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Abstract

The domination game played on a graph G consists of two players, Dom-
inator and Staller who alternate taking turns choosing a vertex from G such
that whenever a vertex is chosen by either player, at least one additional ver-
tex is dominated. Dominator wishes to dominate the graph in as few steps as
possible and Staller wishes to delay the process as much as possible. The game
domination number 7,4(G) is the number of vertices chosen when Dominator
starts the game and the Staller-start game domination number VQ(G) when
Staller starts the game. An imagination strategy is developed as a general tool
for proving results on the domination game. We show that for any graph G,
Y(G) < 74(G) < 2v9(G) — 1, and that all possible values can be realized. It is
proved that for any graph G, 74(G) — 1 < 7,(G) < 74(G) + 2, and that most
of the possibilities for mutual values of 7,(G) and 7, (G) can be realized. A
connection with Vizing’s conjecture is established, and a lower bound on the
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game domination number of an arbitrary Cartesian product is proved. Several
problems and conjectures are also stated.
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1 Introduction

The game chromatic number was described for the first time in 1981 [11] and re-
mained more or less unnoticed for many years. However, in the last several years
the topic has received an astonishing amount of attention, see, for instance, [3, 8,
16, 20, 21] and the appealing survey [5]. We point out that very recently Kier-
stead and Kostochka [15] found an application to a graph packing problem of game
coloring number of a graph, a concept closely related to game chromatic number.
We also add that different variations of the game chromatic number were studied
in [2, 4, 6, 17, 18, 19]; for a comprehensive bibliography on the game chromatic
number and related topics see [10].

It seems natural to study an analogous game with respect to domination, the
problem brought to our attention by Mike Henning [12]. In fact, we find it quite
surprising that this game has been ignored so far and hope to initiate its research
here. Just like in the coloring variant, we have one player who wishes to dominate a
graph in as few steps as possible and another player who wishes to delay the process
as much as possible. As far as we know, the papers [1, 9] are until now the only
papers dealing with game domination; however, their concept is different from ours.

We describe two games played on a finite graph G = (V, E). In Game 1 two
players, Dominator and Staller, alternate—with Dominator going first—taking turns
choosing a vertex from G. We let d1, da, . .. denote the sequence of vertices chosen by
Dominator and si, S2, ... the sequence chosen by Staller. (Note that in some cases
it will be convenient to speak about the 0-th step of some player.) These vertices
must be chosen in such a way that whenever a vertex is chosen by either player, at
least one additional vertex of the graph G is dominated that was not dominated by
the vertices previously chosen. That is, for each i,

o N[di]\ Ui\ N[{dj, s;}] # 0; and

o Nlsi]\ (UIZiN[{d), 5,1 U N[d]) # 0.

In Game 2 the players alternate choosing vertices as in Game 1, except that
Staller begins. In this game we denote the two sequences of vertices by s}, 5, ...
and d}, d,, . ... Asin Game 1, we also require that each chosen vertex strictly enlarges
the closed neighborhood of the set of chosen vertices.



Since the graph G is finite, each of these games will end in some finite number
of moves regardless of how the vertices are chosen. In both of the games Dominator
chooses vertices using a strategy that will force the game to end in the fewest number
of moves, and Staller uses a strategy that will prolong the game as long as possible.
We define the game domination number of G to be the total number of vertices chosen
when Dominator and Staller play Game 1 on graph G using optimal strategies, and
we denote this value by 7,(G). The Staller-start game domination number of G,
denoted by 'y;(G), is the cardinality of the set of vertices chosen when Game 2 is
played on G.

When Game 1 is played on a graph G, the set of vertices chosen by Dominator
and Staller together is a dominating set of G. Thus we easily have the bound
v4(G) > 7(G) for every G. On the other hand, Dominator can order the vertices
in a minimum dominating set A = {d1,ds,... ,d,Y(G)} and play according to this
list. Because of the way that Staller selects vertices, it is possible that Dominator
may not be able to use some of the vertices in this list. However, when Dominator
exhausts the sequence in A the graph is dominated, and hence no more moves are
legal. Together these prove the following bounds relating the ordinary domination
number and the game domination number.

Theorem 1 For any graph G,
YG) < 7(G) < 29(G) — 1.

We note that there is no general upper bound on the game chromatic number of
a graph in terms of a function of its chromatic number. Nevertheless in establishing
results of this paper we found more inspiration in game coloring theory than in
domination theory.

In the next section we introduce the main idea to be used in our proofs and
prove several related lemmas. The approach uses the so-called imagination strategy
and was (in the context of the coloring games) invented in [3] and further developed
in [20]. In Section 3 we investigate the relation between Game 1 and Game 2. We
prove that for any graph G, 7,(G) — 1 < 74(G) < 74(G) + 2 and study possible
pairs (k, ) such that there exists a graph G' with 7,(G) = k and v;(G) = . Then,
in Section 4, we show that for any positive integer k and any nonnegative integer
r < k — 1 there exists a graph G such that v(G) = k and v4(G) = k +r. In Sec-
tion 5 we establish a connection between the game domination number and Vizing’s
conjecture and in particular prove a lower bound on the game domination number
of an arbitrary Cartesian product. We conclude the paper with several remarks and
open problems.

2 Imagination strategy

In this section we present the central concept of this paper and demonstrate how
the corresponding proof techniques work. The main idea is that one of the players



imagines another appropriate game and plays in it according to an optimal strategy.
The imagined game is dependent on a concrete situation and most of the moves
are copied between the imagined and the real game. We call this approach the
1magination strategy.

Let us explain it more precisely. When proving bounds on some type of game
domination number of a graph, one of the players (either Dominator or Staller)
imagines another game is played at the same time, usually on a copy of the same
graph. For the imagined game the optimal number of moves k is known, and hence
if Dominator (resp. Staller) is the player who imagines the parallel game, then he
has a strategy that ensures the imagined game takes at most (at least) k moves. The
basic procedure of his strategy in the real game is simply to copy each move of the
opponent to the imagined game, respond in the imagined game by an optimal move,
and finally copy back this move to the real game. Two problems are possible: some
of his moves that are legal in the imagined game need not be legal in the real game,
and some of the moves of the opponent in the real game need not be legal in the
imagined game. This is, of course, the main problem, and such cases are handled in
different ways with respect to a given situation. The overall aim is to ensure that
the number of moves in the real game is bounded by the number of moves in the
imagined game (usually these numbers are the same or differ by at most one), which
gives the bound on the corresponding game domination number of the graph.

In the rest of the section we will prove several auxiliary results to be used in the
rest of the paper, each of which introduces a variant of the original games.

First consider the game in which Dominator starts, and Staller is allowed, but
not obligated, to skip exactly one move. That is, at some point in the game, instead
of picking a vertex, Staller may decide to pass, and it is Dominator’s turn again.
Afterwards the vertices are picked alternatingly again until the end. The number
of moves in such a game, where both players are playing optimally, is denoted by
79" (G). We call this game the Staller-pass game.

Lemma 2 For any graph G, v'(G) < 74(G) + 1.

Proof. Let the players play the Staller-pass game. The strategy of Dominator is that
he will be imagining another game is being played at the same time—an ordinary
domination game—and he will be playing it according to an optimal strategy (hence
the length of this game will not be greater than v,(G)). So two games are played
at the same time: the real (Staller-pass) game, and the (ordinary) game, imagined
by Dominator. In the first part of the game Dominator will just copy each move of
Staller to his imagined game, and respond in the imagined game with an optimal
move from the ordinary domination game. Each of these moves of Dominator is
then also copied to the real game. This will continue until Staller decides to pass a
move in the real game (if he decides that at all; but if he does not decide to pass
any move, then the two games are the same and thus both have v4(G) moves). Up
to that point the moves in both games are the same, and they form the sequence



di,81,...,dk_1,Sk_1,dr. Then in the real game it is Dominator’s turn, but in the
imagined game it is Staller’s turn. Hence in the imagined game Dominator imagines
that Staller made a (legal) move, say si, and he responds in this game in an optimal
way by picking, say dx11. Then he also picks the same vertex in the real game. So
the current sequence of the real game is dy, s1,...,dgk—1,Sk—1,dk, dg+1. The game
next continues in the same way as before. Note that all moves of Dominator are
chosen (in an optimal way) with respect to the imagined game, so all his moves will
be legal also in the real game. On the other hand, Staller chooses his moves with
respect to the real game, but in the imagined game the copy of this move may not
be legal. Suppose that some move of Staller, say s,,, is not legal in the imagined
game. Note that this can only happen for m > k. Denote by

m m—1
N(C] = JNIdi]u | Nisi) .
i=1 i=1

i#k
Note that the move of Staller is illegal in the imagined game precisely when
Nlsm] \ N[C] € Nlsi] \ N[C].

Indeed, the move s,, is legal in the real game, so its closed neighborhood is not
included in N[C], and it must be that all vertices from Ns,,| \ N[C] (and such
vertices exist) are in the neighborhood of sj.

We distinguish two cases. First suppose that Ns,,| \ N[C] is a proper subset
of N[si]\ N[C]. Then Dominator makes a non standard move—he picks s in the
real game—and he does nothing in the imagined game. Note that s; is a legal move
in the real game, and after that move of Dominator the sets of dominated vertices
are the same in both games, and it is Staller’s turn in both games. Moreover, the
number of moves in the real game is one more than the number of moves in the
game imagined by Dominator. Since Dominator can play until the end by the same
strategy as in the beginning of the game (since Staller already used his pass), the
total number of moves in the real (Staller-pass) game is at most v4(G) + 1.

The second possibility is that Nis,,| \ N[C] = N[sk] \ N[C]. Hence, at that
time (after Staller’s move s,,) both games already have the same sets of dominated
vertices. Hence, instead of this move Dominator imagines another (legal) move of
Staller in the imagined game. He again responds to that move optimally, and copies
the same move in the real game where it is his turn. (Note that, at that time,
the number of moves in the real game is one less than the number of moves in the
imagined game.) The game continues in the same way as in the beginning, until
either the imagined game is ended, or some move of Staller is again not legal in
the imagined game. In the latter case again one of the two cases appear, which
Dominator can resolve in the way we have explained, and the game goes on. In
the former case (which eventually must happen since the graph is finite), when the
imagined game is finished, the real game may not be finished, since one of the vertices



(the last imagined move of Staller) was not picked in the real game. As soon as it
is Dominator’s turn in the real game, he picks that vertex and the game ends. In
the worst case, the imagined game ended with the move of Dominator. Hence the
real game ends after at most two additional moves (the move of Staller and the final
move of Dominator). Since before that the real game had one less move, we get that
the (real) Staller-pass game has at most one move more than the imagined game,
yielding the inequality of the lemma. O

Lemma 3 For any graph G, ~v,(G) <~5"(G) + 1.

Proof. Let the players play Game 2 on GG. This time Dominator will be imagining a
Staller-pass domination game started by Dominator. Dominator will be playing the
imagined game according to an optimal strategy, hence the number of moves in this
game will not be greater than v,;”(G). Let us denote the first move in the real game
by sg. In the imagined game, this move is ignored, and it is Dominator’s turn to
play. His first move d; is played according to his strategy in the Staller-pass game,
by which he can ensure that there are at most 74" (G) moves altogether. In the first
part of the game each of his moves is copied to the real game, hence d; is also his first
move in the real game (unless already the second part of the game began, which we
will explain soon). Staller responds in the real game by s1, and this move is copied
also to the imagined game, and so on. In the first part of the game the sequence of
moves in the real game is sg,d;, s1,...,dg—1,Sk—1, and in the imagined game it is
di,81,.-.,dk_1,S;_1. Note that every move which is legal in the real game is also
legal in the imagined game, hence all moves of Staller will result in a legal move of
Staller in the imagined game. On the other hand, moves of Dominator are copied
to the real game, and it can happen at some point that such a move, say dj, where
k > 1, is not legal in the real game. The first part of the game is then ended, and
we come to the second part. If this situation never happens during the game, there
is clearly nothing to prove, since then the real game is ended in at most v,"(G) + 1
steps, as we claim.

Set
k-1

NIC] = | J(N[si] U N[di])
i=1
and similarly as in the proof of Lemma 2 note that the move dj, is illegal in the real
game precisely when N[dg] \ N[C] C Niso] \ N[C].

First suppose that N|[di]| \ N[C] is a proper subset of Nsg] \ N[C]. Then after
Dominator plays dj in the imagined game, he imagines Staller plays sy in this game
(which is legal in this case). In the second case when N[di] \ N[C]| = NJso] \ N[C],
Dominator imagines that Staller skips a move. Recall that the Staller-pass game is
imagined, hence this is the first and the only time a move of the Staller is skipped.
In both cases, after that point the set of vertices that are dominated coincide in
both games, and it is Dominator’s turn in both games. Hence the game is played



as in the beginning (Dominator following the optimal strategy of the Staller-pass
game), but now there are no problems with legality of his moves anymore. When
the imagined game ends, also the real game ends. In the first case, the number of
moves in the imagined game is one more than in the real game, while in the second
case, the number of moves in both games is equal. O

We next consider the game, called the Dominator-pass game, in which Dominator
is allowed to pass a move. In this game Dominator starts (unless he decides to pass
already the first move), and then he is allowed to pass one move (analogously as
Staller in the Staller-pass game). Afterwards the vertices are picked alternatingly
again until the end. The number of moves in such a game, where both players are
playing optimally, is denoted by 'ygp (G).

Lemma 4 For any graph G, *ygp(G) > 74(G) — 1.

Proof. Let the players play the Dominator-pass game. Since our goal is a lower
bound, we will take the position of Staller and present a strategy for him so that
the game will not last less than v,(G) — 1 moves. The strategy of Staller is that
he will be imagining another game is being played at the same time—an ordinary
domination game—and he will be playing it according to an optimal strategy (hence
the length of this game will not be less than v4(G)). So two games are played at the
same time: the real (Dominator-pass) game, and the (ordinary) game, imagined by
Staller. In the first part of the game Staller will just copy each move of Dominator
to his imagined game, and respond in the imagined game with an optimal move from
the ordinary domination game. Each of these moves of Staller is then also copied to
the real game. This will continue until Dominator decides to pass a move in the real
game (which can happen already at the beginning). Up to that point the moves in
both games are the same, and they form the sequence dy, s1,...,dg—1, sx—1 (which
could also be the empty sequence). Then in the real game it is Staller’s turn, but
in the imagined game it is Dominator’s turn. Hence in the imagined game Staller
imagines that Dominator made a (legal) move, say dj, and he responds in this game
in an optimal way by picking, say sx. Then he also picks the same vertex in the real
game. So the current sequence of the real game is dy, s1,...,drx_1,Sg_1, Sg. The game
next continues in the same way as before, so that the real game is represented by
the sequence dy, s1,...,dg—1,Sk—1, Sk, dk+1, Sk+1, - - .- Note that all moves of Staller
are chosen (in an optimal way) with respect to the imagined game, so all his moves
will be legal also in the real game. On the other hand, Dominator chooses his moves
with respect to the real game, but in the imagined game the copy of this move may
not be legal. Suppose that some move of Dominator, say d,,, is not legal in the
imagined game for some m > k. Denote by

m—1 m—1
N[cl= | Nld]u | Nlsi]
i=1 =1
i#k



Note that the move of Dominator is illegal in the imagined game precisely when
N[dn]\ N[C] € N[d] \ N[C].

Indeed, the move d,, is legal in the real game, so its closed neighborhood is not
included in N[C], and it must be that all vertices from N[d,,] \ N[C] (and such
vertices exist) are in the neighborhood of dj.

We distinguish two cases. First suppose that N[d,,] \ N[C] is a proper subset
of N[di] \ N[C]. Then Staller makes a nonstandard move—he picks dj in the real
game—and he does nothing in the imagined game. Note that d; is a legal move
in the real game, and after that move of Staller the sets of dominated vertices are
the same in both games, and it is Dominator’s turn in both games. Moreover,
the number of moves in the real game is the same as the number of moves in the
imagined game. Since Staller can play until the end by the same (optimal) strategy
as in the beginning of the game, the total number of moves in the real (Dominator
-pass) game is at least v4(G).

The second possibility is that N[d,,] \ N[C] = N[dg] \ N[C]. Then at that time
(after Dominator’s move d,;,) both games have the same sets of dominated vertices.
Hence, instead of this move Staller imagines another (legal) move of Dominator
in the imagined game. He again responds to that move optimally, and copies the
same move in the real game where it is his turn. (Note that, at that time, the
number of moves in the real game is again one less than the number of moves in
the imagined game.) The game continues in the same way as in the beginning, until
either the imagined game is ended, or some move of Dominator is again not legal
in the imagined game. In the latter case again one of the two cases appears, which
Staller can resolve in the way we have explained, and the game goes on. Note that
the real game cannot be finished before the imagined game, and at every time the
imagined game (ordinary Game 1) has at most one move more than the real game.
Since the imagined game uses at least v,(G) moves, the real game ends in at least
7¢(G) — 1 moves. O

We will use Lemma 4 in the proof of Theorem 6. In order to prove Theorem 11
we will need to consider the game in which Dominator is allowed to pass as many
moves as he wants. We call this game Dominator-pass-k game where k is the number
of moves Dominator is allowed to pass. (Clearly, Dominator-pass-1 game is just the
Dominator-pass game and Dominator-pass-0 game is Game 1.) The number of moves
in such a game, where both players are playing optimally, is denoted by 'y;lp (k)(G).

Note that each pass of Dominator may result in prolonging the imagined game
(which is an ordinary Game 1) by one more with respect to the real game (which is
Dominator-pass-k game). All other details of comparison between the real and the
imagined game can be checked by following the lines of the proof of Lemma 4. We
thus infer the following result (as a corollary of the former proof).

Corollary 5 For any graph G, 'ygp(k)(G) > 74(G) — k.



3 Dominator-start versus Staller-start game

In this section we compare the game domination number with the Staller-start game
domination number. We first note that, a bit surprisingly, for some graphs the
latter invariant is strictly smaller than the game domination number. For example,
7y(Cs) = 2 while 74(Cs) = 3. When Dominator moves first on the 6-cycle, Staller
responds by choosing a neighbor of d; and thus forces the game to last a total of 3
moves. However, when Game 2 is played on Cs, Dominator can always choose b}
which together with s} forms a minimum dominating set of Cs. On the other hand,
the two invariants are not far apart. More precisely, in this section we prove the
following.

Theorem 6 For any graph G,
79(G) =1 < 74(G) < 74(G) + 2.

Proof. From Lemmas 2 and 3 the upper bound of Theorem 6 follows immediately.
In playing the Dominator-pass game on G, Dominator is allowed to pass his first
move. When this occurs the two players are in fact playing Game 2 on G, and this
game ends in 7, (G) moves. Since it could be better for Dominator to save his pass

for later in the game it follows that ’y‘gip (G) < 74(G). The lower bound now is an
immediate consequence of Lemma 4. O

For a pair of positive integers k and ¢ we say the pair (k, /) is realizable if there
exists a graph G such that v,(G) = k and v;(G) = £. From Theorem 6 we know
that £ —1 < /¢ < k + 2 holds for a realizable pair (k, /).

Proposition 7 For any positive integer k, each of the pairs (k,k), (k,k + 1) and
(2k + 1,2Fk) is realizable.

Proof. For a positive integer k, let P, denote the tree of order 2k obtained from
the path of order k by adding a vertex of degree 1 adjacent to each vertex of Pg. It
is straightforward to show that if either Game 1 or Game 2 is played on P}, then
the game will last exactly k steps. Thus, v,(P},) = k = 7, (P;), and thus P}, realizes
(k, k).

Let T be the tree constructed from the path of order 4 by adding two new leaves
adjacent to one of the vertices of degree 2. For an integer k > 2, let F} be the graph
T U (k — 2)P,. When Game 1 is played on F}, Dominator can begin by selecting
the vertex of degree 4 in T'. It is clear that exactly kK — 1 more moves will be made
in this game, and since y(F}) = k, Theorem 1 implies that v4(F};) = k. However,
Staller can select a leaf adjacent to the vertex of degree 4 in T' on his first move
in Game 2. Dominator can now force the game to end in at most &, and no fewer,
additional steps. It is easy to check that Staller can do no better in his first move,



and hence v, (Fy) = k + 1. Therefore, I}, realizes (k, k4 1). The star K o realizes
(1,2), and so each pair (k,k + 1) can be realized by some graph.

For k > 1, let Gy, = Cg U (2k — 2)P,. In Game 1 played on Gy, Dominator
can be forced to be the first player to select a vertex from Cg. By then selecting
a vertex on the 6-cycle adjacent to the one chosen by Dominator, Staller can make
the game last until exactly 2k + 1 vertices are chosen in total. Dominator would
never allow more than 3 vertices to be chosen from the cycle, and since exactly one
vertex must be selected from each P, it follows that v4(G)) = 2k + 1. On the other
hand, Staller can be required to select the first vertex from the 6-cycle in a play of
Game 2 on Gj. By then selecting the vertex on the 6-cycle diametrically opposite
the one chosen by Staller, Dominator can force the game to end in exactly 2k moves.
Hence v, (G},) < 2k and by Theorem 6 and the above fact that ~,(Gx) = 2k + 1 we
conclude that v;(Gy) = 2k. Thus Gy, realizes (2k + 1, 2k). O

Suppose G is a graph that realizes (k, k+2) for some k. Then it is easy to see that
G U Cy realizes (k+ 2,k +4). In Game 1 (resp. Game 2) Dominator (Staller) plays
first on G, and all of his subsequent moves are also in G, except when his opponent
plays on Cjy, in which case he responds in C4 as well. In fact, the strategies on
G U Cy only show that v4(GUCy) < k+2 and 'y;(G UCy4) > k + 4, but we know by
Theorem 6 that v, (G U Cy) — 74(G U Cy) is not greater than 2 which implies that
(k+ 2,k +4) is really the pair realized by G U Cj.

From the definitions it is clear that no graph realizes (2,1). We think that also
for k > 2, there is no graph G such that ~,(G) = 2k and 7, (G) = 2k — 1. Tt is
also obvious that (1,3) cannot be a realized pair, since graphs with v,(G) = 1 are
precisely those with v(G) = 1. In addition let us show that (2,4) cannot be realized.

Let 74(G) = 2 and dj, s1 be a sequence of moves in Game 1. Then the set
A = V(G) \ N[d;] induces a complete graph, otherwise Staller could enforce the
game last longer by playing on a vertex in A that is not adjacent to some other
vertex of A. Moreover, by the same argument, any vertex that is adjacent to a
vertex of A is adjacent to all vertices of A. Now, let Game 2 be played on G, and
let s} be the first move of Staller. If s} is such a move that d} = d; is not legal, this
means that N[d;] is already dominated. But then 'y;(G) = 2 since Dominator can
end the game by playing on a vertex of A. Hence, we may assume that d is legal,
and so after that only a subset of A remains undominated, which implies fy;(G) <3.

4 Realization of game domination numbers

We have observed in Theorem 1 that v,(G) lies between +(G) and 2v(G) — 1. In
this section we prove that all possible values for v, are eventually realizable. As
motivating examples we note that v,(P) = 2y(P) — 1 = 5, where P is the Petersen
graph, and that vg(é) = 7(@), where G is an arbitrary graph and G is the graph
(called corona with base G) obtained from G by attaching a leaf to each vertex.
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If H is a graph, then we say that G is a generalized corona with base H if G is
constructed from H by adding at least one leaf as a neighbor of each vertex of H.

Lemma 8 Let G be a generalized corona. Then when Game 1 is played on G there
s an optimal strateqy for Dominator in which he selects only base vertices.

Proof. Players are playing Game 1 on generalized corona GG with base H. Domi-
nator will imagine another game is played at the same time on the graph G, and he
will play it according to an optimal strategy that forces the game to end in 74(G)
steps. In this imagined game it is possible that Dominator will make some of his
moves on leaves. We need to show that in the real game there will be no more
moves than in the imagined game. Whenever it is legal, Dominator will copy a
move he makes in the imagined game to the real game, and copy the move made
in response by Staller from the real to the imagined game. When in the imagined
game an optimal move of Dominator is on a leaf dg, then instead of copying the
leaf to the real game, Dominator plays on the base vertex, d, adjacent to that leaf.
(Note that this is a legal move, since the leaf d; was not dominated before that.)
Hence the sequences of moves are dy, $1, ...,dg_1, Sp_1, di in the imagined game and
di,s1,...,dg—1,Sp—1,d), in the real game. The game continues in the same way, and
whenever a leaf d; is played by Dominator in the imagined game, its neighboring
base vertex d} is picked in the real game. All moves of Staller (made in the real
game) are legal when copied to the imagined game since he is playing on the graph
(of the real game) in which all vertices, that are dominated in the graph of the
imagined game, are dominated. Suppose that in the strategy of Dominator (that
is used in the imagined game) he plays on dj, or one of the leaves attached to it
(or some other base vertex whose leaf was previously chosen in the game). In this
case Dominator imagines another move of Staller (on a leaf), and responds with the
neighboring base vertex. His response is then copied also to the real game. Note
that also after these moves, the set of vertices dominated in the real game contains
the set of vertices dominated in the imagined game. Hence when the imagined game
is finished the real game is also finished, and the number of moves in the real game
is less than or equal to the number of moves in the imagined game. O

The above lemma tells us also that we may assume that in a generalized corona
Dominator plays on base vertices. More precisely, given a generalized corona G,
there is a game in G with ~4(G) moves in which Dominator plays only on base
vertices and Staller uses an optimal strategy.

Lemma 9 Let G be a generalized corona and let x be a vertex in G of degree 1.
Then
V(G — ) < 74(G) < 7y(G — ) + 1.

Proof. Let G' = G — x. We first prove that v4(G’) < 74(G). Suppose Game 1 is
played on G’. As in the proof of Lemma 8, Dominator will imagine another game is
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played at the same time on the graph G, and he will play it according to a strategy
that forces the game to end in at most v4(G) steps. He will copy each of his moves
from the imagined game to the real game, and copy each of Staller’s moves from the
real to the imagined game. Since x cannot be selected by Staller (as he plays only
on G'), we can assume that x will not be selected during the imagined game played
on G because Dominator chooses only base vertices of G. Hence the moves in both
games are the same all the time, and once the game on G is finished, the game on
G’ is also trivially finished.

We next prove that 74(G) < v4(G’) + 1. Suppose Game 1 is played on G.
Similarly as before, Dominator will imagine another game is played at the same
time on the graph G’, and he will play it according to a strategy that forces the
game to end in at most v,(G’) steps. He will copy each of his moves from the
imagined game to the real game, and copy each of Staller’s moves from the real
to the imagined game, as long as this is possible. Note that at some point in the
game Staller can choose x which cannot be copied in the imagined game. In that
case (when z is chosen) Dominator imagines another move of Staller, which he may
assume is a leaf s;, in the imagined game, and responds according to his optimal
strategy (which is always copied to the real game). If Staller later makes a move that
is illegal in the imagined game (by picking the leaf s; or by picking the base neighbor
of s; whose only undominated neighbor at that point is s;), then Dominator again
imagines another move of Staller in the imagined game, and so on. At the end of
the imagined game all vertices are also dominated in the real game, except perhaps
one leaf. Hence, the last player to move must dominate that leaf and the game ends.
The number of steps is at most one more in the real game. In the case when x is
not chosen, the games have the same sequence of moves, according to the definition
of the imagined game, and so after the imagined game is ended, z is the only vertex
that could be left undominated in the real game. In that case, £ must be dominated
at the final step no matter whose turn it is.

In both cases the total number of vertices selected in the real game is at most
one more than in the imagined game. Thus, 74(G) < v4(G’) + 1. O

We can now prove the announced result of this section.

Theorem 10 For any k > 1 and any r € {0,1,...,k — 1} there exists a graph G
such that v(G) = k and v4(G) =k + .

Proof. Consider an arbitrary graph G with v(G) = 1 to see that the statement holds
for k = 1. Select now k > 2 and fix it. Let G, be the generalized corona with base K},
and exactly one leaf attached everywhere. Then it is clear that v(Gy) = v4(Gy) = k.
Let Hj be the generalized corona with base K and enough, say k, leaves attached
everywhere. Again, v(Hy) = k. By Lemma 8, we may assume that when Game 1 is
played on Hj, Dominator selects only base vertices. If Staller plays only on leaves
of Hy, then no matter how they play, before Dominator selects the last base vertex,
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Staller has at least one leaf available to select. It follows that Dominator needs k
steps to finish the game and consequently, v,(Hj) = 2k — 1.

The generalized corona Hj can be obtained from the corona Gy by attaching
leaves one by one until all the base vertices have k leaves attached. In this way there
is a sequence of graphs

Gr = Xo, X1, -, Xpge_1) = Hy,

such that v4(Gy) =k, vg(Hy) = 2k — 1, and v4(Xi—1) < 79(Xi) < 79(Xi—1) + 1 for
any 1 <i < k(k — 1). Therefore, for any r € {0,1,...,k — 1} there exists an index
J, such that v4(X;) = k 4 r. Since v(Xj;) = k, the proof is complete. O

We note that in the above proof a smaller number of leaves in H) would also
do the job. If 2° < k < 25! then attaching ¢ leaves at each vertex of K}, where
t > log, k, already suffices.

5 Relations to Vizing’s conjecture

In this section we connect v, with Vizing’s conjecture, the main open problem in
graph domination. This conjecture states that for all graphs G and H,

Y(GOH) >~(G)y(H),

where GO H denotes the Cartesian product of graphs G and H [13]. (Recall that
the Cartesian product GO H of graphs G and H is the graph with vertex set V(G) x
V(H) where vertices (g, h) and (¢',h’) are adjacent if and only if either g = ¢’ and
hh' € E(H), or h = h' and gg’ € E(G).) One of the finest results so far, related to
this problem, is due to Clark and Suen [7] who proved that for all graphs G and H,

YGOH) > -~(G)y(H).

N =

We note that if Vizing’s conjecture is true, then, for every pair of graphs G and

H, we can use Theorem 1 to get the following inequalities:
1
1 (GUH) >~(GOH) > v(G)v(H) > ZYg(G)’Yg(H) .

Thus, if one could find graphs G and H such that v4(G)ye(H) > 4~v,(GOH), then
this shows that Vizing’s conjecture is false.

Another connection between the game domination number and the inequality in
Vizing’s conjecture is the following. Suppose there is a constant ¢ > 0 such that
cvg(GOH) > v4(G)v4(H) for any connected graphs G and H. Then

c-29(GOH) > c-v(GOH) > v4(G)vg(H) > v(G)v(H).
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That is, for all such pairs G and H,
1
VGO H) = 5-y(G)y(H).

Note that the bound for ¢ = 1, if correct, generalizes the bound established by
Clark and Suen. The ¢ = 1 bound for connected graphs (that we find natural and
plausible),

V(GO H) > v4(G)vg(H), (1)

if true, is best possible. For instance, by Theorem 1 we infer that v,(Cs 0 Cs) is at
most 9, and thus (1) would imply v,(C5 0C5) = 9.

We next prove a weaker form of (1), a result similar to the well-known bound
on the ordinary domination number of the Cartesian product (see [14]). A subset
X of vertices is called a 2-packing if any two vertices from X have disjoint closed
neighborhoods. The maximum cardinality of a 2-packing in G is denoted p(G).

Theorem 11 Let G and H be arbitrary graphs. Then
W (GOH) > p(G) () — 1)+ 1.

Proof. Let {v,v2,...,v,} be a maximum 2-packing in G. In GOH let H; =
{v;} x V(H) and let H; = N[v;] x V(H). Dominator and Staller play Game 1 on
GUH.

In order to prove the theorem we need to describe an appropriate strategy of
Staller. The basis of his strategy is that he will simultaneously play p = p(G)
separate games on Hy, ... ,Fp. Any move of Dominator in Fj is answered by
Staller in the same H ;, as long as there is such a (legal) move. Moreover, as long as
possible Staller proceeds as follows. He makes an optimal choice of a vertex from H;
as if Dominator’s choice had been made from the H-fiber H;. (That is, if the vertex
chosen by Dominator from within H; is (z,h) for some x € Nlv;], then Staller
responds by choosing (vj, h') where b’ is Staller’s optimal response to Dominator
choosing h when Game 1 is played on H.) When this is no longer possible, V(H) is
the union of the closed neighborhoods of second coordinates of the vertices chosen
from H;; we say that Stage 1 of the game played on H; has finished. Note that
after Stage 1 has finished there can be additional moves of both players in H ;.

Stage 1 of each of the games played on ﬁl,...,ﬁp can be considered as a
Dominator-pass-k game for some k& > 0. Now, every pass of Dominator that hap-
pens in any of these games is a consequence of Dominator making the last (possible)
move in some H, (since after such a move, Staller must play in another Hy). Note
in addition that when Game 1 ends on G'[JH and the last move was played in H,,
then this does not lead to a Dominator pass. Denoting by k; the corresponding
number of passes made in H, it follows that Z?:l ki <p-—1
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By Corollary 5 the number of moves played in H; is at least v,(H) — kj. We
conclude that the total number of moves is at least

p

P
> (v(H) = k) = pyg(H) =D kj = pyg(H) —p+1.
j=1 j=1

g

The bound in Theorem 11 is tight as can be seen when G is totally disconnected
and H is any graph with v,(H) = 20+ 1 = v, (H) + 1 (e.g., H = Cg).

6 Concluding remarks

It is well-known that the chromatic analog of 7, is not monotone, even with respect to
spanning subgraphs; a typical case is the complete bipartite graph K, ,, whose game
chromatic number is 3, while its spanning subgraph, obtained by removing a perfect
matching has game chromatic number n. Somewhat surprisingly, v, does not behave
on spanning subgraphs in a manner consistent with the ordinary domination number
~. For example, if H is the connected spanning subgraph of Ks[J K3 obtained by
deleting two Ko-fiber’s edges, then

’yg(KQDKg) :3>2:’}/g(H)

We continue with a question that could be very useful in proving results about
the game domination number.

Problem 1 Let G be a graph, and let A, B be subsets of V(G) such that A C B.
Suppose that Game 1 (or Game 2) is played on two copies of G. On the first copy
of G the set of vertices that are already dominated is A, and on the second copy it
is B. In both games the same player (Dominator or Staller) has the next move. Is
it then true that the number of moves until the end on the first copy is at least as
big as the number of moves on the second copy?

We suspect that the above problem has an affirmative answer, but could find no
argument.

Note that the bound in Lemma 2 is sharp (for example on G = K 2 U Cs), but
for Lemma 3 we do not know. As we have seen there exist graphs G for which
Yy(G) = 74(G) + 1. We don’t know whether the upper bound of Theorem 6 can be
lowered by 1 and hence pose:

Conjecture 1 Pairs (k,k+2) for k > 1 are not realizable. That is, there exists no
graph G, such that v4(G) =k and v,(G) = k + 2.

We also suspect that the remaining pairs that satisfy the conditions of Theorem 6
are not realizable. More precisely:
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Conjecture 2 Pairs (2k,2k — 1) for k > 1 are not realizable. That is, there exists
no graph G, such that v4(G) = 2k and v,(G) = 2k — 1.

It would be interesting to determine the game domination number for some well-
known classes of graphs such as trees or chordal graphs. In particular, we pose the
question whether there is a polynomial strategy for Dominator and Staller on an
arbitrary tree. Note that the greedy Staller strategy to choose a leaf when one is
legal is not always optimal as can be seen by considering Ps.

It is well-known that the domination number of a connected graph is at most
half of its order. This is not the case with the game domination number since
Yg(Pim+1) = 2m + 1. We conclude the paper by asking what is the maximum ratio
between the game domination number of a connected graph and its order.
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