern and the non-parallel sides with h units such that m ≥ 2 and h ≤ m. Figure 2 shows

the guanidinium carbonate rosette layers BT-GC(m,h). The special case of bi-trapezium configuration

are deduced by fixing suitable values for m and h [25,37,38]. The linear chain of guanidinium carbonate

is obtained by setting h = 1 and denoted by L-GC(m). The hexagonal and parallelogram shaped GC

layers are obtained by setting m = 2h − 1 and m = h respectively which are denoted by H-GC(h) and

P-GC(h). These three structures−linear, hexagonal and parallelogram shaped arrangements are shown

in Figure 5. From the structural pattern of BT-GC(m,h), we have the number of vertices and edges as

28hm− 14h2 + 30h+ 2m+ 2 and 36hm− 18h2 + 36h respectively.

3.1 Distance Based Topological Indices

In this section, we provide the detailed formulations of distance-based topological indices of BT-GC(m,h)

in two different cases by splitting the range of h.

Theorem 1. Let BT-GC be the bi-trapezium type of guanidinium and hydrogen carbonate rosette layers

BT-GC(m,h), where h ≤ ⌈m2 ⌉. Then,

1. W (BT-GC)=2
5((1960h

2 + 280h + 10)m3 − (980h3 − 6510h2 − 790h − 40)m2 − (2100h3 − 490h4 −

7250h2 − 560h− 40)m− 686h5 + 315h4 − 1190h3 + 2810h2 + 76h+ 10)

2. We(BT-GC)=2
5(3240h

2m3− (1620h3−8100h2+200h+10)m2+(810h4−1620h3+6555h2−410h−

15)m− 1134h5 + 405h4 − 75h3 + 1680h2 − 146h− 5)

3. Wev(BT-GC)=1
5h((5040h + 360)m3 − (2520h2 − 14670h − 700)m2 − (3960h2 − 1260h3 − 14280h −

80)m− 1764h4 + 720h3 − 1500h2 + 4770h–171)
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(a)

(b)

(c)

Figure 5: Special cases of BT-GC(m,h) carbonate rossette (a) Linear chain L-GC(6) (b) Hexagonal layers
H-GC(2) (c) Parallelogram layers P-GC(4)
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4. S(BT-GC)=4
5h((5040h+360)m3−(2520h2−15930h−790)m2+(1260h3−5220h2+16845h+260)m−

1764h4 + 1035h3 − 2805h2 + 6075h− 81)

5. Gut(BT-GC)=2
5(12960h

2m3− (6480h3− 38880h2+860h+20)m2+(3240h4− 12960h3+39000h2−

1800h− 30)m− 4536h5 + 3240h4 − 6600h3 + 13080h2 − 709h− 10)

6. Szv(BT-GC)=2
5h((11760h

2+1960h− 720)m3− (17640h3−35560h2− 8280h+2020)m2+(8820h4−

37310h3 + 33900h2 + 11350h− 1780)m− 1470h5 + 9646h4 − 20365h3 + 9430h2 + 5250h− 426)

7. Sze(BT-GC)=2((3888h3−216h2−88h)m3− (5832h4−11124h3+336h2+256h+4)m2− (10692h4−

2916h5 − 10692h3 + 54h2 + 220h+ 6)m− 486h6 + 2592h5 − 5395h4 + 3459h3 + 140h2 − 46h− 2)

8. PIv(BT-GC)=36h(h− 2m–2)(7h2 −m− 14hm− 15h–1)

9. PIe(BT-GC)=2((648h2−12h+4)m2−(648h3−1260h2+32h−6)m+162h4−612h3+624h2−25h+2)

10. Mov(BT-GC)=2((252h2 + 12h+ 8)m2 + (504h2 − 252h3 − 6h+ 8)m+ 74(−1)mh− 98h− 579h2 +

628h3 − 161h4 + 844(−1)mh2 − 880(−1)mh3 + 224(−1)mh4)

11. Moe(BT-GC)=2((324h2 +4)m2 + (648h2 − 324h3 − 28h+2)m+8(−1)mh− 38h− 846h2 +828h3 −

207h4 + 1172(−1)mh2 − 1152(−1)mh3 + 288(−1)mh4–2)

Proof. Due to the symmetry of BT-GC, we consider only the bottom half of vertical bonds from south

to north directions. In the bottom trapezium, we see that there are h number of zigzag benzene layers

and two consecutive layers linked by bridging back-to-back bonds. For 1 ≤ j ≤ h, let V Zj be the

Θ-class consisting of vertical bonds of jth zigzag layer from south direction. Then the quotient graph

BT-GC/V Zj is a strength weighted graph K2 with parameters
(
BT-GC/V Zj , (14jm− 14hj +7j2 +9j −

6m+6h–5, 18jm− 18hj+9j2+8j− 10m+10h–7), (14hj− 14jm+28hm− 7j2− 14h2− 9j+24h+8m+

7, 18hj − 18jm+ 36hm− 9j2 − 18h2 − 10j + 8m+ 28h+ 6), 1
)
.

For 1 ≤ j ≤ h − 1, let V Bj be the Θ∗-class consisting of binding bonds between jth and (j +

1)th zigzag layers. Then BT-GC/V Bj is a strength weighted graph K2,2(m−h+j+1) with parameters(
BT-GC/V Bj , (14jm− 14hj+7j2 +15j, 18jm− 18hj+9j2 +16j− 2m+2h–2), (14hj− 14jm+28hm−

7j2 − 14h2 − 17j + 32h, 18hj − 18jm+ 36hm− 9j2 − 18h2 − 20j + 38h− 2m–2), (1, 0), 1
)
.

Similarly, we extend our analysis to the acute edge classes and again due to the symmetry of BT-

GC structure, we consider only the first h zigzag benzene layers with vertical bonds from north-west to

south-east direction. For 1 ≤ j ≤ h, let AZj be the Θ-class consisting of vertical bonds of jth layer

from north-west direction. Then the quotient graph BT-GC/AZj is a strength weighted graph K2 with

parameters
(
BT-GC/AZj , (14hj + 7j2 − 5j − 6h+ 1, 18hj + 9j2 − 10j − 10h+ 3), (28hm− 14hj − 7j2 −

14h2 + 5j + 36h+ 2m+ 1, 36hm− 18hj − 9j2 − 18h2 + 8j + 44h–2), 1
)
.
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For 1 ≤ j ≤ h−1, let ABj be the Θ
∗-class, consisting of binding bonds between jth and (j+1)th zigzag

layers. Hence BT-GC/ABj is a strength weighted graph of K2,2(h+j) with parameters
(
BT-GC/ABj , (14hj+

7j2 + j, 18hj + 9j2 − 2j − 2h), (28hm − 14hj − 14h2 − 7j2 − 3j + 28h + 2m + 2, 36hm − 18hj − 18h2 −

9j2 − 2j + 34h), (1, 0), 1
)
.

After covering Θ-class AZh, there are m− 2h+ 1 number of zigzag benzene layers of equal size. For

1 ≤ j ≤ m− 2h+ 1, let AMZj be the Θ-class consisting of vertical bonds of zigzag layers. The quotient

graph BT-GC/AMZj is a strength weighted graph K2 with parameters
(
BT-GC/AMZj , (28hj + 21h2 −

11h+2j–1, 36hj+27h2− 20h), (28hm− 28hj− 35h2+41h− 2j+2m+3, 36hm− 36hj− 45h2+52h), 1
)
.

For 1 ≤ j ≤ m − 2h + 2, let AMBj be the Θ∗-class with binding bonds between zigzag benzene

layers starting from ABh−1. Then BT-GC/AMBj is a strength weighted graph K2,4h with parameters(
BT-GC/AMBj , (28hj +21h2 +2j − 27h–2, 36hj +27h2 − 40h), (28hm− 28hj − 35h2 +53h− 2j +2m+

4, 36hm− 36hj − 45h2 + 68h), (1, 0), 1
)
.

To end with, we have 4(h +m + 1) peripheral pendant Θ-class, namely PPj , 1 ≤ j ≤ 4(h +m + 1)

with quotient graph of K2, with parameters
(
BT-GC/PPj , (1, 0), (28hm− 14h2 + 30h+ 2m+ 1, 36hm−

18h2 + 36h–1), 1
)
.

With the above discussed structural information based on Θ∗-parameters of BT-GC(m,h), we can

calculate the distance-based topological indices.

Theorem 2. Let BT-GC be the bi-trapezium type of guanidinium and hydrogen carbonate rosette layers

BT-GC(m,h), where h > ⌈m2 ⌉. Then,

1. W (BT-GC)=2
5((490h− 245)m4 − 49m5 + (2240h− 495)m3 + (2940h3 + 630h2 + 3820h− 495)m2 +

(5740h3 − 3430h4 + 1190h2 + 2700h− 226)m+ 882h5 − 3605h4 + 2850h3 + 670h2 + 608h− 30)

2. We(BT-GC)= 2
15((2430h− 1215)m4 − 243m5 + (9720h− 2500)m3 + (14580h3 − 4860h2 + 14400h−

2670)m2+(34020h3−17010h4−10335h2+9330h−1352)m+4374h5−18225h4+19775h3−5520h2+

2176h− 210)

3. Wev(BT-GC)= 1
15((3780h− 1890)m4− 378m5+(16200h− 3880)m3+(22680h3− 1350h2+25380h−

4080)m2 + (−26460h4 + 48600h3 − 3720h2 + 16560h − 2012)m + 6804h5 − 28080h4 + 26540h3 −

2010h2 + 3511h–300)

4. S(BT-GC)= 4
15((3780h− 1890)m4 − 378m5 + (16200h− 3880)m3 + (22680h3 + 2430h2 + 25650h−

4080)m2+(44820h3−26460h4+3975h2+17100h−2012)m+6804h5−27135h4+22625h3+1905h2+

3781h− 300)
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5. Gut(BT-GC)= 2
15((9720h−4860)m4−972m5+(38880h−9940)m3+(58320h3+57060h−10440)m2+

(116640h3−68040h4−2280h2+36120h−5168)m+17496h5−68040h4+59720h3−2280h2+8029h−780)

6. Szv(BT-GC)=2
5(14m

5−(140h+60)m4−(760h−11760h3−2520h2+430)m3−(17640h4−34440h3−

9960h2 + 1000h + 700)m2 − (36190h4 − 8820h5 − 29580h3 − 12430h2 + 180h + 384)m − 1470h6 +

9198h5 − 17165h4 + 6630h3 + 4850h2 + 182h− 40)

7. Sze(BT-GC)=2
3((216h − 138)m4 − (2052h2 − 11664h3 − 1152h + 560)m3 − (17496h4 − 36612h3 +

5220h2 − 2124h + 768)m2 − (35100h4 − 8748h5 − 36348h3 + 4200h2 − 1740h + 394)m − 1458h6 +

8640h5 − 17001h4 + 11365h3 − 1194h2 + 554h− 48)

8. PIv(BT-GC)=36h(h− 2m–2)(7h2 −m− 14hm− 15h–1)

9. PIe(BT-GC)=2(4m3 + (648h2 − 36h+ 16)m2 + (1308h2 − 648h3 − 80h+ 16)m+ 162h4 − 644h3 +

672h2 − 45h+ 4)

10. Mov(BT-GC)=2(2m3+(252h2+3(−1)m+3)m2+(528h2−252h3−30h+11(−1)m−15)m+63h4−

268h3 + 321h2 − 32h+ 8(−1)m–16)

11. Moe(BT-GC)=2((324h2 + 5(−1)m − 11)m2 + (648h2 − 324h3 − 28h + 14(−1)m − 32)m + 81h4 −

324h3 + 366h2 − 30h+ 9(−1)m–21)

Proof. To compute the calculation of topological expressions, we use the proof of the case h ≤ ⌈m2 ⌉ with

the following minor modifications.

� The range of the classes { AZj : 1 ≤ j ≤ h } and { ABj : 1 ≤ j ≤ h− 1 } are changed into { AZj :

1 ≤ j ≤ m− h+ 1 } and { ABj : 1 ≤ j ≤ m− h } respectively.

� The range of the classes { AMZj : 1 ≤ j ≤ m − 2h + 1 } into { AMZj : 1 ≤ j ≤ 2h − m − 1 }

with graph theoretical parameters
(
BT-GC/AMZj , (14jm+7m2 − 7h2 +9m− h+16j +1, 18jm+

9m2 − 9h2 + 8m+ 18j–1), (28hm− 14jm− 7h2 − 7m2 − 7m+ 31h− 16j + 1, 36hm− 18jm− 9h2 −

9m2 − 10m+ 36h− 18j–1), 1
)
.

� The range of the classes { AMBj : 1 ≤ j ≤ m − 2h + 2 } into { AMBj : 1 ≤ j ≤ 2h −m } with

graph theoretical parameters
(
BT-GC/AMBj , (14jm+ 7m2 − 7h2 +m− h+ 16j–8, 18jm+ 9m2 −

9h2 − 2m+ 18j–11), (28hm− 14jm− 7h2 − 7m2 −m+ 31h− 16j + 8, 36hm− 18jm− 9h2 − 9m2 −

2m+ 36h− 18j + 7), (1, 0), 1
)
.
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In addition, we would like to mention that the above derived expressions hold for special cases of bi-

trapezium GC(m,h) rosette layers, including linear, hexagonal, and parallelogram types of GC rosette

layers. The numerical values of the computed indices are given for parallelogram type GC rosette layers

in Table 1.

Table 1: Szeged-type indices of P-GC(h)

H
HHH

HHTI
h

1 2 3 4 5 6 7 8 9 10

Szv 21690 364152 2288114 9123360 27799530 70800296 158540898 322169040 606789146 1075109976

Sze 22356 447264 3029472 12612896 39545468 102793856 233758024 480785632 914386276 1633145568

PIv 2592 17568 60480 152928 322560 603072 1034208 1661760 2537568 3719520

PIe 2754 20052 71150 183072 390618 736364 1270662 2051640 3145202 4625028

Mov 1068 8424 29196 74992 158172 297416 509916 821808 1254732 1842664

Moe 1242 10216 35898 93160 197530 373224 641658 1037032 1586010 2333416

3.2 Szeged-type Entropies of GC Strutures

Entropy is an essential concept that quantifies the level of disorder, randomness, or uncertainty within

a system In the field of thermodynamics, it quantifies unusable thermal energy and reflects the system’s

tendency to become more disordered. In information theory, it measures uncertainty in outcomes, rep-

resenting information content. In both contexts, entropy describes inherent randomness and the drive

towards greater disorder or uncertainty [76]. Shannon’s entropy serves as a widely-utilized graph measure

that assigns probabilities to components, enabling a more profound comprehension of structural informa-

tion [77,78]. These entropy-based methods, valued for their capacity to assess system complexity through

user-friendly evaluation procedures, hold a prominent role in tackling challenges spanning diverse domains

such as computational physics, information theory, thermodynamics, chemistry, statistics, and computer

science [79–81].

To integrate Shannon’s entropy idea and topological indices, we need to identify the structural infor-

mation function on the elements of E(GC). Such a function can be defined by the structural characteristics

of GC by the index function g : E(GC) → R+. Suppose E(GC) = {q1, q2, ..., qn}, the Shannon entropy

topological index of GC connected to g is given by

Ig(GC) = −
n∑

i=1

g(qi)∑n
j=1 g(qj)

log

(
g(qi)∑n
j=1 g(qj)

)

= log

( n∑
i=1

g(qi)

)
− 1∑n

i=1 g(qi)
log

( n∏
i=1

g(qi)
g(qi)

)
.
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It is highly uncommon to see that the elements of the set {g(q1), g(q2), ..., g(qn)} are distinct, and hence,

we rearrange the elements of the set with frequencies as {(gi, ri) : 1 ≤ i ≤ k} where the index value gi

repeated ri times such that r1 + r2 + ...+ rk = n. Therefore,

Ig(GC) = log

( k∑
i=1

rigi

)
− 1∑k

i=1 rigi
log

( k∏
i=1

gi
giri

)
.

In recent studies [82,83], the above defined Shannon entropy topological index was modified by incor-

porating the scalar multiplication as defined below:

I∗g (GC) = log

( k∑
i=1

rigi

)
− 1∑k

i=1 rigi
log

( k∏
i=1

rigi
gi

)
.

We now conduct a comparative study between Szeged-type topological indices and Shannon entropy

Szeged-type indices as well as with modified entropy indices from Tables 2 and 3. As we see that the

numerical values of Szeged-type topological indices are high compared to entropy indices, therefore, we

implement data scaling on the Szeged indices to address this disparity based on the number of edges,

because these indices were computed with their edge contributions. For this purpose, we calculate the

normalized Szeged-type indices for the values in Table 1. This is done by dividing each value by the

total number of edges corresponding to its respective dimension, followed by taking the square root. The

results are presented in Table 4.

Table 2: Shannon Szeged-type entropies of P-GC(h)

HH
HHHHITI

h
1 2 3 4 5 6 7 8 9 10

Szv 4.544 5.434 5.988 6.403 6.738 7.020 7.264 7.479 7.672 7.846

Sze 4.468 5.364 5.916 6.333 6.670 6.954 7.200 7.418 7.613 7.790

PIv 4.168 5.109 5.715 6.170 6.536 6.843 7.108 7.341 7.550 7.738

PIe 4.159 5.095 5.700 6.155 6.522 6.830 7.096 7.330 7.539 7.727

Mov 3.442 4.734 5.376 5.862 6.242 6.562 6.835 7.075 7.289 7.482

Moe 3.549 4.734 5.369 5.862 6.238 6.561 6.833 7.075 7.287 7.482

From Table 5, we observe that the correlation values derived using the modified version of Shannon’s

entropy formula, which incorporates scalar multiplicative indices, demonstrating superior predictive ef-

ficacy compared to conventional Shannon’s entropy measures. This suggests that integrating modified

entropies into the regression model enhances its predictive capability for the normalized Szeged index,

16



Table 3: Modified Shannon Szeged-type entropies of P-GC(h)

H
HHH

HHI∗TI

h
1 2 3 4 5 6 7 8 9 10

Szv 9.725 12.399 14.356 15.736 16.910 17.846 18.688 19.399 20.062 20.630

Sze 9.756 12.590 14.627 16.048 17.254 18.209 19.069 19.792 20.450 21.042

PIv 7.722 9.676 10.932 11.871 12.625 13.302 13.802 14.280 14.706 15.091

PIe 7.705 9.701 11.028 11.978 12.763 13.400 13.962 14.443 14.882 15.269

Mov 6.716 8.795 10.067 11.035 11.799 12.445 12.995 13.483 13.920 14.306

Moe 6.865 8.978 10.266 11.245 12.031 12.666 13.229 13.716 14.145 14.539

Table 4: Normalized Szeged-type indices

HHH
HHHTI
h

1 2 3 4 5 6 7 8 9 10

Szv 20.042 50.288 92.057 145.323 210.063 286.260 373.908 473.000 583.533 705.504

Sze 20.347 55.732 105.926 170.870 250.541 344.927 454.022 577.823 716.326 869.532

PIv 6.928 11.045 14.967 18.815 22.627 26.420 30.199 33.971 37.736 41.497

PIe 7.141 11.800 16.233 20.586 24.900 29.194 33.474 37.746 42.012 46.273

Mov 4.447 7.649 10.399 13.176 15.845 18.554 21.205 23.889 26.535 29.208

Moe 4.796 8.423 11.531 14.685 17.707 20.784 23.787 26.836 29.833 32.868

Table 5: Correlation analysis between Shannon entropy and its modified entropy of P-GC(h)

P-GC(h) Correlation between
normalized Szeged index
and Shannon entropy

Correlation between
normalized Szeged index
and modified entropy

h = 1 0.84250 0.98590

h = 2 0.85817 0.98390

h = 3 0.82757 0.98958

h = 4 0.80695 0.99044

h = 5 0.78208 0.99077

h = 6 0.76141 0.99055

h = 7 0.73948 0.99104

h = 8 0.71970 0.99114

h = 9 0.69960 0.99101

h = 10 0.68084 0.99119
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consequently leading to an improved accuracy in predicting the physicochemical properties of GC struc-

tures.

3.3 Degree Topological Indices

Degree indices are defined according to the degrees of bond ends. The general formulation of degree

topological indices of BT-GC(m,h) is expressed as follows:

χ(BT-GC) =
∑

p1p2∈E(BT-GC)

χ(p1p2)

where χ(p1p2) = χ(p2p1). The degree topological indices are obtained by taking χ(p1p2) = χ(dGC(p1), dGC(p2))

which received a lot of interest [84], including,

1. Bi−Zagreb BM(dGC(p1), dGC(p2)) = (dGC(p1) + dGC(p2) + dGC(p1)dGC(p2))

2. Tri−Zagreb TM(dGC(p1), dGC(p2)) = (d2GC(p1) + d2GC(p2) + dGC(p1)dGC(p2))

3. Geometric−arithmetic GA(dGC(p1), dGC(p2)) = 2

√
dGC(p1)dGC(p1)

dGC(p1) + dGC(p2)

4. Geometric−Bi Zagreb GBM(dGC(p1), dGC(p2)) =

√
dGC(p1)dGC(p2)

dGC(p1)+dGC(p2)+dGC(p1)dGC(p2)

5. Geometric−Tri Zagreb GTM(dGC(p1), dGC(p2)) =

√
dGC(p1)dGC(p2)

d2GC(p1)+d2GC(p2)+dGC(p1)dGC(p2)

6. Bi Zagreb− Geometric BMG(dGC(p1), dGC(p2)) =
dGC(p1)+dGC(p2)+dGC(p1)dGC(p2)√

dGC(p1)dGC(p2)

7. Tri Zagreb− Geometric TMG(dGC(p1), dGC(p2)) =
d2GC(p1)+d2GC(p2)+dGC(p1)dGC(p2)√

dGC(p1)dGC(p2)

8. Harmonic H(dGC(p1), dGC(p2)) =
2

dGC(p1) + dGC(p2)

9. Sombor SO(dGC(p1), dGC(p2)) =
√
d2GC(p1) + d2GC(p2)

10. Atom bond connectivity ABC(dGC(p1), dGC(p2)) =

√
dGC(p1) + dGC(p2)− 2

dGC(p1)dGC(p2)

These expressions are derived using the edge partition method applied to the BT-GC(m,h) structure,

utilizing the degrees of the endpoints of the edges. The partition of the bond set of BT-GC(m,h) is shown

in Table 6.

Theorem 3. The degree topological indices of BT-GC(m,h) are given by

1. BM(BT-GC(m,h)) = 444hm− 222h2 + 428h− 16m− 16
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Table 6: Degree bond partition of BT-GC(m,h)

Bond-type

X−Y
dGC(X)-dGC(Y) Number of occurrences in BT-GC(m,h)

O−H 1− 3
2h+ 2m+ 2

N−H 1− 3

O−H 2− 3
12hm− 6h2 + 10h− 2m− 2

N−H 2− 3

O−C 3− 3
6hm− 3h2 + 6h

N−C 3− 3

2. TM(BT-GC(m,h)) = 780hm− 390h2 + 756h− 24m–24

3. GA(BT-GC(m,h)) = 2
5(24

√
6hm+30hm−12

√
6h2−15h2+20

√
6h+5

√
3h+30h−4

√
6m+5

√
3m−

4
√
6 + 5

√
3)

4. GBM(BT-GC(m,h)) = 2
385(420

√
6hm+ 462hm− 210

√
6h2 − 231h2 + 110

√
3h+ 350

√
6h+ 462h+

110
√
3m− 70

√
6m+ 110

√
3− 70

√
6)

5. GTM(BT-GC(m,h)) = 2
741(468

√
6hm+ 494hm− 234

√
6h2 − 247h2 + 114

√
3h+ 390

√
6h+ 494h+

114
√
3m− 78

√
6m+ 114

√
3− 78

√
6)

6. BMG(BT-GC(m,h)) = 2
3(66

√
6hm+ 90hm− 33

√
6h2 − 45h2 + 55

√
6h+ 14

√
3h+ 90h− 11

√
6m+

14
√
3m− 11

√
6 + 14

√
3)

7. TMG(BT-GC(m,h)) = 2
3(114

√
6hm+162hm−57

√
6h2−81h2+95

√
6h+26

√
3h+162h−19

√
6m+

26
√
3m− 19

√
6 + 26

√
3)

8. H(BT-GC(m,h)) = 2
5(34hm− 17h2 + 35h+m+ 1)

9. SO(BT-GC(m,h)) = 2(18
√
2hm + 12

√
13hm − 9

√
2h2 − 6

√
13h2 + 18

√
2h + 2

√
10h + 10

√
13h +

2
√
10m− 2

√
13m+ 2

√
10− 2

√
13)

10. ABC(BT-GC(m,h)) = 2
3(18

√
2hm+12hm−9

√
2h2−6h2+2

√
6h+15

√
2h+12h+2

√
6m−3

√
2m+

2
√
6− 3

√
2)

We now derive the entropy measures associated with those degree based topological indices of GC

structure. The numerical values are given in Table 7, and corresponding 3-D bar plots generated with

the MATLAB interface is shown in Figure 6.
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Table 7: Degree based entropies of P-GC(h)

HHH
HHHI∗TI

h
1 2 3 4 5 6 7 8 9 10

BM 6.282 7.382 8.048 8.535 8.923 9.245 9.521 9.764 9.979 10.174

TM 6.831 7.943 8.611 9.100 9.488 9.810 10.087 10.329 10.544 10.739

GA 3.788 4.861 5.525 6.012 6.380 6.723 7.000 7.241 7.457 7.651

GBM 1.844 3.125 3.872 4.402 4.814 5.152 5.440 5.689 5.910 6.109

GTM 0.739 2.293 3.144 3.726 4.169 4.526 4.827 5.086 5.314 5.518

BMG 5.389 6.448 7.101 7.582 7.966 8.286 8.561 8.801 9.016 9.209

TMG 5.947 7.013 7.667 8.148 8.531 8.851 9.125 9.366 9.580 9.773

H 2.727 3.853 4.540 5.039 5.433 5.759 6.038 6.282 6.499 6.694

SO 5.188 6.246 6.899 7.381 7.765 8.085 8.360 8.601 8.816 9.009

ABC 3.455 4.523 5.185 5.672 6.058 6.380 6.656 6.898 7.113 7.307

Figure 6: Degree-entropies of P-GC(h)

3.4 Existence of Isentropic GC Structures

In the context of graph theory and molecular chemistry, isentropic structures represent arrangements

within molecular systems or data sets that exhibit a constant level of entropy or information content. They

have significance in both thermodynamics and information theory and can be valuable for understanding

the behavior of complex systems in various scientific and engineering disciplines.
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(a)

(b)

Figure 7: Isentropic structures (a) BT-GC(11, 3) (b) BT-GC(7, 7)
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Table 8: Numerical bond partition values of isentropic structures of BT-GC(m,h)

Bond-type

X−Y
dGC(X)-dGC(Y)

Isentropic Structures

(6, 2) (4, 4) (11, 3) (7, 7) (16, 4) (10, 10) (21, 5) (13, 13) (26, 6) (16, 16)

O−H 1− 3
18 30 42 54 66

N−H 1− 3

O−H 2− 3
126 348 678 1116 1662

N−H 2− 3

O−C 3− 3
72 189 360 585 864

N−C 3− 3

In the computation of degree indices, we encountered that multiple structures exhibited the same

number of GC units, vertices, edges, and edge partitions indicating identical degree topological properties,

yet different distance properties. We found several isentropic structures and described as pair in the

following general form: (BT-GC(5m−4,m), BT-GC(3m−2, 3m−2)), m ≥ 2. Table 8 provides numerical

bond partition values for some isentropic structures, and Figure 7 exhibits one such isentropic structures.

4 Proton, 13C, 14N, 17O NMR Combinatorial Spectroscopic Patterns

for Four Different Supramolecular Assemblies of Guanidinium and

Hydrogen Carbonate Rosettes

As networks comprised of guanidinium and hydrogen carbonate rosettes, contain different nuclei such

as protons, carbons, nitrogens, and oxygens, once can harness different NMR spectroscopies to contrast

closely related networks. As shown in the previous section, these networks not only exhibit isentropic

structures but also isomeric structures. Due to the considerable complexity of these supramolecular

assemblies, there is a clear and compelling need to develop graph-theoretical and combinatorial methods

for the enumeration and construction of different NMR spectral patterns such as proton NMR, 13C

NMR, 14N NMR and 17O NMR. Through the use of such powerful techniques, the isomers and isentropic

structures can be experimentally contrasted using a variety of NMR techniques. Hence, we describe the

salient points pertinent to these graph theoretical and combinatorial methods for NMR.

The distance degree sequence vector (DDSV) for a vertex [85] in the supramolecular hydrogen-bonded

network of guanidinium and hydrogen carbonate rosettes is defined as (di0, di1, di2, . . . , dij , . . .) where a

vertex vi in GC, dij is the number of vertices at distance j from vi. The sequence terminates for a vertex

v of the graph at ecc(v), where ecc(v) is the eccentricity of the vertex v. We note that in the usual graph

theoretical methods, hydrogens are omitted, but because the supramolecular assemblies of guanidinium
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and hydrogen carbonate rosettes are formed with hydrogen bonds, in the ensuing graph theoretical and

combinatorial methods, the hydrogens are explicitly included in graphs. Hence, a vector sequence is gen-

erated for each vertex, including the hydrogens. Such a sequence is of variable length, as the eccentricities

of various vertices in the supramolecular assembly are never the same for all vertices. The vector sequence

thus generated is assigned to each vertex, and if two vertices carry the same DDSV label, then they are

assigned to the same equivalence class. Consequently, the DDSV technique facilitates partitioning to

first order the various nuclei of guanidinium and hydrogen carbonate rosettes into equivalence classes of

nuclei. We note that the DDSV-partitions are not isomorphic to the automorphic partitions. However for

guanidinium and hydrogen carbonate rosettes, they provide a starting point to refine the partition classes

further. As heteroatoms are not contrasted with carbons and because hydrogens are also included as

vertices in the graph, the DDSV technique at best yields a starting point for the generation of equivalence

classes through further symmetry-based combinatorial refinement. Consequently, we have invoked further

symmetry-based combinatorial techniques that are adequately described elsewhere [86–88] to generate the

various nuclear partitions and thus the NMR spectral patterns of these networks.

Table 9: Machine-generated proton, 13C, 14N, and 17ONMR spectral patterns of four different supramolec-
ular assemblies of guanidinium and hydrogen carbonate rosettes

BT-GC(m,h) Molecular
Formulas

Proton Classes
and NMR

13C Classes and
13C NMR

14N Classes and
14N NMR

17O Classes and
17O NMR

BT-GC(6, 2)
Figure 8a

C48H162N72O72
281

1 : 1 : · · · : 1 : 1(81)

14222

1 : 1 : 1 : 1
2 : 2 : · · · : 2(22)

12235

1 : 1
2 : 2 : · · · : 2(35)

12235

1 : 1
2 : 2 : · · · : 2(35)

BT-GC(4, 4)
Figure 8b

C48H162N72O72

281

1 : 1 : · · · : 1 : 1(81)

18220

1 : 1 : · · · : 1 : 1(8)
2 : 2 : · · · : 2 : 2(20)

14234

1 : 1 : 1 : 1
2 : 2 : · · · : 2(34)

14234

1 : 1 : 1 : 1
2 : 2 : · · · : 2(34)

BT-GC(5, 3)
Figure 8c

C54H180N81O81

630

1 : 1 : · · · : 1(30)
3666

1 : 1 : 1 : 1 : 1 : 1
2 : 2 : 2 : 2 : 2 : 2

33612

1 : 1 : 1 : 2 : 2 : . . . 2(12)
33612

1 : 1 : 1 : 2 : 2 : · · · : 2(12)

BT-GC(11, 1)
Figure 8d

C46H164N69O69

282

1 : 1 : · · · : 1(82)
12222

1 : 1 : 2 : 2 : · · · : 2(22)
1 234

1 : 2 : 2 : · · · : 2(34)
1 234

1 : 2 : 2 : · · · : 2(34)
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(a)

(b)

(c)

(d)

Figure 8: Four structures supramolecular assemblies of guanidinium and hydrogen carbonate rosettes.
The first two structures are isomers. Their machine-generated NMR patterns are displayed in Table 9

24



It is noted that there are large numbers of nuclei for the supramolecular assemblies considered here,

and because each nucleus gives rise to a vector of variable DDSV length, the process of generating

the nuclear partitions becomes cumbersome, and requires machine-algorithms which were implemented.

Such algorithms are part of the TopoChemie-2020 package [89] which was also employed to validate the

expressions obtained for all topological indices and entropies considered in this study. We have computed

the machine-generated nuclear equivalence classes and the NMR intensity and signal patterns for the

proton, 13C, 14N, and 17O of four structures supramolecular assemblies of guanidinium and hydrogen

carbonate rosettes, which are shown in Figure 8.

As one can see from Table 9, different NMR spectroscopies offer powerful tools to characterize the

various supramolecular assemblies of guanidinium and hydrogen carbonate rosettes including isomers. For

example, the BT-GC(6, 2) and BT-GC(4, 4) structures shown in Figure 8a and Figure 8b, respectively

are isomers. Their proton NMR spectral patterns, as inferred from the machine-computed NMR spectra,

are identical for the two isomers yielding 81 proton NMR signals of equal intensity for both isomers.

Consequently, the proton NMR spectroscopy fails to offer any discrimination between the two isomers.

On the other hand, the 13C NMR spectroscopy offers a powerful tool to contrast these two isomers

although the 14N and 17O NMR are predicted to be identical for each of the two isomers, they do offer

contrast between the isomers (see Table 9). That is for the isomer in Figure 8a, the 13C NMR four

signals of equal unit intensity while there are 22 signals with double the intensity. On the other hand, the

13C NMR for Figure 8b is predicted to yield 8 signals of equal unit intensities and 20 signals of double

intensity, thereby offering a contrast between the isomers in Figure 8a and Figure 8b. For the last two

structures in Table 9, likewise proton and 13C NMR offer powerful tools to elucidate these structures while

14N and 17O NMR for each structure exhibit the same pattern. This is evidently a consequence of how

the different atoms are networked in the structures resulting in their overall weighted-graph symmetries

and automorphic partitions. Therefore it is concluded that either 14N or 17O NMR may be employed to

study the various assemblies of these structures but not both as the two NMR spectroscopies yield the

same information. On the other hand, 13C NMR spectroscopy offers a powerful tool for the elucidation

of various assemblies of these structures.

5 Conclusion

In this study, we explored guanidinium and hydrogen carbonate rosette layers, revealing their unique

structural properties through topological indices. We employed the cut method technique to dissect

their complex structures and used distance and degree based topological indices and Szeged-type and

degree entropies for analysis. In the correlation analysis, we found that the modified Shannon entropy
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exhibits a stronger correlation compared to traditional Shannon entropy. Moreover our studies have

revealed the existence of isentropic assemblies and isomeric assemblies in GC structures. Furthermore,

we have developed methods that utilize distance degree vector sequences in combination with symmetry-

based combinatorial techniques to produce a diverse range of NMR spectral patterns for these networks,

including proton, 13C, 14N, and 17O NMR spectra. It is shown that the 13C NMR is a powerful methods

that facilitates delineation of closely related isomers of assemblies of these structures. Moreover, 17O

and 14N NMR spectra for each of the these assemblies produce identical signal and intensity patterns.

This research not only enhances our comprehension of these intriguing systems but also underscores the

pivotal role of supramolecular chemistry in designing functional materials and advancing molecular self-

assembly processes. As we continue to explore the potential of non-covalent interactions, these findings

hold promise for innovative applications across diverse scientific domains.
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