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Abstract

Generalized Fibonacci cube Qd(f) is introduced as the graph obtained from
the d-cube Qd by removing all vertices that contain a given binary string f as a
substring. In this notation the Fibonacci cube Γd is Qd(11). The question whether
Qd(f) is an isometric subgraph of Qd is studied. Embeddable and non-embeddable
infinite series are given. The question is completely solved for strings f of length
at most five and for strings consisting of at most three blocks. Several properties
of the generalized Fibonacci cubes are deduced. Fibonacci cubes are, besides the
trivial cases Qd(10) and Qd(01), the only generalized Fibonacci cubes that are
median closed subgraphs of the corresponding hypercubes. For admissible strings
f , the f -dimension of a graph is introduced. Several problems and conjectures are
also listed.

Key words. hypercube, Fibonacci cube, generalized Fibonacci cube, isometric em-
bedding, isometric dimension.
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1 Introduction

Fibonacci cubes form a class of graphs with many appealing properties. They admit
a recursive decomposition into smaller Fibonacci cubes which in turn implies that the
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order of a Fibonacci cube is the corresponding Fibonacci number. This class of graphs
was introduced as a model for interconnection network [10]. It was studied from several
points of view, see [1, 4, 5, 9, 12, 13, 14, 17, 18] for their structural properties. Fibonacci
cubes can be recognized in O(m log n) time (where n is the order and m the size of a
given graph) [19], earlier an O(mn) was presented in [20].

The Fibonacci cube Γd, d ≥ 1, is defined as follows. The vertex set of Γd is the
set of all binary strings b1b2 . . . bd containing no two consecutive 1’s. Two vertices are
adjacent in Γd if they differ in precisely one bit. Fibonacci cubes can also be described
as the simplex graphs of the complement of paths, cf. [2], and as the graphs of certain
distributive lattices [8]. Looking from the other side, Γd is a graph obtained from the
d-cube Qd by removing all strings that contain 11 as a substring. This point of view
rises to the following general approach.

Suppose f is an arbitrary binary string and d ≥ 1. Then we introduce the generalized
Fibonacci cube, Qd(f), as the graph obtained from Qd by removing all vertices that
contain f as a substring. We point out that the term “generalized Fibonacci cubes”
has been used in [11] for the graphs Qd(1

s) that were further studied in [15, 22]. Since
our definition is more general, we have decided to use the same name for all the graphs
Qd(f).

In Sections 3 and 4 we study the question for which strings f , Qd(f) is an isometric
subgraph of Qd. We give several embeddable and non-embeddable infinite series, where
f is of arbitrary length. With some additional efforts, we apply these results in Section 5
to classify the embeddability for strings f of length at most five. Then, in Section 6,
we give several properties of these graphs. As an example we compute the number
of vertices, edges and squares in Qd(110). We also prove that Fibonacci cubes and
the paths Qd(10) and Qd(01) can be characterized among the generalized Fibonacci
cubes with the property that they are median closed subgraphs of the corresponding
hypercubes.

Graphs isometrically embeddable into hypercubes naturally yield the isometric di-
mension of a graph. Two closely related dimensions are the lattice dimension [6] and
the Fibonacci dimension [2], where the latter is defined as the smallest d (if such a
d exists) for which G isometrically embeds into Γd. Now, suppose that for a given
string f and for any d, Qd(f) lies isometrically in Qd. Then we can define a new graph
dimension dimf (G) as the smallest integer d′ such that G embeds isometrically into
Qd′(f). This aspect of generalized Fibonacci cubes is treated in Section 7.

We conclude the paper with several conjectures and problems for further investiga-
tion. In particular, we pose a conjecture that would significantly increase the number of
embeddable generalized Fibonacci cubes and ask about the computational complexity
of determining the newly introduced dimensions.

2 Preliminaries

In this section we introduce the concepts needed in this paper and prove some prelim-
inary results that narrow the strings f that need to be considered.
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For a binary string b we denote its (binary) complement with b. With ei we denote
the binary string with 1 in the i-th position and 0 elsewhere. For binary strings b and c
of equal length let b+c denote their sum computed bitwise modulo 2. In particular, b+ei

is the string obtained from b by reversing its i-th bit. For a binary string b = b1b2 . . . bd

let bR = bdbd−1 . . . b1 be the reverse of b. A non-extendable sequence of contiguous
equal digits in a string b is called a block of b.

For a (connected) graph G, the distance dG(u, v) between vertices u and v is the
usual shortest path distance. The set of vertices lying on shortest u, v-paths is called
the interval between u and v and denoted IG(u, v).

The d-cube Qd is the graph whose vertices are all binary strings of length d, two ver-
tices being adjacent if they differ in exactly one position. More formally, b = b1b2 . . . bd

is adjacent to c = c1c2 . . . cd if there exists an index i such that bi 6= ci and bj = cj for
j 6= i. Recall that dQd

(b, c) is the number of bits in which the strings b and c differ. Let
bj = 1 and cj = 0 for j = i1, . . . , ik and bj = 0 and cj = 1 for j = ik+1, . . . , ip. Then

P : b → (b + ei1) → (b + ei1 + ei2) → · · · → (b + ei1 + ei2 + · · · + eip)

is a b, c-path in Qd of length p = dQd
(b, c). Such a path (that is, a path where we first

change each bit of b from 1 to 0 for which bi = 1 and ci = 0, and then change from 0
to 1 the other bits in which b and c differ) is called a canonical b, c-path.

A subgraph H of G is called isometric if dH(u, v) = dG(u, v) for all u, v ∈ V (H).
We will write

H →֒ G

to denote that H is an isometric subgraph of G and H 6 →֒ G that this is not the case.
For instance, Γd →֒ Qd. To see this, let b and c be arbitrary vertices of Γd and let P
be a canonical b, c-path in Qd. Then it is straightforward that P lies in Γd, hence Γd is
isometric in Qd.

Let b = uvw be a binary string obtained by a concatenation of u, v, and w, where
u and w are allowed to be the empty string. Then we say that v is a factor of b. Let f
be a binary string and define the generalized Fibonacci cube Qd(f) to be the induced
subgraph of Qd defined with the vertex set

V (Qd(f)) = {b | b ∈ V (Qd), f is not a factor of b} .

Note that the notation f is selected since it denotes a forbidden factor of the binary
strings. Observe also that Γd = Qd(11). The graph Q4(101) is depicted in Figure 1.

Lemma 2.1 Let f be a binary string and let 1 ≤ d ≤ |f |, where |f | denotes the length
of f . Then Qd(f) →֒ Qd.

Proof. If d < |f | then Qd(f) = Qd. Let d = |f |, then Qd(f) is the d-cube with the
vertex f removed. Since Qd is vertex transitive, we may without loss of generality
assume that f = 00 . . . 0, hence V (Qd(f)) = V (Qd) \ {00 . . . 0}. Let b, c ∈ V (Qd(f))
and let P be a shortest b, c-path in Qd. If P does not contain 00 . . . 0 we are done, so
suppose this is not the case. Then we may further assume that P contains the subpath
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Figure 1: Generalized Fibonacci cube Q4(101)

10 . . . 0 → 00 . . . 0 → 01 . . . 0. It can be replaced by 10 . . . 0 → 11 . . . 0 → 01 . . . 0. This
new b, c-path is of the same length as P and lies in Qd(f). �

Lemma 2.2 Let f be a binary string and d ≥ 1. Then Qd(f) is isomorphic to Qd(f).

Proof. Note that f is a factor of b if and only if f is a factor of b. Hence it follows
easily that the assignment b 7→ b is an isomorphism between Qd(f) and Qd(f). �

For instance, Γd
∼= Qd(00) ∼= Qd(11).

Lemma 2.3 Let f be a nonempty binary string and d ≥ 1. Then Qd(f) is isomorphic
to Qd(f

R).

Proof. Again f is a factor of b if and only if fR is a factor of bR. Hence the assignment
b 7→ bR is an isomorphism between Qd(f) and Qd(f

R). �

Let b, c ∈ Qd(f) and p ≥ 2. Then u and v are called p-critical words for Qd(f) if
dQd

(u, v) = p, but none of the neighbors of b in IQd
(b, c) belongs to Qd(f) or none of

the neighbors of c in IQd
(b, c) belongs to Qd(f). The next lemma gives a tool to be

used throughout the paper to prove that Qd(f) 6 →֒ Qd.

Lemma 2.4 Let f be a nonempty binary string. If there exist p-critical words for
Qd(f) (p ≥ 2), then Qd(f) 6 →֒ Qd.

Proof. Let b and c be p-critical words for Qd(f). Then none of the neighbors of b or
none of the neighbors of c in IQd

(b, c) belongs to Qd(f), which means that dQd
(b, c) =

p < dQd
(f)(b, c) and therefore Qd(f) 6 →֒ Qd. �
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3 Forbidden factors with at most three blocks

In this section we characterize generalized Fibonacci cubes Qd(f) such that Qd(f) →֒
Qd, where f contains at most three blocks. The cases with one and three blocks are
rather straightforward, two blocks need some more arguments. We begin with the
simpler cases.

Proposition 3.1 Let s ≥ 1. Then Qd(1
s) →֒ Qd.

Proof. For s = 1 we have Qd(1) ∼= K1 and there is nothing to be proved. Let s ≥ 2
and consider arbitrary vertices b and c of Qd(1

s) with dQd
(b, c) = p. We need to show

that dQd(1s)(b, c) = p as well. Note that this will in particular imply that Qd(1
s) is

connected. Let P be a canonical b, c-path in Qd. By the construction, if some vertex
of P would contain 1s as a factor, 1s would also be a factor of c. Since this is not the
case we conclude that P lies entirely in Qd(1

s). �

Proposition 3.2 Let r, s, t ≥ 1 and let d ≥ r + s + t + 1. Then Qd(1
r0s1t) 6 →֒ Qd.

Proof. Suppose first that d = r + s + t + 1. Select vertices b = 1r10s−111t and
c = 1r00s−101t. Note that b, c ∈ Qd(1

r0s1t) and that they differ in two bits. The
only vertices on the two shortest b, c-paths are 1r00s−111t = 1r0s1t1 and 1r10s−101t =
11r0s1t, but none of them is a vertex of Qd(1

r0s1t). Thus b and c are 2-critical words
for Qd(1

r0s1t) and hence by Lemma 2.4, Qd(1
r0s1t) 6 →֒ Qd.

Attaching an appropriate number of 1’s to the front of b and c, we get 2-critical
words for Qd(1

r0s1t) for any d > r + s + t + 1. �

We now move to forbidden factors consisting of two blocks.

Theorem 3.3 Let d ≥ 2. Then

(i) For r ≥ 1, Qd(1
r0) →֒ Qd.

(ii) For s ≥ 2, Qd(1
20s) →֒ Qd if and only if d ≤ s + 4.

(iii) If r, s ≥ 3, then Qd(1
r0s) →֒ Qd if and only if d ≤ 2r + 2s − 3.

Proof. We first prove (i). For r = 1 the vertices of Qd(10) are 11 . . . 1, 01 . . . 1, . . .,
00 . . . 0, hence Qd(10) ∼= Pd+1 →֒ Qd. Let r ≥ 2 and let b and c be vertices of Qd(1

r0).
We proceed by induction on p = dQd

(b, c) and need to prove that dQd(1r0)(b, c) = p as
well. Suppose p = 1, that is, dQd

(b, c) = 1. Then by definition, b is adjacent to c in
Qd(1

r0).
Let p ≥ 2 and let i be the index of the leftmost bit in which b and c differ. We

may without loss of generality assume that bi = 1 and ci = 0. (If bi = 0 and ci = 1
we proceed analogously by considering the neighbor ci + ei of ci.) Let b′ = b + ei. The
only possibility that b′ would not belong to Qd(1

r0) is that b′i is preceded by s 1’s. By
the way the index i is selected, ci = 0 is then also preceded by r 1’s. But this would
mean that c /∈ Qd(1

r0). We conclude that b′ ∈ Qd(1
r0). Since b′ differs from c in p− 1
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bits, induction implies that there exists a b, c-path in Qd(1
r0) of length p which proves

(i). In the rest of the proof we thus need to consider the cases when r, s ≥ 2.

Claim. Let r, s ≥ 2 and d ≤ 2r + 2s − 3. Then Qd(1
r0s) →֒ Qd if and only if it is not

the case that r = 2, s ≥ 4, and d > s + 4.
Let b and c be different vertices of Qd(1

r0s) and let i be the index of the leftmost
bit in which b and c differ. We may without loss of generality assume that bi = 1
and ci = 0. Let b′ = b + ei. Then dQd

(b′, c) < dQd
(b, c). Therefore, if b′ ∈ Qd(1

r0s)
induction implies that dQd(1r0s)(b

′, c) = dQd
(b′, c) and consequently dQd(1r0s)(b, c) =

dQd
(b, c). So, suppose that b′ /∈ Qd(1

r0s). Then b′ contains a substring of the form xb′ =
1r0kb′i0

s−1−k, where b′i = 0, and the corresponding substring xb of b is 1r0k10s−1−k. In
the corresponding substring xc of c, at least one of the last s − 1 − k bits must be 1,
for otherwise c /∈ Qd(1

r0s) would hold. We distinguish two cases.

Case 1: xc contains a bit 1 that is not the last bit of xc.
Then s − 1 − k ≥ 2 and therefore k ≤ s − 3. Then we can change this bit in b to
obtain a vertex from Qd(1

r0s) at distance dQd
(b, c) − 1 from c unless r = 2, s ≥ 4 and

d > s + 4. Assume r = 2, s ≥ 4 and d > s + 4. Let k = d − s − 4. Then 1 ≤ k ≤ s− 3.
Select vertices b = 120k100s and c = 120k010s. Note that b, c ∈ Qd(1

20s) and that they
differ in two bits. The only neighbors of b in IQd

(b, c) are 120k000s and 120k110s. But
none of them belongs to Qd(1

20s). Thus b, c are 2-critical for Qd(1
r0s) and hence by

Lemma 2.4, Qd(1
r0s) 6 →֒ Qd.

Case 2: The last bit of xc is 1 and it is preceded with a block of s − 1 zeros.
Now change the last bit of xb in b. If the new vertex would not be in Qd(1

r0s), then
the length of b would be at least r + (s − 2) + r + s = 2r + 2s − 2 if s − 1 − k = 1 and
would be at least r + (s − 1) + r + s = 2r + 2s − 1 if s − 1 − k ≥ 2. We conclude that
Qd(1

r0s) →֒ Qd for any d ≤ 2r + 2s − 3 and the claim is proved.

The claim proves (ii) for s = 3 if d ≤ s+4 = 2r +2s−3, and (iii) if d ≤ 2r +2s−3.
For the other cases of (ii), firstly assume s = 2. Then we have s+4 = 6 > 2r+2s−3 = 5.
Hence we need to prove that Qd(1

202) →֒ Qd if d = 6 and Qd(1
202) 6 →֒ Qd if d > 6. For

d > 6, it is proved in Case 1 below and for d = 6, it is checked by computer. When
s ≥ 4, we have s + 4 < 2r + 2s− 3 and the claim proves the lemma for d ≤ 2r + 2s− 3.
Hence it remains to prove that for r 6= 2 or s 6= 2 there holds Qd(1

r0s) 6 →֒ Qd if
d > 2r + 2s − 3. This will be done in Case 2 below.

Case 1: r = s = 2.
Suppose first that d = 7. Select vertices b = 1210102 and c = 1201002. Note that
b, c ∈ Qd(1

202) and that they differ in three bits. The only neighbors of b in IQd
(b, c)

are 1200102, 1211102 and 1210002. But none of them belongs to Qd(1
202) and therefore

b, c are 3-critical words for Qd(1
202). Attaching an appropriate number of 1’s to the

front of b and c, we get 3-critical words for Qd(1
202) for d > 7.

Case 2: r > 2 or s > 2.
Suppose first that d = 2r + 2s − 2. Then vertices b = 1r0s−2101r−20s and c =
1r0s−2011r−20s are 2-critical for Qd(1

r0s) and hence by Lemma 2.4, Qd(1
r0s) 6 →֒ Qd.
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Attaching an appropriate number of 1’s to the front of b and c, we get 2-critical words
for Qd(1

r0s) when d > 2r + 2s − 2. �

Note that Theorem 3.3 covers all the cases in view of Lemma 2.2 and Lemma 2.3. For
instance, Qd(1

20s) ∼= Qd(0
21s) ∼= Qd(1

s02) ∼= Qd(0
s12) and hence the same embedding

conclusion holds in each of these cases.

4 Forbidden factors with more than three blocks

We now move to forbidden factors consisting of more than three blocks. We do not have
a complete solution but prove embeddability of several infinite series and give infinite
families that are not embeddable. Let us start with the latter.

Proposition 4.1 Let s ≥ 1. Then Qd((10)
s1) 6 →֒ Qd for d ≥ 4s.

Proof. The case s = 1 has already been treated in Proposition 3.2. Assume in the rest
that s ≥ 2. Let d = 4s and set

b = (10)s−1100(10)s−11,

c = (10)s−1111(10)s−11 .

Considering that the only neighbors of b in IQd
(b, c) are (10)s−1110(10)s−11 = (10)s−11(10)s1

and (10)s−1101(10)s−11 = (10)s1(10)s−11, b, c are 2-critical words for Qd((10)
s1) and

hence by Lemma 2.4, Qd(f) 6 →֒ Qd. If d > 4s attach an appropriate number of 1’s to
the front of b and c to get 2-critical words for Qd((10)

s1). �

Proposition 4.2 Let r, s ≥ 1. Then Qd((10)
r1(10)s) 6 →֒ Qd for d ≥ 2r + 2s + 3.

Proof. Select 2-critical words for Qd((10)
r1(10)s), b = (10)r100(10)s and c = (10)r111(10)s

for Qd((10)
r1(10)s) and then it is proved by Lemma 2.4. �

We now give two infinite families of embeddable graphs.

Theorem 4.3 Let s ≥ 2. Then Qd(1
s01s0) →֒ Qd.

Proof. Let b and c be vertices of Qd(1
s01s0). We again proceed by induction on

p = dQd
(b, c), the case p = 1 being trivial. Hence let p ≥ 2 and let i be the index of the

leftmost bit in which b and c differ.
Suppose that bi = 1 and ci = 0. Let b′ = b + ei. The only possibility that b′ would

not belong to Qd(1
s01s0) is that b′i is preceded by 1s and followed by 1s0. The vertices

b and c must differ also on an index j such that i < j ≤ i + s + 1, because otherwise
c would contain 1s01s0 as a factor. Without loss of generality, we can assume that
i = s + 1, that is, b starts with 1s11s0 and c starts with 1s0. We distinguish two cases
and proceed by induction on the distance.
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Case 1: s + 2 ≤ j ≤ 2s + 1.
The vertex b′ = b + ej belongs to Qd(1

s01s0), since b′ starts with 1s11x01y0 with
x + y + 1 = s, and cannot contain 1s01s0 as a factor. (Note that it is possible that
x = 0 or y = 0.) Since b′ differs from c in p − 1 bits, the induction assumption on the
distance implies that there exists a b, c-path in Qd(1

s01s0) of length p.

Case 2: j = 2s + 2.
In this case, the vertex b starts with 1s11s0, while the vertex c starts with 1s01s1.
Consider two vertices b̃ and c̃ obtained by removing the first s + 1 bits from b and c.
These two vertices are at distance p− 1. By the induction assumption on the distance,
one can find a b̃, c̃-path of length p − 1 in Qd−s−1(1

s01s0). As b̃ and c̃ start with 1s,
following the same bit changes we can construct a shortest path from b = 1s1b̃ to 1s1c̃
in Qd(1

s01s0). Finally, we change the (s + 1)-th bit of 1s1c̃ and get a b, c-path in
Qd(1

s01s0) of length p. �

Theorem 4.4 Let s ≥ 1. Then Qd((10)
s) →֒ Qd.

Proof. The case s = 1 follows from Theorem 3.3(i), so we can assume that s > 2.
Let b and c be vertices of Qd((10)

s) and suppose b and c differ in p ≥ 1 bits. If
p = 1 then b is adjacent to c in Qd((10)

s). Assume that p ≥ 2 and let i be the index of
the leftmost bit in which b and c differ.

Suppose that bi = 1 and ci = 0. Let b′ = b + ei. The only possibility that b′ would
not belong to Qd((10)

s) is that b′i is preceded by (10)x1 and followed by (10)y , where
x + y + 1 = s and y is strictly greater than zero. The vertices b and c must differ also
on an index j such that i < j ≤ i + 2y, because otherwise c would contain (10)s as a
factor. We may assume that j is the first such index. Without loss of generality, we can
assume that i = 2x + 2, that is, b starts with (10)x11(10)y and c starts with (10)x10.
We distinguish two cases.

Case 1: 2x + 3 ≤ j ≤ 2s − 1.
We claim that the vertex b′ = b + ej belongs to Qd((10)

s). For this sake note that
b′ starts with (10)x11(10)z00(10)y−z−1 or (10)x11(10)z11(10)y−z−1 with z < y, and
cannot contain (10)s as a factor. (Observe that it is possible that z = 0 or z = y − 1.)

Case 2: j = 2s.
In this case b starts with (10)x11(10)y−110, c starts with (10)x10(10)y−111 and b′ starts
with (10)x11(10)y−111. The only case when b′ would not belong to Qd((10)

s) is that b′2s

is followed by 0(10)s−1. Now, we can again distinguish two cases based on the position
of the next bit in which b and c differ. If this position is between 2s + 1 and 4s− 2, we
can proceed as in Case 1 and find an appropriate bit such that after changing it the
obtained vertex belongs to Qd((10)

s). Therefore, assume that b and c again differ on
the last bit position 4s − 1.

Consider two vertices b̃ and c̃ obtained by removing the first 2s − 2 bits from b
and c. These two vertices are at distance p − 1. Note that b̃ starts with 100(10)s−210
and c̃ starts with 110(10)s−211. Using induction we can find a b̃, c̃-path of the length
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p − 1 in Qd−2s+2((10)
s). Since the first bits and the third bits of both b̃ and c̃ are 1

and 0, respectively, following the same bit changes, we can construct a shortest path
from b = (10)x11(10)y−1 b̃ to (10)x11(10)y−1 c̃ in Qd((10)

s), without introducing any
appearances of (10)s. Finally, we change the (2x + 2)-th bit and get a b, c-path in
Qd((10)

s) of length p. �

5 Classification of strings of length at most five

The results from previous sections can be applied to fill the following table which
classifies isometry of Qd(f) in Qd for strings f of length at most five. In the table,
strings that yield isometric embeddings are written in bold. Note that the table covers
all the strings up to the complement and reversal, cf. Lemmata 2.2 and 2.3.

length forbidden factor

1 1 (Proposition 3.1)

2 11 (Proposition 3.1)
10 (Theorem 3.3(i))

3 111 (Proposition 3.1)
110 (Theorem 3.3(i))
101 (Proposition 3.2)

4 1111 (Proposition 3.1)
1110 (Theorem 3.3(i))
1100 (d ≤ 6, Theorem 3.3(ii)), 1100 (d ≥ 7, Theorem 3.3(ii))
1010 (Theorem 4.4)
1101, 1001 (Proposition 3.2)

5 11111 (Proposition 3.1)
11110 (Theorem 3.3(i))
11100 (d ≤ 7, Theorem 3.3(ii)), 11100 (d ≥ 8, Theorem 3.3(ii))
11001, 11101, 11011, 10001 (Proposition 3.2)
10110 (d ≤ 6, Lemma 2.1 and computer check for d = 6)
10110 (d ≥ 7, Proposition 4.2)
10101 (d ≤ 7, Lemma 2.1 and computer check for d = 6, 7)
10101 (d ≥ 8, Proposition 4.1)
11010 (Proposition 5.1)

Table 1: Classification of embeddability of generalized Fibonacci cubes with forbidden
factors of length at most 5

As we can see from Table 1, the only case not covered by the results from previous
sections is 11010. We cover it with the next result.

Proposition 5.1 For every d ≥ 1, it holds Qd(11010) →֒ Qd.
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Proof. Let b and c be vertices of Qd(11010) and suppose b and c differ in p ≥ 1 bits.
If p = 1 then b is adjacent to c in Qd(11010). To imply induction later in the proof, we
also need to consider the case p = 2. Assume that p ≥ 2 and let i be the index of the
leftmost bit in which b and c differ.

Suppose that bi = 1 and ci = 0. Let b′ = b + ei. The only possibility that b′ would
not belong to Qd(11010) is that b′i is preceded by 11 and followed by 10. Without loss
of generality, we can assume that b and c start with 11110 and 110, respectively. If c
starts with 1100, we can simply change the fourth bit, since b′ would start with 11100
and therefore b′ ∈ Qd(11010). Therefore, the vertex c starts with 11011.

Now, let b′ = b + e5. The only possibility that b′ would not belong to Qd(11010)
is that b starts with 11110010. In this case c must differ with b in 6-th, 7-th or 8-th
position and p ≥ 3. We distinguish three cases.

Case 1: b and c differ in the 7-th bit.
The vertex b′ = b + e7 starts with 11110000 and belongs to Qd(11010).

Assume in the rest that b and c agree on the 7-th bit.

Case 2: b and c differ in the 6-th bit.
The vertex b′ = b + e6 starts with 11110110, and the only possible case when b′ 6∈
Qd(11010) is when b starts with 1111001010 and c starts with 1101111. Consider two
new vertices b̃ and c̃ obtained by cutting off the first five bits from b and c, respectively.
Using induction, one can find a b̃, c̃-path of length p − 2 in Qd−5(11010). Following
the same bit changes, we can construct a shortest path from b = 11110b̃ to 11110c̃ in
Qd(11010). Finally, we change the third and the fifth bit of 11110c̃ and get a b, c-path
in Qd(11010) of length p.

In the past case we may thus assume that b and c agree also on the 6-th bit.

Case 3: b and c differ in the 8-th bit.
The vertex b′ = b+ e8 belongs to Qd(11010), except when b starts with 11110010010 or
with 111100101010. Here, we can again apply the induction argument, by considering
two new vertices b̃ and c̃ that are obtained by cutting off the first six bits from b and c,
respectively. Using induction, one can find a b̃, c̃-path of length p − 2 in Qd−6(11010).
Following the same bit changes we can construct a shortest path from b = 111100b̃ to
111100c̃ in Qd(11010). Finally, we change the third and the fifth bit of 111100c̃ and
get a b, c-path in Qd(11010) of length p. �

6 Some properties of generalized Fibonacci cubes

In this section we have a closer look to the basic properties of generalized Fibonacci
cubes in particular to their orders and sizes. The results support the name we selected
for these graphs. We also prove that the classical Fibonacci cubes stand out by the
property that they are the only graphs (besides the trivial case of paths) among the
generalized Fibonacci cubes that are median closed in the corresponding hypercubes.
We begin with:
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Proposition 6.1 Let f 6= 01, 10 be a binary string of length greater than one and let
Qd(f) →֒ Qd, d ≥ 1. Then the maximum degree and diameter of Qd(f) are equal to d.

Proof. Without loss of generality, we can assume that f contains at least two 1’s. The
vertex 0d belongs to Qd(f), and all of its neighbors contain exactly one 1 in binary
representation – proving that the maximum degree equals d.

If f contains two adjacent 1’s, one can consider a path from v = 10101 . . . to
v = 01010 . . . by passing through the vertex 0d. If f contains two adjacent 0’s, one
can consider similar path of length d, passing through vertex 1d. Finally, if f does
not have two equal consecutive digits, and one can consider a path from 0d to 1d by
complementing digits from left to right. Therefore, in each of the cases the diameter of
Qd(f) is at least d. Since by the assumption Qd(f) is isometric in Qd, the diameter is
at most d. �

When the length of a forbidden string is three, we have two non-isomorphic cases
that yield isometric embeddings: f = 111 and f = 110.

Let Gd = Qd(111) and let S(Gd) be the set of 4-cycles of Gd. Then the following
recurrent formulas hold

|V (Gd)| = |V (Gd−1)| + |V (Gd−2)| + |V (Gd−3)|, (1)

|E(Gd)| = |E(Gd−1)| + |E(Gd−2)| + |E(Gd−3)| + |V (Gd−2)| + 2|V (Gd−3)|, (2)

|S(Gd)| = |S(Gd−1)| + |S(Gd−2)| + |S(Gd−3)| + |E(Gd−2)| +

+2|E(Gd−3)| + |V (Gd−3)|. (3)

The starting values are |V (G0)| = 1, |V (G1)| = 2, |V (G2)| = 4 for the number
of vertices, |E(G0)| = 0, |E(G1)| = 1, |E(G2)| = 4 for the number of edges, and
|S(G0)| = 0, |S(G1)| = 0, |S(G2)| = 1 for the number of squares.

Let us partition the set of vertices of Gd into three classes V (Gd) = Ad ∪ Bd ∪ Cd,
where Ad, Bd, and Cd are the subsets of vertices that start with 0, with 10, and with
110, respectively. Since the vertices in Gd do not contain 111 as a factor, every vertex
belongs to exactly one of the classes Ad, Bd, and Cd.

The formula (1) follows since |Ad| = |V (Gd−1)|, |Bd| = |V (Gd−2)| and |Cd| =
|V (Gd−3)|. For the number of edges of Gd, we need to count edges connecting the
induced subgraphs Ad and Bd, Bd and Cd, and Ad and Cd. Since every two vertices from
different classes are at distance at least one, the number of such edges are |V (Gd−2)|,
|V (Gd−3)| and |V (Gd−3)|, respectively. This proves the relation (2). Similarly, for the
number of squares we need to include the squares from Ad, Bd, Cd and the squares
between pairs (Ad, Bd), (Bd, Cd), (Ad, Cd). Finally, we need to count the squares that
contain the vertices from all three classes: for every vertex 110v from Cd, we have that
vertices 000v, 010v, 110v, 100v form a square. Therefore, the relation (3) follows. For
more information on the graphs Qd(111) and, more generally, Qd(1

r), see [11, 15, 22].
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Let Hd = Qd(110). Then the following recurrent formulas hold

|V (Hd)| = |V (Hd−1)| + |V (Hd−2)| + 1, (4)

|E(Hd)| = |E(Hd−1)| + |E(Hd−2)| + |V (Hd−2)| + 2, (5)

|S(Hd)| = |S(Hd−1)| + |S(Hd−2)| + |E(Hd−2)| + 1. (6)

The starting values are |V (H0)| = 1, |V (H1)| = 2 for the number of vertices,
|E(H0)| = 0, |E(H1)| = 1 for the number of edges, and |S(H0)| = 0, |S(H1)| = 0 for
the number of squares.

In order to prove the above relations, we can apply the same arguments as for Gd

using the partition Hd = Ad ∪ Bd ∪ Cd, where Ad is the subset of vertices that start
with bit 0, Bd is the subset of vertices that start with 10, and Cd is the one-element
set of all vertices from Hd that start with 11.

It can easily be proved by induction that |V (Hd)| = Fd+3 − 1, where Fd are the
Fibonacci numbers. We next count the number of edges of Hd.

Proposition 6.2 For any d ≥ 0,

|E(Hd)| = −1 +

d+1∑

i=1

FiFd+2−i.

Proof. For d = 0 and d = 1, we have |E(H0)| = −1 + 1 · 1 = 0 and |E(H1)| =
−1 + 1 · 1+ 1 · 1 = 1. Hence, the equality holds for d = 0, 1. Let d ≥ 2 and assume that
it holds for all indices smaller than d. Using (5) and the inductions hypothesis, we get

|E(Hd)| =

(
−1 +

d∑

i=1

FiFd+1−i

)
+

(
−1 +

d−1∑

i=1

FiFd−i

)
+ Fd+1 + 1

= −1 + Fd+1 + FdFd+1−d +
d−1∑

i=1

Fi(Fd+1−i + Fd−i)

= −1 + Fd+1 · F1 + Fd · F2 +

d−1∑

i=1

FiFd+2−i

= −1 +

d+1∑

i=1

FiFd+2−i.

This concludes the inductive proof. �

Using [12, Corollary 4], it follows that

|E(Hd)| = −1 +
(d + 1)Fd+2 + 2(d + 2)Fd+1

5
.

Similarly one can prove the following closed formula for the number of squares. The
proof goes along the same lines as the proof of [12, Proposition 5] and is thus omitted.
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Proposition 6.3 For any d ≥ 0,

|S(Hd)| = −
3(d + 1)

25
Fd+2 +

(
(d + 1)2

10
+

3(d + 1)

50
−

1

25

)
Fd+1.

Notice that |S(Qd(110))| = |S(Qd+1(11))| = |S(Γd+1)|, while |V (Qd(110))| =
|V (Γd+1)| − 1 and |E(Qd(110))| = |E(Γd+1)| − 1.

Recall that a connected graph G is a median graph if for every triple u, v,w of
its vertices |I(u, v) ∩ I(u,w) ∩ I(v,w)| = 1. A subgraph H of a graph G is median
closed if, with any triple of vertices of H, their median is also in H. A connected
graph is a median graph if and only if it is a median closed, induced subgraph of some
hypercube [16]. From this point of view the Fibonacci cubes stand out among the
classes of graphs considered in this paper by the following result.

Proposition 6.4 Let f be a nonempty binary string of length |f | ≥ 2 and let d ≥ |f |.
Then Qd(f) is a median closed subgraph of Qd if and only if |f | = 2. In other words,
the only median closed generalized Fibonacci cubes are paths and Fibonacci cubes.

Proof. Let |f | = 2. Then we have already observed that for any d, Qd(10) and
Qd(01) are paths of length d and hence median closed subgraph of Qd. In addition,
Qd(11) ∼= Qd(00) ∼= Γd which are also such subgraphs of Qd [12].

Let |f | ≥ 3 and let f = f1f2f3 . . . f|f |. Define g = f|f | and set

x = f1f2f3 . . . f|f |g . . . g,

y = f1f2f3 . . . f|f |g . . . g,

z = f1f2f3 . . . f|f |g . . . g,

where in each of x, y, and z the bit g appears d− |f | times. (Note that if |f | = d then
the length of x, y, z is |f |.) Then each of x, y, z is a vertex of Qd(f). Indeed, the only
possibility that f would be a factor of these vertices is that f would start before the
|f |-th bit and end after it. But this is not possible since by construction the last bits
of f and such a string are different.

Since x, y, z are pairwise at distance 2, the unique candidate for their median is
f1f2f3 . . . f|f |g . . . g. This vertex does not belong to Qd(f) and therefore Qd(f) is not a
median graph. �

7 f-dimension

For a connected graph G, the isometric dimension, idim(G), is the smallest integer
d such that G admits an isometric embedding into Qd. If there is no such d we set
idim(G) = ∞. It is well-known that idim(G) is the number of the so-called Θ-classes
of G and that it can be determined in polynomial time, the fastest algorithm being of
quadratic complexity [7].
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Let f be a nonempty binary string and suppose that Qd(f) →֒ Qd for any d ≥ 1.
Then we define the f -dimension of a graph G, dimf (G), as the smallest integer d such
that G admits an isometric embedding into Qd(f), and set dimf (G) = ∞ if there is no
such d.

Proposition 7.1 Let f be a nonempty binary string, f 6= 1, 0, 10, 01. If Qd(f) →֒ Qd

for any d ≥ 1, then for any connected graph G, dimf (G) < ∞ if and only if idim(G) <
∞.

Proof. Suppose d = dimf (G) < ∞. Then G isometrically embeds into Qd(f). By the
assumption Qd(f) isometrically embeds into Qd, hence G isometrically embeds into Qd.

Conversely, let d = idim(G) < ∞ and consider G isometrically embedded into Qd.
We distinguish two cases.

Case 1: 11 or 00 is a factor of f .
Suppose 11 is a factor of f and let d = idim(G). To each vertex b = b1b2 . . . bd of G
(embedded into Qd) assign the vertex b̃ = b10b20 . . . 0bd. Let G̃ be the subgraph of
Q2d−1 induced by the vertex set

V (G̃) = {b̃ | b ∈ V (G)} .

Note first that G̃ is isomorphic to G. Moreover, for any b ∈ V (G), b̃ does not contain
11 as a factor and hence also do not contain f , therefore b̃ can be considered as a vertex
of Q2d−1(f). Hence we may consider G̃ as a subgraph of Q2d−1(f). Then

d
G̃
(̃b, c̃) = dG(b, c) = dQd

(b, c) = dQ2d−1
(̃b, c̃) = dQ2d−1(f) (̃b, c̃) ,

where the last equality holds since by the assumption of the proposition, Q2d−1(f) →֒
Q2d−1. Hence G̃ is isometric in Q2d−1(f) and therefore dimf (G) ≤ 2d − 1 < ∞.

If 00 is a factor of f we proceed analogously by inserting 1 between consecutive bits
of b.

Case 2: Neither 11 nor 00 is a factor of f .
In this case, f = 01010 · · · or f = 10101 · · · and f contains at least three bits by the
assumption. Moreover, f 6= 010 by Proposition 3.2. Hence f contains at least two 1’s.
Now to each vertex b = b1b2 . . . bd of G assign the vertex b̃ = b100b200 . . . 00bd. Then if
b̃i = b̃j = 1 we have |i − j| > 2, hence b̃ can be considered as a vertex of Q3d−2(f). By
the same arguments as in the first case we conclude that dimf (G) ≤ 3d − 2 < ∞. �

Note that the proof of Proposition 7.1 yields that

idim(G) ≤ dimf (G) ≤ 3 idim(G) − 2 .

It is also clear that the upper bound is a general estimate that can be improved in
specific cases.

As already mentioned, the special case dim11(G) was introduced in [2] as the Fi-
bonacci dimension of a graph. This dimension has many interesting properties. Among
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others—rather surprisingly for the area of isometric embeddings—it is NP-complete to
decide whether dim11(G) is equal to idim(G).

A different but related version of a dimension is the following. Let G be a graph
and let f be a binary string. Then define dim−1

f (G) as the largest d such that Qd(f)
isometrically embeds into G. This inverse dimension has been studied in [3] for the case
f = 11, that is, for the Fibonacci cubes, where it was proved that deciding whether
dim−1

11 (G) = d is NP-complete even if G is given as an induced subgraph of Qd.

8 Concluding remarks

We first pose the conjecture announced in the introduction.

Conjecture 8.1 If Qd(f) →֒ Qd then Qd(ff) →֒ Qd.

It is NP-hard to determine dim11(G) for an arbitrary graph. Hence we pose:

Problem 8.2 Suppose that f is a binary string for which dimf is well-defined. What
is the complexity of determining dimf (G) for an arbitrary graph?

We feel that the answer to Problem 8.2 is NP-hard in all the case except perhaps
for f = (10)s.

Suppose that for some f and for some d, Qd(f) 6 →֒ Qd. It would still be possible
that Qd(f) embeds into some Qd′ where d′ > d. Hence we pose:

Problem 8.3 Suppose Qd(f) 6 →֒ Qd. Is there a dimension d′ such that Qd(f) is an
isometric subgraph of Qd′?

With respect to Problem 8.3 we are inclined to believe that the answer is negative
in most (if not all) cases.

For instance, let d ≥ 4 and consider the vertices u = 1d−3000, v = 1d−3001, x =
1d−3110, y = 1d−3111, and edges e = uv, f = xy of Qd(101). Then dQd(101)(v, y) 6= 2
and hence

v = 1d−3001 → 1d−3000 → 1d−3100 → 1d−3110 → 1d−3111 = y

is a shortest path in Qd(101). Thus e is not in relation Θ with f . On the other hand,
we can find a ladder in Qd(101) from e to f which implies that eΘ∗f ,

1d → 01d−1 → 001d−2 → . . . → 0d−11 → 10d−21 → . . . → 1d−3001

1d−10 → 01d−20 → 001d−30 → . . . → 0d → 10d−1 → . . . → 1d−3000.

Hence by Winkler’s theorem [21] we conclude that Qd(101), d ≥ 4, is not an iso-
metric subgraph of any hypercube.

For the final remark, recall that |V (Qd(110))| = |V (Qd+1(11))| − 1, |E(Qd(110))| =
|E(Qd+1(11))| − 1, and |S(Qd(110))| = |S(Qd+1(11))|. According to Proposition 6.1,
the diameter and the maximum degree of Qd(110) are d, while the diameter and the
maximum degree of Qd+1(11) are d+1, see Figure 2 where the Fibonacci cube Q5(11) is
confronted with the 110-Fibonacci cube Q4(110). Hence Qd(110) and Qd+1(11) appear
quite similar and it might be interesting to give a further insight into this fact.
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Figure 2: Fibonacci cube Q5(11) and 110-Fibonacci cube Q4(110)
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[4] E. Dedó, D. Torri, and N. Zagaglia Salvi. The observability of the Fibonacci and
the Lucas cubes. Discrete Math., 255(1-3):55–63, 2002.

[5] J. A. Ellis-Monaghan, D. A. Pike, and Y. Zou. Decycling of Fibonacci cubes.
Australas. J. Combin., 35:31–40, 2006.

16



[6] D. Eppstein. The lattice dimension of a graph. European J. Combin., 26(5):585–
592, 2005.

[7] D. Eppstein. Recognizing partial cubes in quadratic time. In Proc. 19th ACM-
SIAM Symp. Discrete Algorithms, SODA ’08, pages 1258–1266, Philadelphia, PA,
USA, 2008. Society for Industrial and Applied Mathematics.

[8] E. R. Gansner. On the lattice of order ideals of an up-down poset. Discrete Math.,
39(2):113–122, 1982.

[9] P. Gregor. Recursive fault-tolerance of Fibonacci cube in hypercubes. Discrete
Math., 306(13):1327–1341, 2006.

[10] W.-J. Hsu. Fibonacci cubes—a new interconnection technology. IEEE Trans.
Parallel Distrib. Syst., 4(1):3–12, 1993.

[11] W.-J. Hsu and J. Liu. Distributed algorithms for shortest-path, deadlock-free rout-
ing and broadcasting in a class of interconnection topologies. In Parallel Processing
Symposium, 1992, pages 589–596, 1992.
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