
Cover-incomparability graphs of posets
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Abstract

Cover-incomparability graphs (C-I graphs, for short) are introduced, whose
edge-set is the union of edge-sets of the incomparability and the cover graph
of a poset. Posets whose C-I graphs are chordal (resp. distance-hereditary,
Ptolemaic) are characterized in terms of forbidden isometric subposets, and a
general approach for studying C-I graphs is proposed. Several open problems
are also stated.

Keywords: poset, underlying graph, transit function, chordal graph, distance-
hereditary graph, claw.

1 Introduction

There are three standard ways in which one can associate a graph to a given poset
P . In all the cases the vertex sets of the associated graphs consist of the points
of P . In the cover graph of P points x and y are adjacent if either x covers y or
y covers x. Points x and y are adjacent in the compararability graph if they are
comparable in P . The incomparability graph is the complement of the comparability
graph. For more information on the interrelation between posets and graphs see the
survey paper [16] as well as [15]. We also refer to [8] where two additional graphs
are associated to a poset.

In this paper we introduce a new graph that can be associated to a poset P , we
call it the cover-incomparability graph (C-I graph) of P . This is the graph in which
the edge set is the union of the edge sets of the corresponding cover graph and the
corresponding incomparability graph. Note that this is the only nontrivial way to
construct a new associated graph as unions and/or intersections of the edge sets of
the three standard associated graphs. Our motivation for C-I graphs comes from
the theory of transit functions that can in particular be studied on posets.

The notion of transit functions was introduced by Mulder about ten years ago
and finally written up in [12]. The central idea of this concept is to generalize
the interval function of a graph [11], and to study how to move around in discrete
structures. Instances of this theory include the all-paths transit function [3] and
the induced path transit function [4, 10]. For a survey on path transit functions on
graphs we refer to [5].

The study of transit functions on posets has been initiated in [9] where in partic-
ular the standard poset transit function, the meet/join semilattice transit function,
and the lattice transit function are introduced and studied. It turns out that the
underlying graph of the standard transit function on a poset P is just the C-I graph
of P , hence our main motivation. We hope, however, that C-I graphs will be useful
in some other context of poset theory.

We proceed as follows. In the rest of this section some definitions on posets and
graphs are recalled. In the subsequent section the cover-incomparability graphs are
introduced and their basic properties observed. It is also proved that a given class
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of posets has a characterization with forbidden isometric subposets, provided that
their C-I graphs belong to a class of graphs having a forbidden induced subgraphs
characterization. In the rest of the paper we give several explicit such character-
izations. In Section 3 we give a forbidden isometric subposet characterization of
posets whose C-I graphs are chordal, while in Section 4 similar theorems for posets
whose C-I graphs are distance-hereditary and Ptolemaic are given. In Section 5 we
introduce a relation ≺ on C-I graphs that relates two graphs with respect to the
corresponding forbidden isometric subposet characterizations. Finally in the last
section several questions are posed.

Let P = (V,≤) be a poset. If u ≤ v but u 6= v, then we write u < v. If u and
v are in V , then v covers u in P if u < v and there is no w in V with u < w < v.
If u ≤ v we will sometimes say that u is below v, and that v is above u. Let V ′ be
a nonempty subset of V . Then there is a natural poset Q = (V ′,≤′), where u ≤′ v

if and only if u ≤ v for any u, v ∈ V ′. The poset Q is called a subposet of P and
its notation is simplified to Q = (V ′,≤). If, in addition, together with any two
comparable elements u and v of Q, a chain of shortest length between u and v of P

is also in Q, we say that Q is an isometric subposet. For the purposes of this paper
we will say that P is called Q-free if P has no isometric subposet isomorphic to Q.
For other definitions on posets and related concepts we refer to [6].

A graph G is chordal if it does not contain induced cycles of length at least
4. A distance-hereditary graph is a connected graph in which every induced path
is a shortest path. Hence the distance-hereditary graphs are the graphs in which
the geodesic convexity and the induced path convexity coincide. These graphs were
characterized by Howorka [7] as the connected graphs without induced long cycles
(cycles of length greater than four), the house, the domino, and the 3-fan as induced
subgraphs, see Fig. 1.

Figure 1: House, domino, and 3-fan

Finally, Ptolemaic graphs are distance-hereditary graphs without induced 4-
cycles. In other words, Ptolemaic graphs are chordal distance-hereditary graphs.

2 Cover-incomparability graphs

A transit function on a non empty set V is a function T : V × V → 2V satisfying
the following transit axioms:

(t1) u ∈ T (u, v) for any u and v ∈ V .
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(t2) T (u, v) = T (v, u) for all u and v ∈ V .
(t3) T (u, u) = {u} for all u ∈ V .

The underlying graph GT of a transit function T on a set V is the graph with vertex
set V , where distinct u and v in V are joined by an edge if | T (u, v) |= 2.

For a poset P = (V,≤), the standard poset transit function TP : V × V → 2V is
defined in the following way:

(i) If x and y are incomparable, then TP (x, y) = {x, y}.
(ii) If x ≤ y, then TP (x, y) = {z | x ≤ z ≤ y}.
(iii) If y ≤ x, then TP (x, y) = {z | y ≤ z ≤ x}.

Clearly, TP satisfies (t1)-(t3). In other words, TP is a transit function.
Note that the underlying graph GTP

of T is obtained from the cover graph of P

by adding an edge between any pair of incomparable elements of P . Thus the edges
of GTP

are the union of the edges of the cover graph of P and the incomparability
graph of P . Hence we say that GTP

is the cover-incomparability graph (C-I graph)
of P .

For instance, if P is a linear order, then the C-I graph is the cover graph of P

and if P is an antichain then its C-I graph is the incomparability graph of P . The
n-cube Qn is the cover graph of the usual inclusion defined on subsets of an n-set.
Since two subsets are incomparable if none is contained in the other, the C-I graph is
obtained from Qn by adding edges between each pair of vertices b1 . . . bn and c1 . . . cn

for which there exist indices i and j such that bi = cj = 0 and bj = ci = 1.
We now collect some simple observations about C-I graphs that will be often

implicitly used in the rest of the paper.

Lemma 2.1 Let P be a poset. Then

(i) the C-I graph of P is connected;
(ii) points of P that are independent in the C-I graph of P lie on a common

chain;
(iii) an antichain of P corresponds to a complete subgraph in the C-I graph of

P .

Recall that a poset P is dual to a poset Q if for any x, y ∈ P the following holds:
x ≤ y in P if and only if y ≤ x in Q. Then we have the following simple observation.

Lemma 2.2 Let Q be the dual poset of P . Then GTP
is isomorphic to GTQ

.

By this lemma we infer that in order to characterize a class of underlying graphs
of transit functions of posets in terms of forbidden isometric subposets, in the list
of forbidden subposets all subposets will appear in dual pairs (by agreement that in
self-dual subposets the dual-pair consists of one poset). To shorten our presentation
we shall only list one of the posets of every dual-pair.

We next state a general theorem that led us to the investigations in the rest of
the paper. For it we need:
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Lemma 2.3 Let Q be an isometric subposet of a poset P . Then GTQ
is isomorphic

to the subgraph of GTP
induced by the points of Q.

Proof. Let H be the subgraph of GTP
induced by the points of Q. Let u and v be

arbitrary points of Q. Suppose u and v are adjacent in H. Note that this happens
if and only if either u covers v (or vice versa) in P or u and v are incomparable in
P . If u covers v in P , then u covers v also in Q, and so u and v are adjacent in
GTQ

. If they are incomparable in P , they are also incomparable in Q, and so again
they are adjacent in GTQ

. Now, suppose that u and v are not adjacent in H. Then
u ≤ v but v does not cover u. Since Q is an isometric subposet of P , there exists a
point w in Q, w 6= u, v, such that u ≤ w ≤ v, and so u and v are also not adjacent
in GTQ

. �

We point out that Lemma 2.3 need not hold if Q is a subposet that is not
isometric.

Theorem 2.4 Let G be a class of graphs with a forbidden induced subgraphs char-
acterization. Let

P = {P | P is a poset with GTP
∈ G} .

Then P has a forbidden isometric subposets characterization.

Proof. Let G be a forbidden induced subgraph for the class G. Let P ∈ P, then G is
not an induced subgraph of GTP

. By Lemma 2.3, P does not contain any isometric
subposet P ′ that yields G in GTP

. (Note that there may be no such subposet).
Hence any such subposet P ′ is a forbidden subposet of P . Repeating the argument
for all the forbidden subgraphs for G we find a list of forbidden isometric subposets
{Pi}i∈I for P.

We claim that P is characterized by forbidden isometric subposets {Pi}i∈I . Let
P ∈ P. Then P contains no isometric subposet Pi, for otherwise GTP

would contain
a forbidden induced subgraph by Lemma 2.3. Conversely, suppose that P contains
no isometric subposet Pi. Then by the construction, GTP

contains no forbidden
subgraph for G. It follows that GTP

is from G and hence P is from P. �

Note that in Theorem 2.4 {GTP
| P ∈ P} will in general be a proper subclass of

G.
Theorem 2.4 leads us to the following question. For a given class of graphs G that

has forbidden induced subgraphs characterization, determine the list of forbidden
(isometric) subposets P. This is the question that we follow in the next two sections.

3 Posets whose C-I graphs are chordal

In this section we prove the following theorem.

Theorem 3.1 Let P be a poset. Then GTP
is chordal if and only if P is P1-, P2-

and P3-free; see Fig. 2 (all points in the figure are pairwise distinct).

5



v

u

yx

P PP C
1

32 4

Figure 2: Forbidden subposets for C4

The proof will be given in two steps, we first consider 4-cycles in C-I graphs and
then proceed with longer cycles.

Lemma 3.2 Let P be a poset. Then GTP
contains an induced 4-cycle if and only

if P contains one of the posets P1, P2 and P3 as an isometric subposet.

Proof. Suppose P contains one of P1, P2 or P3 as an isometric subposet. Then,
using Lemma 2.3, the vertices u, x, v, y (see Fig. 2) induce a 4-cycle in GTP

.
Conversely, suppose that GTP

contains an induced 4-cycle u, x, v, y, u as shown
in Fig. 2. Let S = {u, x, v, y}.

If u, x, v, y lie on only one chain then in GTP
they induce a path which is a

contradiction. Hence there exist at least two chains on which vertices from S lie,
and suppose that one of the four points, say u, is below the other three points. Since
degC4

(u) = 2 we infer that u is covered in P by both x and y. Hence x and y are
incomparable in P , and so they are adjacent in GTP

. This yields the triangle in
GTP

, a contradiction. Using the duality argument we derive that no point is above
all other points from S.

From the above we derive there are two chains S1, S2 in P on which points from
S lie, and no point is comparable to all other points from S. Then there exist two
minimal elements with respect to S (that is, no point from S is below these two
elements), each of the two minimal elements lying on one of the chains. (There
cannot be three minimal elements with respect to S because in GTP

they would
form a triangle.) Without loss of generality we may assume that u ∈ S1 is one of
the minimal elements with respect to S. We derive that the minimal element with
respect to S that lies in S2 is either x or y, say x. Since u is adjacent to y, either u

is covered by y or u and y are incomparable.
First, let u and y be incomparable, so y necessarily lies in S2. Since x and y lie

on the same chain, y lies on S2 above x, and y does not cover x. Since u and v are
nonadjacent, v lies above u on S1, and v does not cover u. Let u = u1, . . . , uk = v

be the chain between u and v on S1, and x = x1, . . . , xm = y be the chain between x

and y on S2. Since u is not comparable to y, also uk−2, uk−1 and v are not below any
xi (including y). Since x and v are adjacent in GTP

, either they are incomparable
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in P or v covers x. In each case, we deduce that x2, . . . , xm−1 and y are not below
any ui. Hence x2 and x3 are incomparable with uk−2, uk−1 and v. We infer that
uk−2, uk−1, v, x, x2, x3 induce one of the posets P2 or P3 as an isometric subposet
(depending on whether x and v are comparable or not), see Fig. 2.

Secondly, let u be covered by y. So y ∈ S1. Suppose that v is in S1. Then y and
u are below v. Since x is minimal and x and y lie on the same chain in P (because
they are not adjacent in GTP

), x is below y, and so v covers also x. This is not
possible, since we established earlier that no point from S can be above all other
three points from S. We find that v ∈ S2. Now, x and v adjacent in GTP

, implies
that v covers x. It is clear that u and x are incomparable and also that v and y

are incomparable (by the same argument). Since u and v are not adjacent in GTP
,

there is a chain of length at least 2 between u and v, and similarly we get for x and
y. If both chains are of length exactly two we infer that the poset P1 from Fig. 2
is an isometric subposet. If one of the lengths of these two chains is greater than 2,
we obtain in a similar way as above, one of the subposets P2 or P3. �

Lemma 3.3 For a poset P , GTP
has no induced long cycles.

Proof. Suppose GTP
contains an induced n-cycle C = v1, v2, . . . , vn, v1, n ≥ 5. Let

P ′ be the subposet of P formed by v1, v2, . . . , vn. Then P ′ is not a chain for then
v1, v2, . . . , vn form a path in GTP

contrary to our assumption. We distinguish two
cases.

Case 1: P ′ contains an antichain of length 3.
Without loss of generality we assume that v1, v2, v3 are three points in an antichain
of length 3. Clearly they form a triangle in GTP

and so C has a chord.

Case 2: P ′ has no antichain of length 3 or more.
Let {vi, vj}, i 6= j, be an antichain of P ′. Then if we consider a third point say
vk different from vi, vj , it will not be incomparable with both vi and vj because
otherwise {vi, vj , vk} form an antichain of length 3. So vk is comparable with vi or
vj . Suppose vi < vk. Let w be the vertex covering vi, where w ≤ vk. Then we have
the following subcases relating w and vj .

Subcase 2.1: w and vj incomparable.
Obviously {vi, w, vj} form a triangle in GTP

. Hence C has a chord, a contradiction.

Subcase 2.2: w covers vj.
Again {vi, w, vj} form a triangle in GTP

, thus C has a chord.

Subcase 2.3: vj < w.
Let z be such that vj < z < w, where z covers vj . Then vi, vj , z form a triangle in
GTP

, again yielding a chord in C which concludes the proof of this case and hence
the theorem. �

Theorem 3.1 now follows by combining Lemma 3.2 and Lemma 3.3.
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4 Posets with distance-hereditary C-I graphs

The main result of this section is the following:

Theorem 4.1 Let P be a poset. Then GTP
is distance-hereditary if and only if P

is Q1-, Q2-, Q3-, Q4- and Q5-free; see Fig. 3.

Figure 3: Forbidden subposets for 3-fan

Note that by the agreement after Lemma 2.2 we do not list dual posets in Fig. 3
(otherwise there would be another forbidden subposet – the dual poset of Q2).

Combining Theorem 4.1 with Lemma 3.2 we obtain:

Corollary 4.2 Let P be a poset. Then GTP
is Ptolemaic if and only if P is P1-,

P2-, P3-, Q1-, Q2-, Q3-, Q4- and Q5-free; see Fig. 2 and Fig. 3.

As we have already mentioned, distance-hereditary graphs are the connected
graphs without long cycles, the 3-fan, the house, and the domino. Since the long
cycles were treated in the previous section, we consider in the rest of the section the
effect of the remaining forbidden subgraphs in GTP

to P .

Lemma 4.3 Let P be a poset. Then GTP
contains an induced 3-fan if and only if

P contains one of the Q1, Q2, Q3, Q4, or Q5 as an isometric subposet; see Fig. 3.

Proof. Suppose P contains an isometric subposet isomorphic to Q1, Q2, Q3, Q4, or
Q5. In the cases Q1, Q2, and Q3 it is clear (having in mind Lemma 2.3) that GTP

contains an induced 3-fan. If Q4 or Q5 are subposets we get the same conclusion
by considering the left point of the middle level as vertex u and the points in the
bottom level and the top level as vertices x, y, z, and w.

For the converse suppose GTP
has an induced 3-fan as shown in Fig. 3. Then

w, z, y, x is an induced path in GTP
. We distinguish three possibilities.

Case 1. All points w, z, y, x lie on one chain.
We may then assume without loss of generality that w < z < y < x where x covers
y, y covers z, and z covers w. As u is adjacent to x, y, z and w in GTP

, it follows
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that u is in the following relation with the other 4 points: either incomparable with
a point, covers a point, or it is covered by a point.

Note that y and z must both be incomparable with u, otherwise we easily infer
that one of the four vertices is not adjacent to u in GTP

. For instance, if y is covered
by u then z and w are not adjacent to u in GTP

. Similarly one verifies that x is
not covered by u and u is not covered by w. Hence, the remaining three cases are:
u is incomparable with all four points (yielding subposet Q3), u covers w and is
incomparable to other three points (yielding subposet Q2), and u covers w, u is
covered by x and is incomparable to y and z (yielding subposet Q1). Note that the
fourth case which we excluded yields a subposet dual to Q2.

Case 2. Three of the points w, z, y, x lie on one chain, but not all four.
Suppose three points that lie on a chain correspond to a path P3 in GTP

. Without
loss of generality, we may assume that these are w, z and y, and that w < z and
w < y. Then, clearly, z covers w and y covers z. Since x and z are not adjacent in
GTP

, they must be comparable, but not in a covering relation. We infer that z < x,
otherwise x and y would not be adjacent in GTP

. Then w, z and two points on the
chain between z and x form an isometric subposet – chain on 4 points. Together
with u they form one of the posets Q1, Q2 or Q3.

Suppose three points that lie on a chain do not correspond to a path P3 in GTP
.

Without loss of generality, we may assume that these are w, y and x. Since w is
not adjacent in GTP

with any of x and y, we derive that there is another point on
a chain between w and the pair x, y. Again we are in the situation of Case 1, and
obtain one of Q1, Q2 or Q3 as a subposet.

Case 3. No three points of w, z, y, x lie on one chain.
Note first that in this case x and y are incomparable. Indeed, if they would be
comparable, then, as w is comparable with both x and y, we get that x, y, and w

would lie on a common chain. Since w is not adjacent to x and to y in GTP
, it must

be comparable with both x and y. We may assume without loss of generality that
w < x and w < y. We also note that there is a point on a chain S1 (respectively
S2) between w and x (respectively w and y). Similarly, since x is not adjacent to
z in GTP

, x is comparable with z and hence z < x by the condition of Case 3. In
addition, there is a point on a chain S3 between z and x. If any of the chains Si has
four points, we are in the situation of Case 1 again. On the other hand, if all Si have
only three points, we obtain a Q4 or a Q5 as an isometric subposet, depending on
whether y and z are comparable. (Note that if they are comparable, y necessarily
covers z.) �

In finding forbidden subposets for GTP
to be house-free and domino-free, it is

useful to start with subposets P1, P2, and P3 that yield an induced C4 in GTP
as

obtained by Lemma 3.2. Starting from this, a simple case analysis (that we leave to
the reader) gives the following two results.

Lemma 4.4 Let P be a poset. Then GTP
contains an induced house if and only if

P contains one of R1, R2, R3, R4 or R5 as an isometric subposet; see Fig. 4.

9



Figure 4: Forbidden subposets for house

Lemma 4.5 Let P be a poset. Then GTP
contains an induced domino if and only

if P contains one of D1, D2, D3, D4, D5, D6 or D7 as an isometric subposet; see
Fig. 5.

Figure 5: Forbidden subposets for domino

From Lemma 3.3 we know that GTP
contains no induced long cycles. Observe

now that each of the posets R1-R5 and D1-D7 contains one of the posets Q1, Q2,
and Q3 as an isometric subposet. Therefore, Theorem 4.1 follows from Lemmas 3.3,
4.3, 4.4 and 4.5.
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5 Relation ≺

In this section we introduce a relation ≺ on graphs that is derived from the con-
nection between posets and their C-I graphs. The motivation for this concept arises
from the following result, and its corollaries. (Recall that a claw is the graph iso-
morphic to K1,3, see Fig. 6 where it is depicted on the right-hand side.)

Proposition 5.1 Let P be a poset. Then GTP
contains an induced claw if and only

if P contains one of S1, S2 or S3 as an isometric subposet; see Fig. 6.

Figure 6: Forbidden subposets for claw

Proof. It is clear that if P has isometric subposets isomorphic to S1, S2 or S3, then
GTP

contains an induced claw.
For the converse suppose that GTP

contains an induced claw, and denote by x

the central vertex and by u, v,w the other vertices of the claw. As u, v,w form an
independent set in GTP

we may assume without loss of generality that u < v < w,
and it is clear that u, v,w are not pairwise covering each other.

First, suppose that x is not comparable in P to any of the points u, v,w. Then,
by the above, we find that P has an isometric subposet isomorphic to S3.

Second, let x be comparable to at least one of the points u, v,w. Clearly, x

cannot be comparable to v (the middle point) since then x would not be adjacent
to one of u,w in GTP

. Suppose that x is comparable with exactly one of the three
points, and first let this be u. Obviously then u < x, and in addition, since x and u

are adjacent in GTP
, x covers u. We clearly get S2 as an isometric subposet. The

case when x is comparable only to w yields as a subposet the dual of S2. The final
case is that x is comparable to both u and w. Note that the chain between u and
w contains at least 5 points (u, v,w and two ”buffer points” between u and v and v

and w). If the chain has exactly 5 points, we get S1 as an isometric subposet. If it
has more than 5 points, then both S2 and its dual can be easily found as isometric
subposets. �

The key observation from Proposition 5.1 and Lemma 4.3 is the following: each
forbidden poset that appears in Proposition 5.1 includes as an isometric subposet
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some of the posets from Lemma 4.3 (that characterizes posets with 3-fan-free C-I
graphs). Thus the following result follows.

Corollary 5.2 If P is a poset such that GTP
is 3-fan-free, then GTP

is also claw-
free.

Similarly, one can readily check that forbidden posets Ri (that are used in the
characterization of posets with house-free C-I graphs) contain as a subposet one of
the posets Q1, Q2 or Q3 or their duals from Fig. 3. Hence:

Corollary 5.3 If P is a poset such that GTP
is claw-free, then GTP

is also house-
free.

Clearly, claw-free graphs are also domino-free. Hence knowing these relations
between poset families, defined by forbidden subposets, one can immediately char-
acterize posets with distance-hereditary (Ptolemaic) C-I graphs as posets with 3-fan-
free (C4-free and 3-fan-free) C-I graphs. As we already know from the direct proofs
from previous sections, the forbidden list of subposets for distance-hereditary C-I
graphs is the same as for the 3-fan-free C-I graphs. The following relation between
graphs is thus natural.

Let H1 and H2 be graphs that can appear as induced subgraphs of some C-I
graphs. That is, there exist posets Pi, i = 1, 2, such that GTPi

contains Hi as an
induced subgraph. Let Di denote the set of forbidden isometric subposets by which
the family of posets whose C-I graphs are Hi-free are characterized. Then we write
H1 ≺ H2 if for any poset B2 ∈ D2 there exists a poset B1 ∈ D1 such that B1 is an
isometric subposet of B2.

For instance, our results show that F3 ≺ K1,3 (where F3 stands for the 3-fan),
K1,3 ≺ H, K1,3 ≺ D (where H stands for the house, and D for the domino).

It is clear that ≺ is a reflexive and transitive relation on the family of all C-I
graphs (hence also F3 ≺ H etc.). But the relation ≺, is not antisymmetric, because
the forbidden subposets for 4-fan and claw are the same. This can be checked as
follows. Since K1,3 is an induced subgraph of the 4-fan, one direction is clear. For
the converse relation, just observe that the forbidden subposets for claw all yield
the 4-fan, and so also 4-fan ≺ K1,3. Thus the relation ≺ need not be a partially
ordered relation in general. It is clear that if H1 is an induced subgraph of H2, then
H1 ≺ H2. We believe that if the classes of C-I graphs of posets will be investigated
in more detail, the relation ≺ will need to be further explored.

6 Concluding remarks

Two natural questions can be posed for any class G of graphs that is characterized
by forbidden induced subgraphs. The first one is to determine the list of forbidden
subposets so that the C-I graphs are from the class. This question was answered
in the paper for several well-known classes. Another question is to characterize the
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graphs {GTP
|P ∈ P} among the graphs from G and this question was not addressed

in this paper. So we pose it as a problem:

Question 6.1 Which chordal (distance-hereditary, Ptolemaic) graphs are C-I graphs?

The list of classes in the above question can, of course, be extended. Moreover,
the following related question is also interesting.

Question 6.2 Which graphs are C-I graphs?

The question could be also posed in a different form as a construction or algo-
rithmic problem. Recall that the recognition problem for cover graphs of posets is
NP-complete [13, 14], whereas the recognition problem for incomparability graphs
is polynomial, cf. [2]. It might be an intriguing problem whether the same holds for
C-I graphs of posets as well.

Question 6.3 Can C-I graphs be recognized in polynomial time? In addition, do
the C-I graphs themselves possess a forbidden subgraphs characterization?

Concerning the relation ≺ between induced subgraphs of C-I graphs many ques-
tions can be posed. It would be interesting to find some general structural approach
by which ≺ between some C-I graphs could be determined more easily (for instance,
it is already clear that a graph H1 obtained by deletion of some vertices from a graph
H2 is in relation ≺ with H2). We repeat the following question from the previous
section.

Question 6.4 For which family of C-I graphs, is the relation ≺ a partial order on
the family of all induced subgraphs?
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eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 117–130.
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