
Infinite families of circular and Möbius ladders
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Abstract

Let γtg(G) denote the game total domination number of a graph G and let
G|v mean that a vertex v of G is declared to be already totally dominated. A
graph G is total domination game critical if γtg(G|v) < γtg(G) holds for every
vertex v in G. If γtg(G) = k, then G is further called k-γtg-critical. In this
paper we prove that the circular ladder C4k �K2 is 4k-γtg-critical and that the
Möbius ladder ML2k is 2k-γtg-critical.

Keywords: total domination game; game total domination number; critical graph;
circular ladder; Möbius ladder
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1 Introduction

Motivated with the domination game which was first studied in 2010 in [3] (see
also [1, 4, 8, 13, 18–21]), the total version of the game was introduced in 2015 in [9].
The total domination game instantly received lots of attention [2, 6, 7, 11,14,15].

Very recently critical graphs with respect to the total domination game were
introduced in [12]. (See [5] for the related concept on the domination game.) The
main results of [12] are (i) a characterization of critical cycles, (ii) a characterization
of critical paths, and (iii) a characterization of critical graphs among the graphs
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with the total game domination number equal to 3. In this paper we add to this list
an infinite family of circular ladders and an infinite family of Möbius ladders. In the
rest of the introduction we recall the concepts needed, while in Sections 2 and 3 we
state and prove our main results, respectively.

A vertex u in a graph G totally dominates a vertex v if u is adjacent to v in
G. Let G be a graph and consider two players, called Dominator and Staller, that
take turns choosing a vertex from G. Each vertex chosen must totally dominate at
least one vertex not yet totally dominated. Such a chosen vertex is a legal move.
The game ends when no legal move is available. Dominator wishes to minimize the
number of moves and Staller wishes to maximize it. When Dominator has the first
move we speak about a D-game. The game total domination number, γtg(G), of G
is the number of moves played in the D-game when both players play optimally.

A partially total dominated graph is a graph together with a declaration that
some vertices are already totally dominated. Given a graph G and a subset S of
vertices of G, we denote by G|S the partially total dominated graph in which the
vertices of S in G are already totally dominated. If S = {v} for some vertex v in
G, we write G|v. We use γtg(G|S) to denote the number of moves remaining in the
D-game on G|S. The graph G is total domination game critical, γtg-critical for short,
if γtg(G) > γtg(G|v) holds for every v ∈ V (G). If G is γtg-critical and γtg(G) = k,
then G is k-γtg-critical.

Finally, the Cartesian product G�H of graphs G and H is the graph with
the vertex set V (G) × V (H), vertices (g, h) and (g′, h′) being adjacent if either
g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G) [10]. We use the notation
[k] = {1, . . . , k}. For notation and graph theory terminology not defined herein, we
in general follow [10,16].

2 Circular ladder graphs

The circular ladder graph CLn of order 2n is the Cartesian product of a cycle Cn

on n ≥ 3 vertices and a path P2 on two vertices; that is, CLn = Cn�K2 (cf. [17]).
We note that CLn is bipartite if and only if n is even. The circular ladders CL4 and
CL8 are illustrated in Figs. 1(a) and 1(b), respectively.

Theorem 1 If k ≥ 1, then the circular ladder CL4k is 4k-γtg-critical.

Proof. Let X = {x1, x2, . . . , x4k} and Y = {y1, y2, . . . , y4k} be the two partite
sets of CL4k, where x1y2x3y4 . . . x4k−1y4kx1 and y1x2y3x4 . . . y4k−1x4ky1 are the two
disjoint copies of the cycle C4k used to construct CL4k = C4k �K2 and where
xiyi ∈ E(CL4k) for i ∈ [4k], cf. Fig. 1. Thus, the three neighbors of xi in CL4k are
yi−1, yi, yi+1, and the three neighbors of yi in CL4k are xi−1, xi, xi+1, where addition
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Figure 1: The circular ladders CL4 and CL8.

is taken modulo 4k. We call the two vertices xi and xi+1 (respectively, yi and yi+1)
consecutive vertices in X (respectively, Y ), where addition is again taken modulo 4k.

We proceed further with the following three claims.

Claim 1.1 γtg(CL4k) ≥ 4k.

Proof. In order to prove that γtg(CL4k) ≥ 4k we describe a strategy for Staller that
guarantees that at least 4k moves are played in order to complete the game. For
this purpose, we introduce the following notation. In the partially total dominated
circular ladder CL4k, we define an X-run in CL4k to be a maximal sequence of
consecutive vertices all of which belong to X that contains at least three vertices,
none of which have yet been played, but does not contain all vertices of X. A Y -run
is defined analogously. We call a run an X-run or a Y -run.

Suppose it is Staller’s turn to play. Since we are in a D-game, we can assume that
at least one vertex has already been played in the game, and that the game is not
yet complete. Staller’s strategy is to play on the extremity of a run, if one exists;
otherwise, she plays any legal move. We show that Staller’s strategy guarantees
that she totally dominates exactly one new vertex on all, except possibly one, of
her moves. We consider two possibilities, depending on whether the circular ladder
CL4k contains a run or not.

Suppose the circular ladder CL4k contains a run. Renaming X and Y we may
assume CL4k contains an X-run, i.e., a maximal sequence s : xixi+1xi+2 . . . xi+r,
where 2 ≤ r < |X| − 1, of consecutive vertices in X none of which have yet been
played. Staller follows her strategy and plays on one of the run extremities xi or
xi+r, say xi. Since s is a maximal sequence, we note that the vertex xi−1 has already
been played, implying that Staller totally dominate only one new vertex, namely the
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vertex yi+1. Hence whenever Staller plays on the extremity of a run, she ensures
that only one new vertex is totally dominated when playing her move.

Suppose that the circular ladder CL4k contains no run (and it is Staller’s turn
to play). We show that this can occur at most once in the game. Since the game is
not yet complete, Staller plays any legal move, say the vertex xi. If the vertex yi−1

is totally dominated by her move, then neither xi−2 nor xi−1 have yet been played.
If the vertex yi is totally dominated by her move, then neither xi−1 nor xi+1 have
yet been played. If the vertex yi+1 is totally dominated by her move, then neither
xi+1 nor xi+2 have yet been played. In all cases, there are three consecutive vertices
in X, none of which have been played immediately before Staller played her move
xi. If at least one vertex of X has already been played before Staller plays her move
xi, then this would imply the existence of an X-run, contrary to our supposition.
Hence, no vertex of X is played before Staller plays her move xi; that is, no vertex
in Y is totally dominated before she played her move. As we are in a D-game, this
implies that Dominator’s first move played a vertex in Y . Further if there is a legal
move for Staller to play from the set Y , then analogous arguments as before show
that this implies the existence of a Y -run, a contradiction. Therefore, immediately
before Staller played her move xi, there is no legal move in Y , implying that all
vertices in X are totally dominated. As observed earlier, no vertex in Y is totally
dominated immediately before Staller played her move xi.

Thus, we have shown that Staller can always plays on the extremity of a run,
thereby ensuring that only one new vertex is totally dominated on each such move,
except possibly for exactly one of her moves, which occurs when either all vertices
of X are totally dominated and no vertex of Y is totally dominated or all vertices of
Y are totally dominated and no vertex of X is totally dominated. Further, if Staller
plays such a move that is not the extremity of a run, she totally dominates three
new vertices.

Suppose that every move of Staller totally dominates exactly one new vertex.
In this case, every move of Staller together with the previous move of Dominator,
combined totally dominate at most four new vertices (at most three from Dom-
inator’s move, and exactly one from Staller’s move). Thus, after 4k − 1 moves
have been played (2k moves by Dominator and 2k − 1 moves by Staller), at most
4(2k− 1) + 3 = 8k− 1 vertices have been totally dominated, and at least additional
move is needed to complete the game. Hence, we may assume that during the game
Staller plays exactly one move that is not the extremity of a run, for otherwise at
least 4k moves are played to complete the game.

Renaming sets X and Y if necessary, we may assume that such a move of Staller
plays a vertex in Y . As observed earlier, this is the first vertex in Y played in the
game, implying that immediately before she plays her move, all vertices of Y are
totally dominated and no vertex of X is totally dominated.
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Let m be the number of moves played immediately before Staller plays this
vertex in Y . We note that all these m moves belong to X and totally dominate
only vertices in Y . Further, m is odd since Dominator played the last vertex in
X. Thus, the first (m + 1)/2 vertices played by Dominator all belong to X and
the first (m − 1)/2 vertices played by Staller all belong to X. Each such move
of Dominator totally dominates at most three new vertices, while each such move
of Staller totally dominates exactly one new vertex. Thus, the number of vertices
totally dominated upon completion of the first m moves is exactly |Y | = 4k and is
at most 3(m+ 1)/2 + (m− 1)/2 = 2m+ 1, implying that m ≥ (4k − 1)/2. Since m
is an odd integer, this implies that m ≥ 2k + 1.

Let r be the number of moves needed to complete the game. We note that all
these r moves belong to Y . As observed earlier, Staller makes the first move in
Y and her move totally dominates three vertices. All subsequent moves of Staller
totally dominate exactly one new vertex. If r is even, then Dominator plays the
final move in the game, and both Dominator and Staller play r/2 vertices from
Y . In this case, the number of vertices totally dominated by these r moves is
exactly |X| = 4k and is at most 3r/2+3+(r/2− 1) = 2r+2, implying that r ≥ 2k.
If r is odd, then Staller plays the final move in the game. Thus, Dominator plays
(r − 1)/2 vertices from Y and Staller plays (r + 1)/2 vertices from Y . In this case,
the number of vertices totally dominated by these r moves is exactly |X| = 4k and
is at most 3(r− 1)/2+3+(r− 1)/2 = 2r+1, implying that r ≥ 2k+1. Thus, if r is
even, then r ≥ 2k, while if r is odd, then r ≥ 2k+1. As observed earlier, m ≥ 2k+1.
Hence in this case when Staller plays exactly one move that is not the extremity of
a run, the total number of moves needed to complete the game is m+ r ≥ 4k + 1.
We have therefore shown Staller has a strategy that guarantees that at least 4k
moves are played in order to complete the game. Therefore, γtg(CL4k) ≥ 4k. This
completes the proof of the claim. (�)

Claim 1.2 γtg(CL4k) ≤ 4k.

Proof. In order to prove that γtg(CL4k) ≤ 4k we describe a strategy for Dominator
that guarantees that at most 4k moves are played to complete the game. At each
point in the game, we denote by U the set of vertices that are not playable, that is
vertices already played or vertices not played but all of whose neighbors are already
totally dominated.

Observe that each move of the game adds at least one vertex to the set U , namely
the vertex played. Dominator starts with any move, adding only one vertex to U .
Thereafter, the following claim shows that he has a strategy that guarantees that
after each of Staller’s moves he can play a move which together with her move adds
at least four vertices to U .
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Claim 1.2.1 Dominator has a strategy that guarantees that after each of Staller’s

moves, his answer together with her move add at least four vertices to U .

Proof. Consider a move of Staller on some vertex xi or yi, say xi, for some i ∈ [4k].
Her move totally dominates at least one new vertex, namely one of the vertices yi−1,
yi or yi+1.

Suppose that Staller’s move totally dominates the vertex yi+1. Thus, before
Staller’s move, neither the vertex xi+1 nor the vertex xi+2 has been played. Domi-
nator responds to Staller’s move xi by playing the vertex xi+3 if it has not yet been
played, thereby totally dominating at least one new vertex, namely the vertex yi+2,
and ensuring that the four vertices xi, xi+1, xi+2 and xi+3 are added to U after
these two moves. On the other hand, suppose that the vertex xi+3 has already been
played (before Staller plays the vertex xi). This implies that immediately Staller
plays her move xi, the three vertices xi, xi+1, and xi+2 are added to U . In this case,
Dominator plays any legal move in response to Staller’s move xi, thereby adding at
least one vertex to U , and thus ensuring that at least four vertices get added to U
after these two moves.

If Staller’s move totally dominates the vertex yi−1, then analogously as in the
case when she totally dominates the vertex yi+1, Dominator can ensure that at least
four vertices get added to U after her move and his answer to her move. Suppose
therefore that the vertex yi is the only new vertex totally dominated by Staller’s
move. Thus in this case, before Staller plays the vertex xi neither the vertex xi−1

nor the vertex xi+1 has been played, but both vertices xi−2 and xi+2 were already
played. This implies that immediately Staller plays her move xi, the three vertices
xi−1, xi, and xi+1 are added to U . So Dominator can play any legal move, adding
at least one vertex to U , and thus ensuring that at least four vertices get added to
U after these two moves. (�)

Claim 1.2.2 The final move of the game adds at least three vertices to U .

Proof. Suppose the vertex xi is the final move played in the game for some i ∈ [4k].
This move totally dominates at least one new vertex, namely one of the vertices yi−1,
yi or yi+1. Further, after this move is played the game is complete and therefore no
legal moves remains. If the final move totally dominates the vertex yi−1, then before
this move is played, neither the vertex xi−2 nor the vertex xi−1 has been played, and
implying that the final move adds the three vertices xi−2, xi−1 and xi to U . If the
final move totally dominates the vertex yi, then this move adds the three vertices
xi−1, xi, and xi+1 to U . If the final move totally dominates the vertex yi+1, then
this moves adds the three vertices xi, xi+1, and xi+2 to U . In all cases, the final
move adds at least three vertices to U . (�)
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We now return to the proof of Claim 1.2, and compute the bounds that Dom-
inator’s strategy gives us. Let m be the number of moves played when the game
finishes. As observed earlier, the first move of Dominator adds only one vertex to
U . Consider first the case when m is even. In this case, Staller made the final move
and with her last move, she adds at least three new vertices to U , by Claim 1.2.2.
By Claim 1.2.1, each move of Staller played before her final move, together with
Dominator’s response to her move, adds at least four vertices to U . Thus, we have
8k = |U | ≥ 1 + 4

2
(m− 2) + 3 = 2m, and so m ≤ 4k. Consider next the case when m

is odd. In this case, Dominator made the final move. By Claim 1.2.1, each move of
Staller, together with Dominator’s response to her move, adds at least four vertices
to U . Thus, we have 8k = |U | ≥ 1 + 4

2
(m − 1) = 2m − 1, and so m ≤ 4k + 1

2
.

Since m is odd, this implies that m ≤ 4k − 1. Thus, in both cases, m ≤ 4k, and so
γtg(CL4k) = m ≤ 4k. This completes the proof of Claim 1.2. (�)

Claim 1.3 γtg(CL4k|v) ≤ 4k − 1 for every vertex v in CL4k.

Proof. Let v be an arbitrary vertex of CL4k. We may assume that v = xi for some
i ∈ [4k]. We describe a strategy for Dominator that guarantees that at most 4k − 1
moves are played to complete the game played in CL4k|v. Following the notation of
Claim 1.2, we denote by U the set of vertices that are not playable. Dominator plays
as his first move in the game played in CL4k|v the vertex yi+2, thereby adding two
vertices to U , namely the vertices yi+1 and yi+2. Thereafter, he adopts his strategy
explained in the proof of Claim 1.2.1, which guarantees that after each of Staller’s
moves, his answer together with her move add at least four vertices to U .

We now compute the bounds that Dominator’s strategy gives us. Let m be the
number of moves played when the game finishes. As observed earlier, the first move
of Dominator adds two vertices to U . Consider first the case when m is even. In
this case, we have 8k = |U | ≥ 2+ 4

2
(m− 2)+ 3 = 2m+1, and so m ≤ 4k− 1

2
. Thus,

since m is even, this implies that m ≤ 4k−2. Consider next the case when m is odd.
In this case, Dominator made the final move and 8k = |U | ≥ 2 + 4

2
(m − 1) = 2m,

and so m ≤ 4k. Since m is odd, this implies that m ≤ 4k − 1. Thus, in both
cases, m ≤ 4k − 1, and so γtg(CL4k|v) = m ≤ 4k − 1. This completes the proof of
Claim 1.3. (�)

By Claim 1.1 and 1.2, we deduce that γtg(CL4k) = 4k. By Claim 1.3, γtg(CL4k|v) ≤
4k − 1 for every vertex v in CL4k. Thus, the graph CL4k is 4k-γtg-critical. This
completes the proof of Theorem 1. �
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3 Möbius ladders

For n ≥ 2, the Möbius ladder MLn is a cubic circulant graph of order 2n, formed
from a 2n-cycle by adding n edges (called “rungs”) joining opposite pairs of vertices
in the cycle (cf. [17]). The Möbius ladder ML2 is the complete graph K4. The
Möbius ladders ML6 and ML8 are illustrated in Fig. 2(a) and 2(b), respectively.
The Möbius ladder MLn is bipartite if and only if n is odd.

(a) ML6
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v5

v6
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v12v13v14

v15

v16

Figure 2: The Möbius ladders ML6 and ML8.

Theorem 2 If k ≥ 1, then the Möbius ladder ML2k is 2k-γtg-critical.

Proof. When k = 1, the Möbius ladder ML2k is the complete graph ML2
∼= K4,

which is 2-γtg-critical. Hence, in what follows we may assume that k ≥ 2. Let
ML2k be obtained from the 4k-cycle v1v2 . . . v4kv1 by adding the 2k edges vivi+2k

for i ∈ [2k], where addition is taken modulo 4k, cf. Fig. 2. We note that ML2k is
not bipartite.

We first show that γtg(ML2k) ≥ 2k. Staller adopts exactly her strategy used in
the proof of Claim 1.1 for the circular ladder. We note that this strategy is a local
strategy, and adapts readily to the Möbius ladder. More precisely, we define two
vertices to be consecutive vertices of ML2k if they have two common neighbors. A
run in the partially total dominated Möbius ladder ML2k is a maximal sequence of
(distinct) consecutive vertices that contains at least three vertices, none of which
have yet been played, but does not contain all vertices of ML2k. For example,
if vi+2k−1 is already played for some i ∈ [2k] but none of vi, vi+2k+1, vi+2 have
yet been played, then vi, vi+2k+1, vi+2 are the first three vertices of a run. This is
illustrated in Fig. 3.
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Figure 3: A subgraph of ML2k.

Staller’s adopts her identical strategy as in proof of Claim 1.1 and plays on the
extremity of a run, if one exists; otherwise, she plays any legal move. Since the
Möbius ladder ML2k is in this case not bipartite, an analogous proof as in Claim 1.1
shows that Staller’s strategy guarantees that she totally dominates exactly one new
vertex on all of her moves. (This differs slightly from the case of the circular ladder
which is a bipartite graph, since then it is possible that Staller’s strategy guarantees
that she totally dominates exactly one new vertex on all, except for possibly one,
of her moves.) Thus, every move of Staller together with the previous move of
Dominator, combined totally dominate at most four new vertices (at most three
from Dominator’s move, and exactly one from Staller’s move). Hence, after 2k − 1
moves have been played (k moves by Dominator and k − 1 moves by Staller), at
most 4(k − 1) + 3 = 4k − 1 vertices have been totally dominated, and at least one
additional move is needed to complete the game, implying that at least 2k moves
are played in order to complete the game. Therefore, γtg(ML2k) ≥ 2k.

We show next that γtg(ML2k) ≤ 2k. Dominator adopts his identical strategy
used in the proof of Claim 1.2 for the circular ladder. Once again, we note that this
strategy is a local strategy, and adapts readily to the Möbius ladder. An identical
proof as in Claim 1.2.1 shows that his strategy guarantees that after each of Staller’s
moves, his answer together with her move add at least four vertices to U . An identical
proof as in Claim 1.2.2 shows that the final move of the game adds at least three
vertices to U .

We now compute the bounds that Dominator’s strategy gives us. Let m be
the number of moves played when the game finishes. As observed earlier, the first
move of Dominator adds only one vertex to U . Consider first the case when m
is even. In this case, Staller made the final move and with her last move, she
adds at least three new vertices to U . Each of Staller’s previous moves, together
with Dominator’s response to her move, adds at least four vertices to U . Thus,
we have 4k = |U | ≥ 1 + 4

2
(m − 2) + 3 = 2m, and so m ≤ 2k. Consider next the

case when m is odd. In this case, Dominator made the final move, implying that
4k = |U | ≥ 1 + 4

2
(m − 1) = 2m − 1, and so m ≤ 2k + 1

2
. Since m is odd, this

implies that m ≤ 2k− 1. Thus, in both cases, m ≤ 2k, and so γtg(ML2k) = m ≤ 2k.
This shows that γtg(ML2k) ≤ 2k. As shown earlier, γtg(ML2k) ≥ 2k. Consequently,
γtg(ML2k) = 2k.
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An identical proof as in Claim 1.3 shows that γtg(ML2k|v) ≤ 2k − 1 for every
vertex v in ML2k. Thus, the graph ML2k is 2k-γtg-critical. This completes the proof
of Theorem 2. �
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