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aDepartment of Mathematics and Computer Science,

Sirjan University of Technology, Sirjan, Iran

n.dehgardi@sirjantech.ac.ir
bFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

sandi.klavzar@fmf.uni-lj.si
cInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

dFaculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
eDepartment of Mathematics,

Kazerun Branch, Islamic Azad University,

P. O. Box: 73135-168, Kazerun, Iran

mahdie.azari@gmail.com, mahdieh.azari@iau.ac.ir

March 18, 2025

Abstract

For a simple graph Γ and a real number λ, the general reduced second Zagreb index
is defined by the formula

GRMλ(Γ) =
∑

ab∈E(Γ)

[(degΓ(a) + λ)(degΓ(b) + λ)] .

A sharp lower bound for GRMλ over all trees of given order and maximum degree under
the condition that λ ≥ − 1

2 is established. A parallel result is proved for unicyclic graphs
under the condition λ > − 1

2 . The corresponding minimal trees and unicyclic graphs
are identified. These findings improve upon the lower bounds previously established by
Buyantogtokh, Horoldagva, and Das concerning GRMλ of trees and unicyclic graphs of
given order.
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1 Introduction

Consider a simple graph Γ where V (Γ) denotes its vertex set and E(Γ) denotes its edge set.
For a vertex a ∈ V (Γ), the open neighborhood NΓ(a) of a in Γ is the set NΓ(a) = {b ∈
V (Γ) | ab ∈ E(Γ)}. The degree of a in Γ, denoted as degΓ(a), is given by the order of its
open neighborhood. Additionally, the distance between two vertices a, b ∈ V (Γ), defined as
the length of any shortest path in Γ that connects a and b, is denoted by dΓ(a, b).

Topological indices are numerical descriptors derived from the molecular graph of a chem-
ical compound, where atoms are represented as vertices and bonds as edges. These indices act
as graph invariants, remaining unchanged under structural isomorphisms. They are widely
used in chemical graph theory and quantitative structure-activity relationships (QSARs),
linking the biological activity or properties of molecules to their chemical structures. Vertex-
degree-based topological indices are a specific category of topological indices that evaluate
the characteristics of a graph by concentrating on the degrees of its vertices. These indices
are defined using a set of real numbers that correspond to pairs of vertex degrees.

The first Zagreb index [15] and the second Zagreb index [14] are foundational members of
the family of vertex-degree-based topological indices. These indices are defined for a graph
Γ as follows:

M1(Γ) =
∑

a∈V (Γ)

degΓ(a)
2 and M2(Γ) =

∑
ab∈E(Γ)

degΓ(a) degΓ(b) .

These indices have significant applications across multiple fields, such as chemistry and net-
work analysis, where they aid in characterizing molecular structures and network topol-
ogy. For a comprehensive and transparent overview of the Zagreb indices, see Ali et al. [2],
Borovićanin et al. [6], and Gutman et al. [13]. However, research in this area remains ongoing,
with recent contributions from Ahmad et al. [1], Lin and Qian [18], Pirzada and Khan [20],
Täubig [22], and Yuan [24] providing new insights and advancements.

Alongside the Zagreb indices, various other vertex-degree-based indices have been pro-
posed. These include the atom-bond connectivity index [10], the sum connectivity index [25],
irregularity indices [3, 5], the Lanzhou index [9, 23], and entire Zagreb indices [4, 19].

Furtula et al. [11] demonstrated that the difference M2(Γ) −M1(Γ) is closely related to
the reduced second Zagreb index RM2(Γ), which is defined as

RM2(Γ) =
∑

ab∈E(Γ)

[(degΓ(a)− 1)(degΓ(b)− 1)].

This index has been studied in various contexts, including the works of Buyantogtokh et
al. [8], Gao and Xu [12], and Shafique and Ali [21].

In 2019, Horoldagva et al. [16] extended the reduced second Zagreb index to the general
reduced second Zagreb index GRMλ(Γ), defined as

GRMλ(Γ) =
∑

ab∈E(Γ)

[(degΓ(a) + λ)(degΓ(b) + λ)] ,
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where λ is an arbitrary, fixed real number. This definition can also be expressed equivalently
as

GRMλ(Γ) = M2(Γ) + λM1(Γ) + λ2|E(Γ)|.

This general version of the index has garnered considerable interest in recent research [7, 16,
17], reflecting its significance in graph theory and its applications in chemical graph theory.
The exploration of GRMλ(Γ) not only enhances our understanding of vertex-degree-based
indices but also opens new avenues for analyzing the structural properties of graphs.

1.1 Our primary motivation

Our primary motivation for this paper arises from the following two results presented in [7]
on the general reduced second Zagreb index of trees and unicyclic graphs.

Theorem A. If λ ≥ −1
2 and T is a tree with n vertices, then

GRMλ(T ) ≥ (λ+ 2)(n+ 2λ− 1).

When n = 4 and λ = −1
2 , equality is achieved if and only if T = P4 (a path graph with 4

vertices) or T = K1,3 (a star graph with 4 vertices). For all other cases, equality is achieved
if and only if T = Pn (a path graph with n vertices).

Theorem B. If λ ≥ −1
2 and U is a unicyclic graph with n vertices, then

GRMλ(U) ≥ n (λ+ 2)2,

where equality holds if and only if T = Cn (a cycle graph with n vertices).

1.2 Our results

In this paper, we extend and refine the bounds established in Theorem A and Theorem B by
proving the following two theorems. Denoting by Tn,∆ the set of all trees with n vertices and
a maximum degree of ∆, the first results reads as follows.

Theorem 1. If λ ≥ −1
2 , n ≥ 3, and T ∈ Tn,∆, then

GRMλ(T ) ⩾


n(λ+ 2)2 − 3(λ+ 2) + (λ+ 1)(∆2 − 3∆− λ); ∆ < n− 1,

(n− 1)(n− 1 + λ)(1 + λ); ∆ = n− 1.

The equality holds if and only if T is a spider graph (a tree with at most one vertex of a
degree greater than two) with at most one leg of length more than one.

Let Un,∆ denote the set of all unicyclic graphs with n vertices and maximum degree ∆.

Let U (2)
n,∆ be a subset of Un,∆ which contains unicyclic graphs U2 constructed as follows. U2 is
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Figure 1: The construction of unicyclic graphs from U (2)
n,∆.

Figure 2: The unicyclic graph U
(3)
n,∆.

obtained from the disjoint union of a cycle C and a star K1,∆−1 by adding a path of length
at least 2 between the center a of K1,∆−1 and a vertex b of C, as shown in Fig. 1.

Let further U
(3)
n,∆ be a unicyclic graph from Un,∆ obtained by identifying a vertex a of the

cycle Cn−(∆−2) and the center of a star K1,∆−2, as shown in Fig. 2.
Our second main result reads as follows.

Theorem 2. If λ > −1
2 , ∆ ≥ 3, and U ∈ Un,∆, then the following results hold:

(i) If 2λ+ 6 < ∆ < n− 3, then

GRMλ(U) ≥ (∆ + λ)(∆ +∆λ+ 1) + (n−∆)(2 + λ)2 + 3(2 + λ),

with equality if and only if U ∈ U (2)
n,∆.

(ii) If 3 ≤ ∆ < 2λ+ 6 or n− 3 ≤ ∆ ≤ n− 1, then

GRMλ(U) ≥ (∆ + λ)(∆ +∆λ+ 2) + (n−∆)(2 + λ)2,

with equality if and only if U = U
(3)
n,∆.

(iii) If ∆ = 2λ+ 6, then

GRMλ(U) ≥ 3(+2λ+ 2)3 + (n− 2λ− 6)(2 + λ)2,

with equality if and only if either U ∈ U (2)
n,∆ or U = U

(3)
n,∆.
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2 Proof of Theorem 1

In this section we prove Theorem 1 and at the end of the section compare the bounds given
in the theorem with those in Theorem A.

A rooted tree is a tree in which one vertex is designated as the root. In this structure,
every other vertex is connected to the root either directly or through a sequence of edges,
creating a hierarchical organization among the vertices. A spider is a specific type of tree
that has at most one vertex with a degree greater than two, known as the center of the spider.
Each path extending from this center to a leaf vertex (vertex of degree one) is called a leg.
A star is a special case of a spider where all legs have a length of one. By convention, a path
graph can also be considered a spider, particularly when it is viewed as having either one leg
(a single path) or two legs (two paths extending from a common vertex).

The key lemma for establishing the announced inequality on trees reads as follows.

Lemma 3. Let λ ≥ −1
2 and ∆ ≥ 3. If T ∈ Tn,∆ contains two distinct vertices a and b such

that degT (a) = ∆ and degT (b) ≥ 3, then there exists T ∗ ∈ Tn,∆ such that GRMλ(T
∗) <

GRMλ(T ).

Proof. Let T be a rooted tree with root vertex a. Without loss of generality, assume b is the
vertex farthest from a among all non root vertices x (i.e., x ̸= a) satisfying degT (x) ≥ 3.
Let degT (b) = ℓ, and denote the neighborhood of b as NT (b) = {b1, b2, . . . , bℓ}, where bℓ is
the unique neighbor of b lying on the path from b to a in T . By our assumption about the
maximality of dT (a, b), every vertex bi (for 1 ≤ i ≤ ℓ − 1) satisfies degT (bi) ∈ {1, 2}. These
degree constraints lead to three distinct cases:

Case 1: b has at least two leaf neighbors.
Assume without loss of generality that the vertices b1 and b2 are two leaves adjacent to b.
We construct a modified tree T ∗ by removing the edge bb1 and adding the edge b1b2. In T ∗,
vertex b2 becomes the support vertex for leaf b1 (see Fig. 3).

We now analyze how this modification affects the general reduced second Zagreb index.
Recall that λ ≥ −1

2 and ℓ ≥ 3. We define X = GRMλ(T ) − GRMλ(T
∗) and calculate it as

follows:

X = (degT (b) + λ)(degT (b1) + λ) + (degT (b) + λ)(degT (b2) + λ)

+ (degT (b) + λ)(degT (bℓ) + λ) +

ℓ−1∑
i=3

(degT (b) + λ)(degT (bi) + λ)

− (degT ∗(b1) + λ)(degT ∗(b2) + λ)− (degT ∗(b) + λ)(degT ∗(b2) + λ)

− (degT ∗(b) + λ)(degT ∗(bℓ) + λ)−
ℓ−1∑
i=3

(degT ∗(b) + λ)(degT ∗(bi) + λ)

= 2(1 + λ)(ℓ+ λ) + (ℓ+ λ)(degT (bℓ) + λ)
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a

a1 a2 a∆

bℓ

b

b1 b2 b3 bℓ−1

T

a

a1 a2 a∆

bℓ

b

b2 b3 bℓ−1

b1 T ∗

Figure 3: Transformation from Case 1 of Lemma 3.

+

ℓ−1∑
i=3

(ℓ+ λ)(degT (bi) + λ)

− (1 + λ)(2 + λ)− (2 + λ)(ℓ− 1 + λ)− (ℓ− 1 + λ)(degT (bℓ) + λ)

−
ℓ−1∑
i=3

(ℓ− 1 + λ)(degT (bi) + λ)

= λℓ− λ+ degT (bℓ) +

ℓ−1∑
i=3

(degT (bi) + λ)

≥ λ(ℓ− 1) + 2 + (λ+ 1)(ℓ− 3)

= 2λℓ− 4λ+ ℓ− 1

= 2λ(ℓ− 2) + (ℓ− 2) + 1

= (2λ+ 1)(ℓ− 2) + 1 > 0.

Case 2: b has exactly one leaf neighbor.
Let b1 be the leaf adjacent to b. Consider the path bc1c2 . . . ck, where c1 = b2, ck is a leaf, and
k ≥ 2. Construct a modified tree T ∗ by removing the leaf b1, detaching the subpath c1c2 . . . ck
from b, and attaching the extended path c1c2 . . . ckb1 to b. This reorganization creates a new
leaf b1 at the path’s terminus (see Fig. 4).

Using the fact that λ ≥ −1
2 and ℓ ≥ 3, and defining X = GRMλ(T ) − GRMλ(T

∗), we
have:

X = (degT (b) + λ)(degT (b1) + λ) + (degT (ck) + λ)(degT (ck−1) + λ)

+ (degT (b) + λ)(degT (bℓ) + λ) +
ℓ−1∑
i=2

(degT (b) + λ)(degT (bi) + λ)
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bℓ
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c1 b3 bℓ−1
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a

a1
a2 a∆

bℓ

b

c1 b3

c2

ck

bℓ−1

ck

b1
T T ∗

Figure 4: The construction from Case 2 of Lemma 3.

− (degT ∗(b1) + λ)(degT ∗(ck) + λ)− (degT ∗(ck) + λ)(degT ∗(ck−1) + λ)

− (degT ∗(b) + λ)(degT ∗(bℓ) + λ)−
ℓ−1∑
i=2

(degT ∗(b) + λ)(degT ∗(bi) + λ)

= (1 + λ)(ℓ+ λ) + (1 + λ)(2 + λ) + (ℓ+ λ)(degT (bℓ) + λ)

+
ℓ−1∑
i=2

(ℓ+ λ)(degT (bi) + λ)

− (1 + λ)(2 + λ)− (2 + λ)2 − (ℓ− 1 + λ)(degT (bℓ) + λ)

−
ℓ−1∑
i=2

(ℓ− 1 + λ)(degT (bi) + λ)

= λℓ+ ℓ+ degT (bℓ)− 2λ− 4 +
ℓ−1∑
i=2

(degT (bi) + λ)

> λℓ+ ℓ− 2 + (λ+ 1)(ℓ− 2)

= 2λℓ+ 2ℓ− 4λ− 4

= (2λ+ 2)(ℓ− 2) > 0.

Case 3: b has no leaf neighbors.
Consider two paths bc1c2 . . . ck and bd1d2 . . . ds with c1 = b1 and d1 = b2, where both paths
have length at lease two (i.e., k, s ≥ 2) and terminal nodes ck and ds are leaves. Construct a
modified tree T ∗ by detaching the path c1c2 . . . ck from b and attaching it to ds (see Fig. 5).
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a

a1 a2 a∆

bℓ

b

c1

c2

ck

d1

d2

ds

b3 bℓ−1

a

a1
a2 a∆

bℓ

b

d1 b3

d2

bℓ−1

ds

c1T

T ∗
c2

ck

Figure 5: Transformation from Case 3 of Lemma 3.

Once again, let X = GRMλ(T )−GRMλ(T
∗); we can estimate it as follows:

X = (degT (b) + λ)(degT (b1) + λ) + (degT (ds) + λ)(degT (ds−1) + λ)

+ (degT (b) + λ)(degT (bℓ) + λ) +

ℓ−1∑
i=2

(degT (b) + λ)(degT (bi) + λ)

− (degT ∗(b1) + λ)(degT ∗(ds) + λ)− (degT ∗(ds) + λ)(degT ∗(ds−1) + λ)

− (degT ∗(b) + λ)(degT ∗(bℓ) + λ)−
ℓ−1∑
i=2

(degT ∗(b) + λ)(degT ∗(bi) + λ)

= (2 + λ)(ℓ+ λ) + (1 + λ)(2 + λ) + (ℓ+ λ)(degT (bℓ) + λ)

+

ℓ−1∑
i=2

(ℓ+ λ)(degT (bi) + λ)

− (1 + λ)(2 + λ)− (2 + λ)2 − (ℓ− 1 + λ)(degT (bℓ) + λ)

−
ℓ−1∑
i=2

(ℓ− 1 + λ)(degT (bi) + λ)
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= ℓλ+ ℓ+ degT (bℓ)− 2λ− 4 +
ℓ−1∑
i=2

(degT (bi) + λ) > 0.

This concludes the demonstration of Lemma 3.

Our second lemma addresses spiders.

Lemma 4. If T is a spider graph in Tn,∆ with ∆ ≥ 3, and it has at least two legs of length
greater than one, then there exists another spider graph T ∗ in Tn,∆ such that GRMλ(T

∗) <
GRMλ(T ).

Proof. Let a be the center of T , and consider two legs of length greater than one represented
by the paths ab1b2 . . . bt and ac1c2 . . . ck. Construct T ∗ by detaching the subpath b2 . . . bt
from a and attaching it to the terminal vertex ck. Define X as X = GRMλ(T )−GRMλ(T

∗).
Then

X = (degT (a) + λ)(degT (b1) + λ) + (degT (b1) + λ)(degT (b2) + λ)

+ (degT (ck) + λ)(degT (ck−1) + λ)

− (degT ∗(a) + λ)(degT ∗(b1) + λ)− (degT ∗(ck) + λ)(degT ∗(ck−1) + λ)

− (degT ∗(b2) + λ)(degT ∗(ck) + λ)

= (2 + λ)(∆ + λ) + (2 + λ)(degT (b2) + λ) + (1 + λ)(2 + λ)

− (1 + λ)(∆ + λ)− (degT ∗(b2) + λ)(2 + λ)− (2 + λ)2

= ∆− 2 > 0,

and we are done.

We now proceed to establish the proof of Theorem 1.
Let T ∗ be a tree in Tn,∆ such that GRMλ(T

∗) ≤ GRMλ(T ) for all T in Tn,∆. Suppose T ∗

is rooted at a with degT ∗(a) = ∆. If ∆ = 2, then T is a path of order n ≥ 3, and its general
reduced second Zagreb index is given by:

GRMλ(T ) = (n− 3)(2 + λ)2 + 2(1 + λ)(2 + λ).

Given ∆ ≥ 3, Lemma 3 ensures that T ∗ is a spider graph centered at vertex a. Furthermore,
Lemma 4 guarantees that T ∗ has at most one leg of length exceeding one. If all legs of T ∗

have length one, then T ∗ is a star, and its general reduced second Zagreb index is given by:

GRMλ(T
∗) = (n− 1)(1 + λ)(n− 1 + λ).

Assume T ∗ is not a star and has exactly one leg of length exceeding one. Then

GRMλ(T ) ≥(n−∆− 2)(2 + λ)2 + (∆− 1)(∆ + λ)(1 + λ)

+ (∆ + λ)(2 + λ) + (1 + λ)(2 + λ)
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=n(λ+ 2)2 − 3(λ+ 2) + (λ+ 1)(∆2 − 3∆− λ),

from which the desired result follows.

To end the section, we compare the bounds given in Theorem A and Theorem 1. At first
consider the case when λ ≥ −1

2 and ∆ = n− 1. If n = 3, then T = P3 and both bounds yield
the exact value of GRMλ(P3) that is 2(λ+ 1)(λ+ 2). If n ≥ 4, then

(n− 1)(n− 1 + λ)(1 + λ)− (λ+ 2)(n+ 2λ− 1)

= (n− 3)
(
λ2 + n(λ+ 1) + (λ− 1)

)
≥ (4− 3)

(
0 + 4(−1

2
+ 1)− 1

2
− 1

)
=

1

2
> 0.

If λ ≥ −1
2 and ∆ < n− 1, then n ≥ 4 and we have:

n(λ+ 2)2 − 3(λ+ 2) + (λ+ 1)(∆2 − 3∆− λ)− (λ+ 2)(n+ 2λ− 1)

= (λ+ 1)
(
(∆− 3

2
)2 + (n− 3)λ+ 2n− 25

4

)
≥ (−1

2
+ 1)

(
(2− 3

2
)2 − 1

2
(n− 3) + 2n− 25

4

)
=

3

4
(n− 3) > 0.

The calculations show that the lower bound established in Theorem 1 is stronger than the
one presented in Theorem A.

3 Proof of Theorem 2

In this section we prove Theorem 2 and provide a comparison between the bound of our
theorem with the bound of Theorem B.

Let Un,∆ represent the set of all unicyclic graphs with n vertices and maximum degree ∆.
If U is a graph in Un,2, then U must be the cycle graph Cn, for which the general reduced
second Zagreb index is given by:

GRMλ(U) = n(2 + λ)2.

For the remainder of this section, we assume ∆ ≥ 3. To establish the announced inequality
for unicyclic graphs, we first need to prove several key lemmas.

Lemma 5. Assume λ > −1
2 , and let U be a unicyclic graph in Un,∆, where no vertex of

degree ∆ lies on the cycle. Suppose degU (x) = ∆, and let b be a vertex on the cycle of U
that minimizes the distance dU (a, b). If either degU (b) ≥ 4 or there exists a vertex c (distinct
from a and b) with degU (c) ≥ 3, then Un,∆ contains another unicyclic graph U ′ such that
GRMλ(U) > GRMλ(U

′).
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Proof. Let C denote the cycle of U , and let P be the path connecting a to b. Consider a
vertex c in U , distinct from a and b, such that degU (c) ≥ 3. Define Tc as the rooted tree with
c as its root, which maximizes the number of vertices connected to c.

If c is not a vertex of the cycle C or the path P , then by Lemma A, we can transform
Tc into a path Pc with the same number of vertices, such that GRMλ(Tc) > GRMλ(Pc).
Construct U ′ in Un,∆ by removing Tc from U and replacing it with Pc. Consequently, it
follows that GRMλ(U) > GRMλ(U

′).
Now, consider c as a vertex on the cycle C and let c1 and c2 be neighbors of c on

C, excluding any vertices in Tc. The case where c is on the path P is analogous. By
Lemma A, we can transform Tc into a path Pc with the same number of vertices, such that
GRMλ(Tc) ≥ GRMλ(Pc). Construct U

′ in Un,∆ by removing Tc from U and replacing it with
Pc. It follows that, GRMλ(U) ≥ GRMλ(U

′) and degU ′(c) = 3. Construct U ′′ ∈ Un,∆ by
removing Pc from U ′ and adding the path c1 Pc c. Consequently, we have:

degU ′′(c1) = degU ′(c1) = degU (c1),

degU ′′(c2) = degU ′(c2) = degU (c2).

In the subsequent computations we set X = GRMλ(U
′)−GRMλ(U

′′).
If the length of Pc is greater than one, then

X = (degU ′(c1) + λ)(degU ′(c) + λ) + (degU ′(c2) + λ)(degU ′(c) + λ)

+ (degU ′(c) + λ)(2 + λ) + (2 + λ)(1 + λ)

− (degU ′′(c1) + λ)(2 + λ)− (degU ′′(c2) + λ)(degU ′′(c) + λ)

− (2 + λ)(2 + λ)− (degU ′′(c) + λ)(2 + λ)

= (degU ′(c1) + λ)(3 + λ) + (degU ′(c2) + λ)(3 + λ)

+ (3 + λ)(2 + λ) + (2 + λ)(1 + λ)

− (degU ′′(c1) + λ)(2 + λ)− (degU ′′(c2) + λ)(2 + λ)

− 2(2 + λ)(2 + λ)

= degU (c1) + degU (c2) + 2λ > 0.

If, however, the length of Pc is one, then

X = (degU ′(b1) + λ)(degU ′(b) + λ) + (degU ′(b2) + λ)(degU ′(b) + λ)

+ (degU ′(b2) + λ)(degU ′(b) + λ)

+ (degU ′() + λ)(2 + λ) + (2 + λ)(1 + λ)

− (degU ′′(c1) + λ)(2 + λ)− (degU ′′(c2) + λ)(degU ′′(c) + λ)

− (2 + λ)(2 + λ)− (degU ′′(c) + λ)(2 + λ)

= (degU ′(c1) + λ)(3 + λ) + (degU ′(c2) + λ)(3 + λ)

+ (3 + λ)(2 + λ) + (2 + λ)(1 + λ)
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− (degU ′′(c1) + λ)(2 + λ)− (degU ′′(c2) + λ)(2 + λ)

− 2(2 + λ)(2 + λ)

= degU (c1) + degU (c2) + 2λ > 0.

Finally, suppose degU (b) ≥ 4, with b1, b2, and b3 as neighbors of b in U , where b1 and b2
are on the cycle C, and b3 is on the path P . Define Tb as the rooted tree with the maximum
number of vertices connected to b, excluding b1, b2, and b3. By Lemma A, we can transform
Tb into a path Pb with the same number of vertices, such that GRMλ(Tb) ≥ GRMλ(Pb).
Construct U ′ in Un,∆ by removing Tb from U and replacing it with Pb. It follows that
GRMλ(U) ≥ GRMλ(U

′) and degU ′(b) = 4. Construct U ′′ in Un,∆ by removing Pb from U ′

and adding the path b1 Pb b. Consequently, we have:

degU ′′(b1) = degU ′(b1) = degU (b1),

degU ′′(b2) = degU ′(b2) = degU (b2),

degU ′′(b3) = degU ′(b3) = degU (b3).

If the length of Pb is at least two, then

X = (degU ′(b1) + λ)(degU ′(b) + λ) + (degU ′(b2) + λ)(degU ′(b) + λ)

+ (degU ′(b3) + λ)(degU ′(b)

+ λ) + (degU ′(b) + λ)(2 + λ) + (2 + λ)(1 + λ)

− (degU ′′(b1) + λ)(2 + λ)− (degU ′′(b2) + λ)(degU ′′(b) + λ)

− (degU ′′(b3) + λ)(degU ′′(b) + λ)

− (2 + λ)(2 + λ)− (degU ′′(b) + λ)(2 + λ)

= (degU ′(b1) + λ)(4 + λ) + (degU ′(b2) + λ)(4 + λ)

+ (degU ′(b3) + λ)(4 + λ) + (4 + λ)(2 + λ) + (2 + λ)(1 + λ)

− (degU ′′(b1) + λ)(2 + λ)− (degU ′′(b2) + λ)(3 + λ)

− (degU ′′(b3) + λ)(3 + λ)− (2 + λ)(3 + λ)− (2 + λ)(2 + λ)

= 2 degU (b1) + degU (b2) + degU (b3) + 4λ > 0.

If, however, the length of Pb is one, then

X = (degU ′(b1) + λ)(degU ′(b) + λ) + (degU ′(b2) + λ)(degU ′(b) + λ)

+ (degU ′(b3) + λ)(degU ′(b) + λ) + (degU ′(b) + λ)(1 + λ)

− (degU ′′(b1) + λ)(2 + λ)− (degU ′′(b2) + λ)(degU ′′(b) + λ)

− (degU ′′(b3) + λ)(degU ′′(b) + λ)− (degU ′′(b) + λ)(2 + λ)

= (degU ′(b1) + λ)(4 + λ) + (degU ′(b2) + λ)(4 + λ)

+ (degU ′(b3) + λ)(4 + λ) + (4 + λ)(1 + λ)

− (degU ′′(b1) + λ)(2 + λ)− (degU ′′(b2) + λ)(3 + λ)
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− (degU ′′(b3) + λ)(3 + λ)− (2 + λ)(3 + λ)

= 2 degU (b1) + degU (b2) + degU (b3) + 4λ− 2 > 0.

This concludes the proof of Lemma 5.

As the proof of the next lemma closely resembles the one presented in Lemma 5, it is
omitted for brevity.

Lemma 6. Assuming λ > −1
2 , consider a graph U in Un,∆ with a vertex a of degree ∆ on

its cycle. If U contains another vertex b (excluding a) of a degree of at least 3, then there
exists a unicyclic graph U ′ in Un,∆ where GRMλ(U) > GRMλ(U

′).

Lemma 7. Let λ > −1
2 and let U ∈ Un,∆ have the vertex a of degree ∆ that is not on its

cycle. If a is adjacent to at least two vertices of degree more than one, then Un,∆ contains a
unicyclic graph U ′ such that GRMλ(U) > GRMλ(U

′).

Proof. Let b be a vertex on the cycle of U that minimizes the distance dU (a, b) and let P
be the path connecting a and b. Assume that Ta is the rooted tree with the maximum
conceivable number of vertices connected to a. According to Lemma 3, we can transform Ta

into a tree T ′
a with the same number of vertices such that GRMλ(Ta) ≥ GRMλ(T

′
a). Now,

consider the unicyclic graph U ′ in Un,∆ obtained by replacing Ta with T ′
a. Consequently, it

holds that GRMλ(U) ≥ GRMλ(U
′).

Suppose a is adjacent to at least two vertices of degree greater than one. By Theorem 1,
T ′
a takes the form of a spider graph with one leg longer than one, such as P ′ = c1 c2 . . . ck.

Let c1 be a vertex in NU ′(a) ∩ V (P ′), and select d ∈ NU ′(a) \ {c1} so that d is on the path
P . Now, derive a new unicyclic graph U ′′ in Un,∆ by removing c2, . . . , ck from U ′ and adding
the path d c2 . . . ck a. According to Lemma 5, we can assume that degU ′′(d) = degU ′(d) = 2
when d ̸= b and degU ′′(d) = degU ′(d) = 3 when d = b. If degU ′′(d) = degU ′(d) = 2, then
recalling that X = GRMλ(U

′)−GRMλ(U
′′), we have

X = 2(2 + λ)(∆ + λ) + (2 + λ)(1 + λ)

− (2 + λ)(∆ + λ)− (1 + λ)(∆ + λ)− (2 + λ)(2 + λ)

= ∆− 2 > 0,

and if degU ′′(d) = degU ′(d) = 3, then

X = (3 + λ)(∆ + λ) + (2 + λ)(∆ + λ) + (2 + λ)(1 + λ)

− (2 + λ)(∆ + λ)− (1 + λ)(∆ + λ)− (3 + λ)(2 + λ)

= 2∆− 4 > 0,

which proves Lemma 7.

The proof of the next lemma closely resembles the one presented in Lemma 7, so it will
be omitted.
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Lemma 8. Let λ > −1
2 and let U ∈ Un,∆ have the vertex a of degree ∆ on its cycle. If a is

adjacent to at least three vertices of degree greater than one, then Un,∆ contains a unicyclic
graph U ′ such that GRMλ(U) > GRMλ(U

′).

From Lemmas 5–8, we verify that within the set Un,∆, the minimal unicyclic graphs with

respect to GRMλ must either belong to one of the two subsets U (1)
n,∆ or U (2)

n,∆, or coincide with

the graph U
(3)
n,∆. These structures are formally defined as follows:

� Let U (1)
n,∆ be a subset of Un,∆ such that every unicyclic graph U1 ∈ U (1)

n,∆ has a vertex
a of degree ∆, where a is adjacent to ∆ − 1 leaves and a is not on the cycle of U1.
Additionally, let b be a vertex on the cycle of U1 such that dU1(a, b) = 1, degU1

(b) = 3,
and for every vertex c ∈ V (U1) \ {a, b}, it holds that 1 ≤ degU1

(c) ≤ 2 (see Fig. 6).

Therefore, for every unicyclic graph U1 ∈ U (1)
n,∆, we have

GRMλ(U1) =2(3 + λ)(2 + λ) + (∆− 1)(1 + λ)(∆ + λ) + (3 + λ)(∆ + λ)

+ (n−∆− 2)(2 + λ)2

=(∆+ λ)(∆ +∆λ+ 2) + (n−∆)(2 + λ)2 + 2(2 + λ). (1)

Figure 6: The construction of unicyclic graphs from U (1)
n,∆.

� Let U (2)
n,∆ be a subset of Un,∆ such that every unicyclic graph U2 ∈ U (2)

n,∆ has a vertex a of
degree ∆, where a is adjacent to ∆−1 leaves and is not part of the cycle. Additionally,
assume b is a vertex on the cycle of U2 such that the distance dU2(a, b) is minimized,
specifically with dU2(a, b) ≥ 2, degU2

(b) = 3, and for every vertex c ∈ V (U2) \ {a, b}, it
holds that 1 ≤ degU2

(c) ≤ 2 (see Fig. 1). Therefore, for every unicyclic graph U2 ∈ U (2)
n,∆,

we have

GRMλ(U2) =3(3 + λ)(2 + λ) + (∆− 1)(1 + λ)(∆ + λ) + (2 + λ)(∆ + λ)

+ (n−∆− 3)(2 + λ)2

=(∆+ λ)(∆ +∆λ+ 1) + (n−∆)(2 + λ)2 + 3(2 + λ). (2)

� Let U
(3)
n,∆ be a unicyclic graph from Un,∆ with a vertex a on its cycle, where a has degree

∆ and is adjacent to ∆− 2 leaves. Additionally, for every vertex b ∈ V (U
(3)
n,∆) \ {a}, it

holds that 1 ≤ deg
U

(3)
n,∆

(b) ≤ 2 (see Fig. 2). Then
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GRMλ(U
(3)
n,∆) =(∆− 2)(1 + λ)(∆ + λ) + 2(2 + λ)(∆ + λ) + (n−∆)(2 + λ)2

=(∆+ λ)(∆ +∆λ+ 2) + (n−∆)(2 + λ)2. (3)

Now, we compare GRMλ values across these subsets.

Lemma 9. Let U1 ∈ U (1)
n,∆ and U2 ∈ U (2)

n,∆ be two unicyclic graphs from Un,∆. Then
GRMλ(U1) > GRMλ(U2).

Proof. By subtracting Eq. (2) from Eq. (1), we obtain

GRMλ(U1)−GRMλ(U2) = ∆− 2 > 0,

from which the result follows.

Lemma 10. For each unicyclic graph U1 ∈ U (1)
n,∆, the inequality GRMλ(U1) > GRMλ(U

(3)
n,∆)

holds.

Proof. By subtracting Eq. (3) from Eq. (1), we obtain

GRMλ(U1)−GRMλ(U
(3)
n,∆) = 2(2 + λ) > 0,

from which the result follows.

Lemma 11. For each unicyclic graph U2 ∈ U (2)
n,∆, the following inequalities hold:

If ∆ > 2λ+ 6, then GRMλ(U
(3)
n,∆) > GRMλ(U2).

If ∆ < 2λ+ 6, then GRMλ(U2) > GRMλ(U
(3)
n,∆).

If ∆ = 2λ+ 6, then GRMλ(U
(3)
n,∆) = GRMλ(U2).

Proof. By subtracting Eq. (2) from Eq. (3), we obtain:

GRMλ(U
(3)
n,∆)−GRMλ(U2) = ∆− 2λ− 6.

It can now be easily verified that, if ∆ > 2λ + 6, then GRMλ(U
(3)
n,∆) > GRMλ(U2), if

∆ < 2λ + 6, then GRMλ(U2) > GRMλ(U
(3)
n,∆), and if ∆ = 2λ + 6, then GRMλ(U

(3)
n,∆) =

GRMλ(U2).

With all the prerequisites in place, we can now proceed to establish the proof of Theorem 2.
Assume that U ′ ∈ Un,∆ with GRMλ(U) ≥ GRMλ(U

′) for every U ∈ Un,∆. By Lemmas
5–11, U ′ satisfies one of the following cases:

Case 1. If 2λ+ 6 < ∆ < n− 3, then U ′ ∈ U (2)
n,∆, and from Eq. (2), we obtain:

GRMλ(U
′) = (∆ + λ)(∆ +∆λ+ 1) + (n−∆)(2 + λ)2 + 3(2 + λ).
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So the inequality in Theorem 2 (i) holds with equality if and only if U ∈ U (2)
n,∆.

Case 2. If 3 ≤ ∆ < 2λ+6 or n−3 ≤ ∆ ≤ n−1, then U ′ = U
(3)
n,∆, and from Eq. (3), we have:

GRMλ(U
′) = (∆ + λ)(∆ +∆λ+ 2) + (n−∆)(2 + λ)2.

Hence the inequality in Theorem 2 (ii) holds with equality if and only if U = U
(3)
n,∆.

Case 3. If ∆ = 2λ+ 6, then U ′ ∈ U (2)
n,∆ or U ′ = U

(3)
n,∆, and from Eq. (2) or Eq. (3), we get:

GRMλ(U
′) = 3(2 + λ)3 + (n− 2λ− 6)(2 + λ)2.

Then the inequality in Theorem 2 (iii) holds with equality if and only if either U ∈ U (2)
n,∆ or

U = U
(3)
n,∆. This completes the proof of Theorem 2.

We end this section with providing a comparison between the bound of Theorem B and
that of Theorem 2.

If 2λ+ 6 < ∆ < n− 3, then

(∆ + λ)(∆ +∆λ+ 1) + (n−∆)(2 + λ)2 + 3(2 + λ)− n(λ+ 2)2

= (λ+ 1)(∆2 − 3∆ + 4) + 2 > 0.

If 3 ≤ ∆ ≤ 2λ+ 6 or n− 3 ≤ ∆ ≤ n− 1, then

(∆ + λ)(∆ +∆λ+ 2) + (n−∆)(2 + λ)2 − n(λ+ 2)2

= (λ+ 1)(∆2 − 3) + 2λ+∆ > 0.

The above comparison shows that the lower bound of Theorem 2 is stronger than that of
Theorem B, where λ > −1

2 .

4 Concluding remarks

In this paper, we have extended and refined the bounds established in Theorem A and
Theorem B by deriving sharp lower bounds for the general reduced second Zagreb index of
trees and unicyclic graphs with a specified order and maximum degree. Furthermore, we
recall the following result.

Theorem C. [16] If Γ is a connected graph and λ ≥ −1
2 , then for every e /∈ E(Γ),

GRMλ(Γ + e) > GRMλ(Γ).

This result thus asserts that adding an edge to a connected graph increases the value of
the general reduced second Zagreb index. By combining Theorem C with Theorem 1, we can
formulate the following additional result.
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Theorem 12. If λ ≥ −1
2 and Γ is a connected graph of order n ≥ 3 and maximum degree

∆, then

GRMλ(Γ) ⩾


n(λ+ 2)2 − 3(λ+ 2) + (λ+ 1)(∆2 − 3∆− λ); ∆ < n− 1,

∆(∆+ λ)(1 + λ); ∆ = n− 1.

The equality condition is met if and only if the graph Γ is a spider graph with at most one
leg of length exceeding one.

We have also identified the minimal trees and unicyclic graphs that achieve these lower
bounds in our main two theorems. The identification of minimal trees and unicyclic graphs
provides a framework for future research and applications in mathematical chemistry and
network theory. Future research may explore further generalizations of our findings, as well
as their implications for other classes of graphs. Additionally, investigating the behavior of
the general reduced second Zagreb index under various graph operations could yield new
avenues for understanding the structural properties of graphs.

Acknowledgments
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