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Abstract

In this paper, we continue the study of the domination game in graphs
introduced by Brešar, Klavžar, and Rall [SIAM J. Discrete Math. 24 (2010)
979–991]. We study the total version of the domination game and show that
these two versions differ significantly. We present a key lemma, known as the
Total Continuation Principle, to compare the Dominator-start total domination
game and the Staller-start total domination game. Relationships between the
game total domination number and the total domination number, as well as
between the game total domination number and the domination number, are
established.
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1 Introduction

In this paper, we continue the study of the domination game in graphs introduced
in [1]. The game played on a graph G consists of two players, Dominator and Staller,
who take turns choosing a vertex from G. Each vertex chosen must dominate at
least one vertex not dominated by the vertices previously chosen. The game ends
when the set of vertices chosen becomes a dominating set in G. Dominator wishes to
dominate the graph as fast as possible and Staller wishes to delay the process as much
as possible. The game domination number (resp. Staller-start game domination
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number), γg(G) (resp. γ′g(G)), of G is the number of vertices chosen when Dominator
(resp. Staller) starts the game and both players play optimally.

Let us recall some results proved about this game. First of all, it was proved
in [1, 8] that the game domination number and the Staller-start game domination
number are always close together; more precisely, |γg(G)−γ′g(G)| ≤ 1 holds for every
graph G. A key lemma needed to give a short proof of this result is the so-called
Continuation Principle proved in [8]. We will not state it here but instead will
prove a completely parallel assertion, named the Total Continuation Principle, for
the total domination game; see Lemma 3.1. Call a pair of integers (k, ℓ) realizable if
there exists a graph G with γg(G) = k and γ′g(G) = ℓ. Realizable pairs were studied
in [1, 2, 11]; for the complete answer (with relatively simple families of graphs)
see [10]. Several exact values for the game domination number were established
in [9], including paths, cycles (the problem is non-trivial even on these graphs!)
and several grid-like graphs. The main message of the paper [2] is that the game
domination number can behave intrinsically different from the usual domination
number. Kinnersley, West, and Zamani [8] conjectured that if G is an isolate-free
forest of order n or an isolate-free graph of order n, then γg(G) ≤ 3n/5. Progress
on these two 3/5-conjectures was made in [3] by constructing large families of trees
that attain the conjectured 3/5-bound and by finding all extremal trees on up to
20 vertices. Bujtás [4] proved the 3/5-conjecture for the class of forests in which no
two leaves are at distance 4 apart.

In this paper we introduce and study the total version of the domination game
and in particular compare it with the usual domination game. The total domination

game, played on a graph G again consists of two players called Dominator and
Staller who take turns choosing a vertex from G. In this version of the game, each
vertex chosen must totally dominate at least one vertex not totally dominated by the
vertices previously chosen. We say that a move v in the total domination game is legal
if the played vertex v totally dominates at least one new vertex. The game ends when
the set of vertices chosen becomes a total dominating set in G. Dominator wishes to
totally dominate the graph as fast as possible and Staller wishes to delay the process
as much as possible. The game total domination number, γtg(G), of G is the number
of vertices chosen when Dominator starts the game and both players play optimally.
The Staller-start game total domination number, γ′tg(G), of G is the number of
vertices chosen when Staller starts the game and both players play optimally. For
simplicity, we shall refer to the Dominator-start total domination game and the
Staller-start total domination game as Game 1 and Game 2, respectively.

We proceed as follows. In Section 2, we introduce our graph theory terminology
and notation. In Section 3, we compare the total domination Game 1 and Game 2
and present our key lemma, named the Total Continuation Principle, which shows
that the number of moves in Game 1 and Game 2 when played optimally can differ
by at most one. A relationship between the game total domination number and the
total domination number is established in Section 4, as is a relation between the
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game domination number and the game total domination number. Corollary 4.2
and the examples afterwards demonstrate that the latter two invariants can differ
significantly. In Section 5 a relationship between the game total domination number
and the domination number is established. We close in Section 6 by investigating the
game total domination number and the Staller-start game total domination number
for paths and cycles.

2 Preliminaries

For notation and graph theory terminology not defined herein, we in general fol-
low [6]. Let G be a graph with vertex set V (G) and edge set E(G). The open

neighborhood of a vertex v ∈ V (G) is NG(v) = {u ∈ V (G) : uv ∈ E(G)} and
its closed neighborhood is the set NG[v] = {v} ∪ NG(v). For a set S ⊆ V (G), its
open neighborhood is the set NG(S) =

⋃

v∈S NG(v) and its closed neighborhood is
the set NG[S] = NG(S) ∪ S. The degree of v is dG(v) = |NG(v)|. If the graph G
is clear from the context, we simply write V , E, N(v) N [v], N(S), N [S] and d(v)
rather than V (G), E(G), NG(v), NG[v], NG(S), NG[S] and dG(v), respectively. A
universal vertex is a vertex adjacent to every other vertex.

For subsets X,Y ⊆ V , we denote the subgraph induced by X by G[X] and we
denote the set of edges that join a vertex of X and a vertex of Y by [X,Y ]. Thus,
|[X,Y ]| is the number of edges with one end in X and the other end in Y . In
particular, |[X,X]| = m(G[X]). If there is no edge in [X,Y ], we say that [X,Y ] is
empty.

Let G be a graph with vertex set V and with no isolated vertex. A dominating

set of G is a set S of vertices of G such that every vertex in V \ S is adjacent to a
vertex in S. Thus a set S ⊆ V is a dominating set in G if N [S] = V . The domination

number of G, denoted by γ(G), is the minimum cardinality of a dominating set of
G. If X and Y are subsets of vertices in G, then the set X dominates the set Y
in G if Y ⊆ N [X]. In particular, if X dominates V , then X is a dominating set in
G. A total dominating set, abbreviated TD-set, of G is a set S of vertices of G such
that every vertex is adjacent to a vertex in S. Thus a set S ⊆ V is a TD-set in G if
N(S) = V . The total domination number of G, denoted by γt(G), is the minimum
cardinality of a TD-set of G. A vertex u totally dominates a vertex v if v ∈ N(u).
If X and Y are subsets of vertices in G, then the set X totally dominates the set Y
in G if Y ⊆ N(X). In particular, if X totally dominates V , then X is a TD-set in
G. For more information on the total domination in graphs see the recent book [7].

Since an isolated vertex in a graph cannot be totally dominated by definition,
all graphs considered will be without isolated vertices.
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3 Game 1 versus Game 2

In this section we prove that just as for the usual domination game, also for the
total domination game the number of moves in Game 1 and Game 2 when played
optimally can differ by at most one. To do so, we will mimic the idea of the proof
of the Continuation Principle from [8], for which we need the following concept.

A partially total dominated graph is a graph together with a declaration that some
vertices are already totally dominated; that is, they need not be totally dominated
in the rest of the game. If G is a graph and A ⊆ V (G) is such a set, we will denote
with GA this partially total dominated graph. Moreover, γtg(GA) and γ′tg(GA) are
the minimum number of moves needed to finish the game on GA when Dominator
or Staller starts, respectively.

Lemma 3.1 (Total Continuation Principle) Let G be a graph, A,B ⊆ V (G), and
let GA and GB be the corresponding partially total dominated graphs. If B ⊆ A,
then γtg(GA) ≤ γtg(GB) and γ′tg(GA) ≤ γ′tg(GB).

Proof. Two games will be played, Game A on the graph GA and Game B on the
graph GB . The first of these will be the real game, while Game B will only be
imagined by Dominator. In Game A, Staller will play optimally while in Game B,
Dominator will play optimally.

We claim that in each stage of the games, the set of vertices that are totally
dominated in Game B is a subset of the vertices that are totally dominated in Game
A. This is clearly true at the start of the games. Suppose now that Staller has
(optimally) selected vertex u in Game A. Then by the induction assumption, vertex
u is a legal move in Game B because a new vertex v that was totally dominated
by u in Game A, is not yet totally dominated in Game B. Then Dominator copies
the move of Staller and plays vertex u in Game B. Dominator then replies with an
optimal move in Game B. If this move is legal in Game A, Dominator plays it in
Game A as well. Otherwise, if the game is not yet over, Dominator plays any other
legal move in Game A. In both cases the claim assumption is preserved, which by
induction also proves the claim.

We have thus proved that Game A finishes no later than Game B. Suppose thus
that Game B lasted r moves. Because Dominator was playing optimally in Game
B, it follows that r ≤ γtg(GB). On the other hand, because Staller was playing
optimally in Game A and Dominator has a strategy to finish the game in r moves,
we infer that γtg(GA) ≤ r. Therefore,

γtg(GA) ≤ r ≤ γtg(GB),

and we are done if Dominator is the first to play. Note that in the above arguments
we did not assume who starts first, hence in both cases Game A will finish no later
than Game B. Hence the conclusion holds for γ′tg as well. �
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As a consequence of the Total Continuation Principle whenever x and y are legal
moves for Dominator and N(x) ⊆ N(y), then Dominator will play y instead of x.
We remark that the proof of Lemma 3.1 could be modified to work on other (but
not all) variants of possible domination games, but since we do not wish to initiate
an inflation of such games, we stated the result for the total version only.

Lemma 3.1 leads to the following fundamental property:

Theorem 3.2 For any graph G, we have |γtg(G) − γ′tg(G)| ≤ 1.

Proof. Consider Game 1 and let v be the first move of Dominator. Let A = N(v)
and consider the partially total dominated graph GA. Set in addition B = ∅ and
note that GB = G. Note first that γtg(G) = 1+γ′tg(GA). By the Total Continuation
Principle, γ′tg(GA) ≤ γ′tg(GB) = γ′tg(G). Therefore,

γtg(G) ≤ γ′tg(GA) + 1 ≤ γ′tg(G) + 1 .

By a parallel argument, γ′tg(G) ≤ γtg(G) + 1. �

One can check directly that γtg(P4) = γ′tg(P4) = 3, γtg(P5) = 3 = γ′tg(P5) − 1,
and γtg(C8) = 5 = γ′tg(C8)+1. For instance, in Game 2 on C8, an optimal first move
of Dominator is the vertex opposite to the vertex played by Staller in the first move
of the game. The second move of Staller must be adjacent to one of the two vertices
already played, and then Dominator can finish the game by picking the vertex that
is opposite to the second move of Staller. So there are graphs G1, G2 and G3 such
that γtg(G1) = γ′tg(G1), γtg(G2) = γ′tg(G2) + 1, and γtg(G3) = γ′tg(G3) − 1. Infinite
families of such examples can be obtained using the next result. It involves graphs
G with γtg(G) = γ′tg(G) = 2. Examples of such graphs are complete multipartite
graphs Kn1,...,nr

where r ≥ 2, and all graphs that contain a universal vertex. With
∪iGi we denote the disjoint union of the graphs Gi.

Proposition 3.3 Let G0 be a graph, r a positive integer, and let Gi, 1 ≤ i ≤ r, be
graphs with γtg(Gi) = γ′tg(Gi) = 2. Then

γtg(∪
r
i=0Gi) = γtg(G0) + 2r and γ′tg(∪

r
i=0Gi) = γ′tg(G0) + 2r .

Proof. Set G = ∪r
i=0Gi. Consider first Game 1 and the following strategy of

Dominator. He starts with an optimal (with respect to the game restricted to
G0) move in G0. In each later move he follows Staller in G0 as long as possible
and, if necessary, plays an optimal reply to a move of Staller in a Gi, i ≥ 1, in
which she played. In this way Dominator ensures that the game restricted to G0

is Game 1 so that he can guarantee that at most γtg(G0) moves will be played
on G0. Since γtg(Gi) = γ′tg(Gi) = 2, exactly two moves will be played on each
Gi, i ≥ 1. Consequently, γtg(G) ≤ γtg(G0) + 2r. On the other hand, a similar
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strategy of Staller, namely that she follows a move of Dominator in G0 if possible,
guarantees her that at least γtg(G0) moves will be played on G0, and consequently
γtg(G) ≥ γtg(G0) + 2r. This establishes the first assertion.

The second assertion follows by analogous strategies by Staller and Dominator,
respectively. �

To conclude the section we remark that recently a detailed study of the (usual)
domination game played on the disjoint union of two graphs was done in [5].

4 Game total domination versus total domination

The game total domination number can be bounded by the total domination number
as follows.

Theorem 4.1 If G is a graph on at least two vertices, then

γt(G) ≤ γtg(G) ≤ 2γt(G)− 1 .

Moreover, given any integer n ≥ 2 and any 0 ≤ ℓ ≤ n − 1 there exists a connected

graph H such that γt(H) = n and γtg(H) = n+ ℓ.

Proof. At the end of Game 1 played on a graph G the vertices played form a
TD-set of G, hence γtg(G) ≥ γt(G). Moreover, if D is a minimum TD-set of G,
then the strategy of Dominator to consecutively play vertices from D if possible,
and otherwise playing some other vertex, guarantees that the game ends in no more
than 2γt(G) − 1 moves. This proves the claimed bounds. For the rest of the proof
fix a positive integer n ≥ 2.

Let Gn be the graph obtained from the disjoint union of the path P (0) = Pn on
n vertices and n copies of Pn+1, denoted P (i), 1 ≤ i ≤ n, by joining the ith vertex
of P (0) (1 ≤ i ≤ n) to all vertices of P (i). Then it is straightforward to see that
γt(Gn) = n. Hence by the already proved upper bound, γtg(Gn) ≤ 2n − 1. On the
other hand, Staller has a strategy to play at least n − 1 vertices of the subgraphs
P (i), 1 ≤ i ≤ n, which then implies that γtg(Gn) ≥ 2n−1. This settles the theorem’s
case ℓ = n− 1.

Let k be a positive integer and let ℓ be a non-negative integer such that n− 1 =
k + ℓ. Let Xi, 1 ≤ i ≤ k, be the complete graph K2 with V (Xi) = {xi, yi}. Let Yi,
1 ≤ i ≤ ℓ, be the graph with V (Yi) = {ui} ∪ {ai,1, . . . , ai,ℓ, bi,1, . . . , bi,ℓ}, in which
ui is a universal vertex (that is, adjacent to all other vertices), the remaining edges
being ai,1bi,1, . . . , ai,ℓbi,ℓ. (In other words, Yi is obtained from ℓ disjoint triangles
by identifying a vertex in each of them.) Let kGℓ be the graph constructed from
the disjoint union of X1, . . . ,Xk, Y1, . . . , Yℓ, and a vertex w by adding the edges
wx1, . . . , wxk and wu1, . . . , wuℓ.
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Consider the following strategy of Dominator when the total domination game is
played on kGℓ. Dominator will play first at vertex w. Note that this move prevents
any yi to be played in the rest of the game. Therefore, regardless of how the game
proceeds all of the vertices in the set {x1, . . . , xk} will be chosen. Whenever Staller
plays a vertex in some Yi, Dominator responds by playing ui. This is always possible
as it is clearly not optimal for Staller to select ui as the first vertex to be played in
Yi. Using this strategy of Dominator not more than two vertices will be played in
each Yi. Consequently,

γtg(kGℓ) ≤ 1 + k + 2ℓ .

Consider next Staller’s strategy. Suppose first that Dominator plays w as his
first move. In the course of the game Dominator will play vertices ui in order to
finish the game on Yi. The strategy of Staller is to first play, say, a1,1, and then
reply to a move ui of Dominator by playing on some Yj on which Dominator did not
play yet. There she selects any legal move different from uj . Note that in this way
Staller always has a legal move as long as at least one ui has not yet been played.
Finally, if uj is the last such vertex, Dominator must play uj to finish the game on
Yj . In this way Staller forces the game to last at least 1 + k + 2ℓ moves.

Suppose next that w is not the first move of Dominator. Assume that Dominator
first played ui. Then Staller replies with a move in Yi, say ai,1. As long as Dominator
plays vertices uj, Staller accordingly replies in Yj. In this way in all subgraphs Yj

that were played, two vertices were selected. Suppose that at some stage of the
game, Dominator plays w. In that case, Staller follows the same strategy on the
remaining subgraphs Yj as she was playing in the case when Dominator started the
game on w. This will ensure that the game will last at least 1 + k + 2ℓ moves.
Assume finally that Dominator will never play the vertex w. Then, as soon as he
plays in some Xi, Staller replies with a move in the same Xi. In this way (at least)
2ℓ vertices will be played on the subgraphs Yi and (at least) k+1 on the Xi’s. (Note
that here we essentially need the assumption that k ≥ 1.) Hence also in any case at
least 1 + k + 2ℓ moves will be played, therefore

γtg(kGℓ) ≥ 1 + k + 2ℓ = n+ ℓ .

Since this holds for any 0 ≤ ℓ ≤ n− 2 and because it is clear that

γt(kGℓ) = k + ℓ+ 1 = n ,

we are done. �

The game domination number and the game total domination number are related
as follows:

Corollary 4.2 If G is a graph on at least two vertices, then γg(G) ≤ 2γtg(G) − 1.
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Proof. It was proved in [1] that γg(G) ≤ 2γ(G) − 1, hence

γg(G) ≤ 2γ(G)− 1 ([1,Theorem 1])

≤ 2γt(G)− 1

≤ 2γtg(G)− 1 (Theorem 4.1) .

�

To see that Corollary 4.2 is close to being optimal consider the following exam-
ples. For any n ≥ 2, let Gn be the graph obtained from the complete graph on n
vertices by attaching n leaves to each of its vertices. We claim that

γtg(Gn) = n+ 1 and γg(Gn) = 2n− 1 .

Consider first the total domination game and let Dominator start the game in a
vertex u of the n-clique. (By the following it is clear that playing a leaf in the first
move is not optimal for Dominator.) An optimal reply of Staller is to play a leaf
attached to u, because otherwise she could play no leaf in due course. After the first
two moves both players must alternatively play all the n − 1 remaining vertices of
the n-clique. Therefore, γtg(Gn) = n+ 1.

Consider next the usual domination game. From the Continuation Principle it
follows that an optimal first move for Dominator is a vertex of the n-clique. Since
each vertex of it has n leafs attached, Staller will be able to play a leaf as long as
Dominator has not played all the vertices from the clique. So γg(Gn) ≥ 2n− 1. On
the other hand, γg(Gn) ≤ 2γ(Gn)− 1 = 2n− 1.

5 Game total domination versus domination

The game total domination number can be bounded by the domination number as
follows.

Theorem 5.1 If G is a graph such that γ(G) ≥ 2, then γ(G) ≤ γtg(G) ≤ 3γ(G)−2.
Moreover, the bounds are sharp.

Proof. The lower bound follows from the inequality chain γ(G) ≤ γt(G) ≤ γtg(G).
Note first that γ(K2,n) = γtg(K2,n) = 2, n ≥ 3. Let u be a vertex of degree 2 in K2,n

and append to it a path of length 2. Call this graph Hn. Then γ(Hn) = 3 and hence
also γtg(Hn) ≥ 3. Suppose now that Dominator plays u. Then the only legal move
for Staller is one of the three neighbors of u in Hn. But then Dominator can finish
the game in the next move, thus γtg(Hn) ≤ 3. Consequently γ(Hn) = γtg(Hn) = 3.
To get all other possible values that attain the lower bound apply Proposition 3.3.

To prove the upper bound, let D be an arbitrary γ(G)-set. Dominator’s strategy
is to select vertices in D sequentially whenever such a move is legal. Once Dominator
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has played all allowable vertices in D, at most 2|D| − 1 = 2γ(G) − 1 moves have
been made. At this point of the game all vertices in N(D) are totally dominated.

Case 1. No vertex in D is currently totally dominated.
In this case D is an independent set and both Dominator and Staller only played
vertices from D. That is, exactly |D| = γ(G) moves have been made. The only
remaining legal moves are those that totally dominate vertices in D, implying that
at most |D| additional moves are required to complete the game. Hence the total
number of moves played is at most 2|D| = 2γ(G) ≤ 3γ(G) − 2.

Case 2. At least one vertex in D is currently totally dominated.
Now the only legal moves remaining in the game are those that totally dominate
vertices in D if any are not yet totally dominated. This implies that at most |D|−1
additional moves are required to complete the game. Hence the total number of
moves is at most (2|D| − 1) + (|D| − 1) = 3γ(G) − 2.

This proves the upper bound. In order to show its sharpness, let Bk, k ≥ 2, be
the graph constructed as follows. For i = 1, 2, . . . , k2 let Qi be a complete graph

of order k with the vertex set {y
(i)
1 , y

(i)
2 , . . . , y

(i)
k }. Then take the disjoint union of

these cliques, add vertices x1, x2, . . . , xk, and for i = 1, 2, . . . , k, join xi to the k2

vertices y
(1)
i , y

(2)
i , . . . , y

(k2)
i . Finally, add a pendant edge to each vertex xi and call the

resulting leaf wi. See Fig. 1 for Bk. For further reference let X = {x1, x2, . . . , xk},

and for i = 1, 2, . . . , k let Yi = {y
(j)
i : j = 1, 2, . . . , k2}.

· · ·

· · ·

· · ·

...

x1 x2 xk
w1 w2 wk

y
(1)
1

y
(2)
1

y
(k2)
1

y
(1)
2

y
(2)
2

y
(k2)
2

y
(1)
k

y
(2)
k

y
(k2)
k

Q1

Q2

Qk2

Figure 1: The graph Bk

Note first that γ(Bk) = k and in fact, X is a unique minimum dominating set
of Bk. Since we have already proved that γtg(Bk) ≤ 3k− 2, it remains to show that
Staller has a strategy that will ensure the game to last 3k − 2 moves. Her strategy
is to play vertices from Y1 as long as possible and to never play a vertex from X.
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Since as long as not all vertices from X are played, Staller can play inside Y1, at
least k−1 moves are played on vertices from Y1. Note next that during the game all
vertices from X must be played in order to totally dominate vertices wi. In order
to totally dominate the vertices from X ′ = X \ {x1}, an additional k − 1 moves are
needed since X ′ is a 2-packing. Hence at least (k− 1) + k+ (k− 1) = 3k − 2 moves
are needed to complete the game. �

6 Paths and Cycles

In this section we study the game total domination number, γtg(G), and the Staller-
start game total domination number, γ′tg(G), when G is a path Pn or a cycle Cn on
n vertices. In a partially total dominated cycle or path, a run is a maximal sequence
of consecutive totally dominated vertices that contain at least two vertices.

6.1 Cycles

We focus our attention first on cycles. For small n, the values of γtg(Cn) and γ′tg(Cn)
can be checked by computer and are shown in Table 1.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
γtg(Cn) 2 2 3 4 5 5 6 6 7 8 9 9 10 10 11 12 13 13
γ′

tg(Cn) 2 2 3 4 4 4 6 6 7 8 8 8 10 10 11 12 12 12

Table 1. γtg(Cn) and γ′tg(Cn) for small cycles Cn.

We first establish lower bounds on γtg(Cn) and γ′tg(Cn).

Lemma 6.1 For n ≥ 5, the following holds.

(a) γtg(Cn) ≥ 2n/3− 1.
(b) γ′tg(Cn) ≥ 2(n− 1)/3 − 1.

Proof. We present the following strategy for Staller which will yield the desired
lower bounds. Staller’s strategy is as follows.

(a) Suppose we are in Game 1 and that Dominator has selected vertex v. Staller
then picks an arbitrary neighbor of v as her first move, and in so doing creates a
run (on four vertices). We note that Staller’s first move totally dominates two new
vertices. On each of Staller’s subsequent moves, she arbitrarily chooses a run and
plays a vertex x on one end of this run. The neighbor of x not on this run is the
only new vertex totally dominated by x. Thus on each of Staller’s moves different
from her initial move she totally dominates exactly one new vertex. We note that
since we are playing on a cycle, each move of Dominator totally dominates at most
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two new vertices. Thus after 2k − 1 moves, where k ≥ 2, we note that at most 3k
vertices have been totally dominated, 2k vertices by the k moves of Dominator and
2+ (k− 2) = k vertices by the k− 1 moves of Staller, while after 2k moves, at most
3k + 1 vertices have been totally dominated.

For notational simplicity, let M = γtg(Cn). On the one hand, suppose that
M = 2k − 1 for some k ≥ 2. Then all n vertices on the cycles must be totally
dominated, implying that n ≤ 3k = 3(M + 1)/2, or, equivalently, M ≥ 2n/3 − 1.
On the other hand, suppose that M = 2k for some k ≥ 2. Then this implies
that n ≤ 3k + 1 = 3M/2 + 1, or, equivalently, M ≥ 2(n − 1)/3. In both cases,
γtg(Cn) = M ≥ 2n/3− 1. This proves Part (a).

(b) Suppose next we are in Game 2. Staller selects an arbitrary vertex v. If
Dominator plays a move that creates a run, then Staller’s strategy is as before: she
arbitrarily chooses a run and plays a vertex on one end of this run on each of her
subsequent moves, thereby totally dominating exactly one new vertex on each of her
moves except for her first move (which totally dominates two vertices). If however
Dominator’s first move does not create a run, then Staller on her second move picks
an arbitrary neighbor of a played vertex, and in so doing creates a run. On all her
subsequent moves, she follows her earlier strategy and arbitrarily chooses a run and
plays a vertex on one end of this run. Thus after 2k − 1 moves, where k ≥ 2, we
note that at most 3k + 1 vertices have been totally dominated, 2k vertices by the
k moves of Dominator and 2 + 2 + (k − 3) = k + 1 vertices by the k − 1 moves of
Staller, while after 2k moves, at most 3k + 2 vertices have been totally dominated.

For notational simplicity, let M ′ = γ′tg(Cn). On the one hand, suppose that
M ′ = 2k − 1 for some k ≥ 2. Then all n vertices on the cycles must be totally
dominated, implying that n ≤ 3k + 1 = 3(M ′ + 1)/2 + 1, or, equivalently, M ′ ≥
(2n − 5)/3. On the other hand, suppose that M ′ = 2k for some k ≥ 2. Then this
implies that n ≤ 3k + 2 = 3M ′/2 + 2, or, equivalently, M ′ ≥ 2(n − 2)/3. In both
cases, γ′tg(Cn) = M ′ ≥ (2n − 5)/3. This proves Part (b) and completes the proof of
the lemma. �

We next establish upper bounds on γtg(Cn) and γ′tg(Cn). For this purpose, we
say that a vertex in a partially total dominated graph is unplayable if it is not a
legal move.

Lemma 6.2 For n ≥ 5, the following holds.

(a) γ′tg(Cn) ≤ 2n/3.
(b) γtg(Cn) ≤ (2n+ 1)/3.

Proof. We present the following strategy for Dominator which will yield the desired
upper bounds. At each point in the game, let U denote the set of unplayable vertices
and let |U | = u. Further, let m be the number of moves made so far. Dominator’s
strategy is as follows.
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(a) Suppose first that we are in Game 2 and that Staller has selected vertex v.
Let e be an edge incident with v on the cycle and consider the path P obtained
from the cycle by deleting the edge e. Dominator now plays the vertex at distance 4
from v on the resulting path P . We note then that the vertex on P at distance 2
from v is now unplayable and gets added to the set U .

More generally, suppose it is Staller’s move and she plays a vertex v1. Let v2
denote a new vertex totally dominated by v1, and so v2 is a neighbor of v1. Let
v′ be the other neighbor of v1 on the cycle (possibly v′ is also a new vertex totally
dominated by v1) and let e = v1v

′. We now consider the path, P , that starts at v1
and is obtained from the cycle by deleting the edge e. Let the path P be given by
v1, v2, v3, . . . , vn = v′. Since the vertex v2 is a new vertex totally dominated by v1
when she played this vertex, we note that the vertex v3 has not been played. If the
game is not over, then Dominator strategy is as follows. If v5 has not been played
at this point, then Dominator plays v5; otherwise, Dominator plays any legal move.
We remark that if v5 had not been played when Staller plays v1, then in this case
neither neighbor of v4 had been played. Hence when Dominator plays the vertex
v5 the vertex v4 becomes a new vertex totally dominated (and so v5 is indeed a
legal move). Further, we note that when Dominator plays the vertex v5 the vertex
v3 now becomes unplayable (since both neighbors of v3 are totally dominated) and
gets added to the set U . We also remark that if v5 had already been played when
Staller plays v1, then v3 immediately becomes unplayable and gets added to the set
U . Thus after Dominator has made his response to Staller’s move v1, then these two
moves result in at least two new vertices becoming totally dominated and at least
one new vertex becoming unplayable and added to the set U .

In summary, Dominator’s strategy is to create at least one new unplayable vertex
after every two consecutive moves of the game. Indeed Dominator’s strategy guar-
antees that every two consecutive moves result in at least one new vertex becoming
unplayable. For notational simplicity, let m′ = γ′tg(Cn). Dominator’s strategy im-
plies that if m′ is even, then u ≥ m′/2. If m′ is odd, then the last move of the
game is played by Staller and this move results in at least one new vertex becoming
unplayable, implying that u ≥ (m′ + 1)/2. In both cases, u ≥ m′/2. Since the
moves of the game are only played using vertices not in U , this in turn implies that
m′ = n−u ≤ n−m′/2, or, equivalently, γ′tg(Cn) = m′ ≤ 2n/3. This proves Part (a).

(b) Suppose we are in Game 1. Dominator follows exactly the same strategy as
in Part (a) except that he plays an arbitrary vertex on his first move. For notational
simplicity, let m = γtg(Cn). If m is odd, then u ≥ (m− 1)/2. If m is even, then the
last move of the game is played by Staller and this move results in at least one new
vertex becoming unplayable, implying that u ≥ m/2. In both cases, u ≥ (m− 1)/2.
Therefore, m = n− u ≤ n− (m− 1)/2, or, equivalently, γtg(Cn) = m ≤ (2n+ 1)/3.
This proves Part (b) and completes the proof of the lemma. �
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As an immediate consequence of Lemma 6.1 and 6.2, we have the following
results.

Corollary 6.3 For n ≥ 3, we have that γ′tg(Cn) ≤ ⌊2n3 ⌋. Further,

γtg(Cn) ≤

{

⌈2n3 ⌉ when n ≡ 1, 4 (mod 6)

⌊2n3 ⌋ otherwise.

Corollary 6.4 For n ≥ 3 and n ≡ 2, 5 (mod 6), we have that

γtg(Cn) =

⌊

2n

3

⌋

.

We believe that the upper bounds in Corollary 6.3 are almost tight. More pre-
cisely, we conjecture the following.

Conjecture 6.5 For n ≥ 3, we have

γtg(Cn) =

{

⌈2n3 ⌉ when n ≡ 1 (mod 6)

⌊2n3 ⌋ otherwise

and

γ′tg(Cn) =

{

⌊2n3 ⌋ − 1 when n ≡ 2 (mod 6)

⌊2n3 ⌋ otherwise.

6.2 Paths

For small n, the values of γtg(Pn) and γ′tg(Pn) can be checked by computer and are
shown in Table 2.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
γtg(Pn) 2 3 3 4 5 6 6 7 7 8 9 10 10 11 11 12 13 14
γ′

tg(Pn) 2 3 4 4 5 6 6 7 8 8 9 10 10 11 12 12 13 14

Table 2. γtg(Pn) and γ′tg(Pn) for small paths Pn.

We remark that an identical proof to that of Lemma 6.1 shows that the lower
bounds in the statement of the lemma also hold in the case of a path. Further the
strategy used to establish the upper bounds in the statement of Lemma 6.2 can be
modified slightly to yield analogous upper bounds in the case of a path, showing
that the game total domination number and the Staller-start game total domination
number of a path Pn differs from that for a cycle Cn by at most 2. We conjecture
the following.
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Conjecture 6.6 For n ≥ 3, we have γ′tg(Pn) = ⌈2n3 ⌉ and

γtg(Pn) =

{

⌊2n3 ⌋ when n ≡ 5 (mod 6)

⌈2n3 ⌉ otherwise.
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