On Isomorphism Classes of Generalized Fibonacci Cubes

Jernej Azarija ${ }^{1}$, Sandi Klavžara ${ }^{1,2,3}$, Jaehun Lee ${ }^{4}$, Jay Pantone ${ }^{5}$, and Yoomi Rho ${ }^{4}$
${ }^{1}$ Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia jernej.azarija@gmail.com
${ }^{2}$ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
${ }^{3}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia sandi.klavzar@fmf.uni-lj.si
${ }^{4}$ Department of Mathematics, Incheon National University, Korea
dlwogns257@naver.com, rho@incheon.ac.kr
${ }^{5}$ Department of Mathematics, University of Florida, USA
jay.pantone@gmail.com

Abstract

The generalized Fibonacci cube $Q_{d}(f)$ is the subgraph of the d-cube Q_{d} induced on the set of all strings of length d that do not contain f as a substring. It is proved that if $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$ then $|f|=\left|f^{\prime}\right|$. The key tool to prove this result is a result of Guibas and Odlyzko about the autocorrelation polynomial associated to a binary string. An example of a family of such strings f, f^{\prime}, where $|f|=\left|f^{\prime}\right| \geq \frac{2}{3}(d+1)$ are found. Strings f and f^{\prime} with $|f|=\left|f^{\prime}\right|=d-1$ for which $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$ are characterized.

1. Introduction

An element of $\{0,1\}^{d}$ is called a binary string (henceforth just called a string) of length d, with the usual concatenation notation. For example, $0^{d-1} 1$ is the string of length d consisting of $d-10$ bits followed by a single 1 bit. We will denote by $e_{i}=0^{i-1} 10^{d-i}$ the $i^{\text {th }}$ unit string in $\{0,1\}^{d}$.

Let $d \geq 1$ be a fixed integer. The d-cube Q_{d} is the graph whose vertices are the binary strings of length d, with an edge connecting vertices v_{1} and v_{2} if the underlying strings differ in exactly one position. Given a graph G, the set of vertices of G is denoted by $V(G)$. We use $d_{G}(u, v)$ to denote the length of a shortest path connecting u and v in G. Lastly, we will write $G \cong H$ to signify that the graphs G and H are isomorphic.
For a given string f and integer d, the generalized Fibonacci cube $Q_{d}(f)$ is the subgraph of Q_{d} induced by the set of all strings of length d that do not contain f as a consecutive substring. Indeed, this

[^0]generalizes the notion of the d-dimensional Fibonacci cube $\Gamma_{d}=Q_{d}(11)$, which is the graph obtained from the d-cube Q_{d} by removing all vertices that contain the substring 11. Set $n_{d}(f)=\left|V\left(Q_{d}(f)\right)\right|$.
Fibonacci cubes were introduced by Hsu [3] as a model for interconnection networks. Like the hypercube graphs, Fibonacci cubes have several properties that make them ideal as a network topology, yet their size grows significantly slower than that of the hypercubes. More precisely, while the hypercube of dimension n has 2^{n} vertices, the order of Γ_{n} is asymptotically φ^{n+2}, where φ is the golden ratio. Fibonacci cubes have been extensively investigated; see, for example, the recent survey by Klavžar [7] and even more recent papers of Klavžar and Mollard [8] and Vesel [15]. In the first of these papers, different asymptotic properties of Fibonacci cubes are established, while in the latter a linear recognition algorithm is designed for recognizing Fibonacci cubes, improving the previous best recognition algorithm of Taranenko and Vesel [13].

Later, Ilić, Klavžar, and Rho [4] introduced the idea of generalized Fibonacci cubes (as defined above). Under the same name, the graphs $Q_{d}\left(1^{s}\right)$ were studied by Liu, Hsu, and Chung [10] and Zagaglia Salvi [14]. The analysis of the properties of generalized Fibonacci cubes led to the study of several problems related to the combinatorics of words. To study their isometric embeddability into hypercubes, good and bad words were introduced by Klavžar and Shpectorov [9], where it was proved that about eight percent of all words are good. Isometric embeddability and hamiltonicity of generalized Fibonacci cubes motivated the ideas of the index and parity of a binary word, as defined by Ilić, Klavžar, and Rho [5, 6]. Infinite families of bad strings were found [5, 16]. In [1] it was proved that $Q_{d}(f)$ is 2-connected for any f with $|f| \geq 3$.

In this paper we consider the following fundamental question about the generalized Fibonacci cubes: for which binary strings f and f^{\prime} and positive integers d are the generalized Fibonacci cubes $Q_{d}(f)$ and $Q_{d}\left(f^{\prime}\right)$ isomorphic? In the next section, we prove that if $Q_{d}(f)$ and $Q_{d}\left(f^{\prime}\right)$ have the same order, then the equality $|f|=\left|f^{\prime}\right|$ holds. In addition, a family of strings f, f^{\prime}, with $|f|=\left|f^{\prime}\right| \geq \frac{2}{3}(d+1)$ is found for which $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$ holds. In the last section, we prove that if $|f|=d-1$, then $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$ if and only if f and f^{\prime} have the same block structure. Several conjectures are posed along the way.

In the rest of the section we introduce additional terminology and notation needed throughout the paper. The complement of a bit x is denoted by \bar{x}. It is easy to see that if f^{\prime} is the binary complement of f, or if f^{\prime} is the reverse of f (the reverse of $f=f_{1} \ldots f_{d}$ is $f_{d} \ldots f_{1}$), then $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$ for any dimension d. Hence we say that a pair of binary strings f, f^{\prime} is trivial if f^{\prime} can be obtained from f by binary complementation, reversal, or composition of these mappings. We are therefore only interested in the behavior of the other pairs, which we call the non-trivial pairs. A block of a binary sting f is a maximal (with respect to inclusion) substring of f consisting of consecutive equal bits. Let $f=0^{r_{1}} 1^{s_{1}} \cdots 0^{r_{k}} 1^{s_{k}}$, where $r_{1}, s_{k} \geq 0, r_{2}, \ldots, r_{k}, s_{1}, \ldots, s_{k-1} \geq 1$ and $f^{\prime}=0^{r_{1}^{\prime}} 1^{s_{1}^{\prime}} \cdots 0^{r_{\ell}^{\prime}} 1^{s_{\ell}^{\prime}}$, where $r_{1}^{\prime}, s_{\ell}^{\prime} \geq 0, r_{2}^{\prime}, \ldots, r_{\ell}^{\prime}, s_{1}^{\prime}, \ldots, s_{\ell-1}^{\prime} \geq 1$ be binary strings. Then f and f^{\prime} have the same block structure if the following three conditions are satisfied: $k=\ell, r_{1}=0$ if and only if $r_{1}^{\prime}=0$, and $s_{k}=0$ if and only if $s_{\ell}^{\prime}=0$.

2. The Length of Forbidden Words

In this section we first prove that a necessary condition for $Q_{d}(f)$ being isomorphic to $Q_{d}\left(f^{\prime}\right)$ is that $|f|=\left|f^{\prime}\right|$. Then we pose the question whether there is some relation between $|f|\left(=\left|f^{\prime}\right|\right)$ and d provided that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$. To this end we prove that there exist non-trivial pairs f, f^{\prime} such that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$ and $|f| \geq \frac{2}{3}(d+1)$. We also conjecture that for any non-trivial pair f, f^{\prime} such that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$, we must have $|f| \geq \frac{2}{3}(d+1)$.
The autocorrelation polynomial $p_{f}(z)$ associated to a binary string $f=f_{1} \ldots f_{k} \in\{0,1\}^{k}$ is defined as

$$
p_{f}(z)=\sum_{i=0}^{k-1} c_{i} z^{i}
$$

where $c_{i}=1$ if the length $k-i$ suffix of f is equal to the length $k-i$ prefix of f, i.e., if $f_{i+1} \ldots f_{k}=$ $f_{1} \ldots f_{k-i}$, and $c_{i}=0$ otherwise. The autocorrelation polynomial allows the immediate computation of the ordinary generating function counting binary words that avoid f by length:

$$
S_{f}(z)=\frac{p_{f}(z)}{z^{k}+(1-2 z) p_{f}(z)}
$$

see Flajolet and Sedgewick [11, Proposition I.4]. Note that the autocorrelation polynomial of $f \in$ $\{0,1\}^{k}$ is of degree at most $k-1$ and has degree $k-1$ if and only if the last bit of f is equal to the first bit of f. Observe also that

$$
\begin{equation*}
p_{0^{k}}(z)=\sum_{i=0}^{k-1} z^{i} \quad \text { and } \quad p_{0^{k-1} 1}(z)=1 \tag{1}
\end{equation*}
$$

We note in passing that more generally, $p_{f}(z)=1+z+\cdots+z^{k-1}$ if and only if $f=0^{k}$ or $f=1^{k}$ and that $p_{f}(z)=1$ if and only if every non-trivial suffix of f is different from the prefix of f of the same length. Such words were named prime in [6].
Set $n_{d}(f)=Q_{d}(f)$. If $k=|f|$, then in a word of length d that is not in $Q_{d}(f)$, the string f can begin in positions $1, \ldots, d-k+1$, the other $d-k$ bits are arbitrary. Hence we note in passing that $n_{d}(f) \geq 2^{d}-2^{d-k}(d-k+1)$. Theorem 2.2 establishes that only strings which have the same length can generate isomorphic generalized Fibonacci cubes, i.e., $|f|=\left|f^{\prime}\right|$ is a necessary condition for $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$. Its proof relies on the following result due to Guibas and Odlyzko.

Lemma 2.1. ([2, Section 7]) Let s and s^{\prime} be two binary strings with $|s|=\left|s^{\prime}\right|$. If $p_{s}(2) \geq p_{s^{\prime}}(2)$, then $n_{d}(s) \geq n_{d}\left(s^{\prime}\right)$ for all d.

We can now prove Theorem 2.2.
Theorem 2.2. If $|f|,\left|f^{\prime}\right| \leq d$ and $n_{d}(f)=n_{d}\left(f^{\prime}\right)$, then $|f|=\left|f^{\prime}\right|$.
Proof. We prove the contrapositive. Assume that $|f|<\left|f^{\prime}\right|$. We will show that $n_{d}(f)<n_{d}\left(f^{\prime}\right)$, from which the theorem follows.

If $|f|=d$, then it is clear that $n_{d}(f)<n_{d}\left(f^{\prime}\right)$, so we now assume that $|f|<d$. It follows from Lemma 2.1 that if f is a binary string of length $k<d$, then

$$
\begin{equation*}
n_{d}\left(0^{k-1} 1\right) \leq n_{d}(f) \leq n_{d}\left(0^{k}\right) \tag{2}
\end{equation*}
$$

In addition, since 0^{k} is a strict substring of $0^{k} 1$ we infer that

$$
\begin{equation*}
n_{d}\left(0^{k}\right)<n_{d}\left(0^{k} 1\right) \tag{3}
\end{equation*}
$$

Combining (2) and (3) we conclude that

$$
n_{d}(f) \leq n_{d}\left(0^{k}\right)<n_{d}\left(0^{k} 1\right) \leq n_{d}\left(f^{\prime}\right)
$$

where the last inequality is due to the assumption that $\left|f^{\prime}\right|>k$.
Hence, non-trivial pairs f, f^{\prime} such that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$ are of the same length. We next ask what is the relation of this length with the dimension of the corresponding generalized Fibonacci cubes. The following result could be the extremal case.
Theorem 2.3. If $k \geq 2$, then $Q_{d}\left(0^{k} 1^{k}\right) \cong Q_{d}\left(0^{k+1} 1^{k-1}\right)$ for any $d \leq 3 k-1$.
Proof. Let $k \geq 2$ be a fixed integer and set $f=0^{k} 1^{k}, f^{\prime}=0^{k+1} 1^{k-1}, G=Q_{3 k-1}(f)$, and $G^{\prime}=$ $Q_{3 k-1}\left(f^{\prime}\right)$. Let $X=V\left(Q_{3 k-1}\right) \backslash V(G)$ and $X^{\prime}=V\left(Q_{3 k-1}\right) \backslash V\left(G^{\prime}\right)$. For any $0 \leq i \leq k-1$ let

$$
X_{i}=\{u f v:|u|=i,|v|=k-1-i\}
$$

Then, by definition,

$$
X=\bigcup_{i=0}^{k-1} X_{i}
$$

Let $w=w_{1} \ldots w_{3 k-1}$ be an arbitrary vertex whose underlying string is in X_{i}. It then follows that $w_{k+1} \ldots w_{2 k-1}=0^{i} 1^{k-i-1}$, and so $X_{j} \cap X_{\ell}=\emptyset$ holds for all $j \neq \ell$. Since $\left|X_{i}\right|=2^{k-1}$, we have $|X|=k 2^{k-1}$. With a parallel argument we infer that also $\left|X^{\prime}\right|=k 2^{k-1}$. This implies that $|V(G)|=\left|V\left(G^{\prime}\right)\right|$.

Consider now the mapping $\alpha: V\left(Q_{3 k-1}\right) \rightarrow V\left(Q_{3 k-1}\right)$ defined by

$$
\alpha\left(w_{1} \ldots w_{3 k-1}\right)=w_{1} \ldots w_{k} \overline{w_{2 k}} w_{k+1} \ldots w_{2 k-1} w_{2 k+1} \ldots w_{3 k-1}
$$

In particular, α fixes the first k and the last $k-1$ coordinates. Since transposition of coordinates, complementation of a coordinate, and any composition of such mappings are all automorphisms of a hypercube, α is an automorphism of $Q_{3 k-1}$. Consider now G and G^{\prime} as subgraphs of $Q_{3 k-1}$ and the restriction $\left.\alpha\right|_{G}$ of α to G. Since $|V(G)|=\left|V\left(G^{\prime}\right)\right|$, it remains to prove that $\left.\alpha\right|_{G}: V(G) \rightarrow V\left(G^{\prime}\right)$. For any $w \in X, w \in X_{i}$ for some $0 \leq i \leq k-1$ and hence $w=u f v$ where $|u|=i,|v|=k-1-i$. Note that $w_{2 k}=f_{2 k-i}=1$ and hence $\overline{w_{2 k}}=0$ as $k+1 \leq 2 k-i \leq 2 k$ and $w_{1} \ldots w_{k} \overline{w_{2 k}} w_{k+1} \ldots w_{2 k-1}=f_{1} \ldots f_{k} 0 f_{k+1} \ldots f_{2 k-1}=0^{k+1} 1^{k-1}$ if $i=0$ and $w_{i+1} \ldots w_{k} \overline{w_{2 k}} w_{k+1} \ldots w_{2 k-1} w_{2 k+1} \ldots w_{2 k+i}=f_{1} \ldots f_{k-i} 0 f_{k+1-i} \ldots f_{2 k-1-i} f_{2 k+1-i} \ldots f_{2 k}=$ $0^{k+1} 1^{k-1}$ if $i \geq 1$. Therefore $\alpha(w)=u f^{\prime} v$. Thus $\left.\alpha\right|_{G}: V(G) \rightarrow V\left(G^{\prime}\right)$.
We have thus proved the result for $d=3 k-1$. Note that all of the above arguments also work for $2 k+1 \leq d \leq 3 k-2$ and when $d \leq 2 k$, the assertion is trivial.

Motivated by the last theorem we pose:
Conjecture 2.4. If f and f^{\prime} are binary strings such that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$, then $Q_{d-1}(f) \cong$ $Q_{d-1}\left(f^{\prime}\right)$.
Conjecture 2.5. Let f, f^{\prime} be a non-trivial pair such that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$. Then $|f| \geq \frac{2}{3}(d+1)$.
We have verified these conjectures for small strings using the Sage package [12]. More precisely, we tested both conjectures for all $d \leq 11$ and all non-trivial pairs f, f^{\prime}.

3. The Number of Blocks in Forbidden Words

In this section we characterize the binary strings f, f^{\prime} of length $d-1$ for which $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$. It turns out that they are precisely the strings with the same block structure.

Let $\nu(f)$ denote one less than the number of blocks of $f=f_{1} f_{2} \ldots f_{|f|}$. For example $\nu(0110)=2$. When a bit is different from the previous bit we call its index an index of bit change and denote it by i_{j}. Therefore $f_{i_{j}-1} \neq f_{i_{j}}$ for $i_{1}<i_{2}<\cdots<i_{\nu(f)}$.
Theorem 3.1. Let $d \geq 2$ and let f, f^{\prime} be binary strings of length $d-1$. Then $\nu(f)=\nu\left(f^{\prime}\right)$ if and only if $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$.

Proof. Set $A=V\left(Q_{d}\right) \backslash V\left(Q_{d}(f)\right)$. Then $A=\left\{\overline{f_{1}} f, f_{1} f, f f_{|f|}, f \overline{f_{|f|}}\right\}$. Similarly set $A^{\prime}=V\left(Q_{d}\right) \backslash$ $V\left(Q_{d}\left(f^{\prime}\right)\right)=\left\{\overline{f_{1}^{\prime}} f^{\prime}, f_{1}^{\prime} f^{\prime}, f^{\prime} f_{|f|}^{\prime}, f^{\prime} \overline{f_{\left|f^{\prime}\right|}^{\prime}}\right\}$. Let $2 \leq i_{1}<\cdots<i_{\nu(f)} \leq d-1$ be the indices of bit change of f and let $2 \leq i_{1}^{\prime}<\cdots<i_{\nu\left(f^{\prime}\right)}^{\prime} \leq d-1$ be the indices of bit change of f^{\prime}. Since $\left(\overline{f_{1}} f\right)_{\tau}=\left(f_{1} f\right)_{\tau}=f_{\tau-1}$ for $2 \leq \tau \leq d-1$ and $\left(f f_{|f|}\right)_{\tau}=\left(f \overline{f_{|f|}}\right)_{\tau}=f_{\tau}$ for $2 \leq \tau \leq d-1$, the strings $f_{1} f$ and $f f_{|f|}$ are different precisely for $\tau=i_{j}, 1 \leq j \leq \nu(f)$. It follows that $d_{Q_{d}}\left(f_{1} f, f f_{|f|}\right)=\nu(f)$ and by a parallel argument $d_{Q_{d}}\left(f_{1}^{\prime} f^{\prime}, f^{\prime} f_{\left|f^{\prime}\right|}^{\prime}\right)=\nu\left(f^{\prime}\right)$.

Assume first that $\nu(f)=\nu\left(f^{\prime}\right)$. We may without loss of generality assume that $f_{1}=f_{1}^{\prime}=0$. Then $f_{|f|}=f_{|f|}^{\prime}$. Let ϕ be any permutation of $\{1, \ldots, d\}$ such that $\phi\left(i_{j}\right)=i_{j}^{\prime}, \phi(1)=1, \phi(d)=d$. Note that there could be multiple candidates for ϕ; any such candidate will suffice. Set $\psi\left(x_{1} \ldots x_{d}\right)=$ $y_{1} \ldots y_{d}$, where $y_{1}=x_{1}, y_{d}=x_{d}$, and for all $2 \leq \tau \leq d-1$

$$
y_{\tau}= \begin{cases}x_{\phi^{-1}(\tau)} ; & \text { if } f_{\phi^{-1}(\tau)}=f_{\tau}^{\prime} \text { or } \tau=d \\ \overline{x_{\phi^{-1}(\tau)} ;} & \text { otherwise }\end{cases}
$$

We show that ψ sends the vertices of A to A^{\prime}. Consider the case where $x_{1} x_{2} \ldots x_{d}=f_{1} f_{2} \cdots f_{d-1} x_{d}$. Assume $\tau<d$. If $f_{\phi^{-1}(\tau)}=f_{\tau}^{\prime}$, then $y_{\tau}=f_{\phi^{-1}(\tau)}=f_{\tau}^{\prime}$. If $f_{\phi^{-1}(\tau)} \neq f_{\tau}^{\prime}$, then $y_{\tau}=\overline{f_{\phi^{-1}(\tau)}}=$ f_{τ}^{\prime}. Therefore in any case $y_{1} \cdots y_{d}=f_{1}^{\prime} f_{2}^{\prime} \cdots f_{d-1}^{\prime} x_{d}$. Now consider the case where $x_{1} x_{2} \cdots x_{d}=$ $x_{1} f_{1} f_{2} \cdots f_{d-1}$, i.e., $x_{\tau}=f_{\tau-1}$ when $\tau \geq 2$. Assume $\tau>1$. Note that $f_{\phi^{-1}(\tau)-1}=f_{\phi^{-1}(\tau)}$ if and only if $\phi^{-1}(\tau) \neq i_{j}$ if and only if $\tau \neq i_{j}^{\prime}$ if and only if $f_{\tau-1}^{\prime}=f_{\tau}^{\prime}$. Firstly assume $f_{\phi^{-1}(\tau)}=f_{\tau}^{\prime}$. Then $y_{\tau}=x_{\phi^{-1}(\tau)}=f_{\phi^{-1}(\tau)-1}$. If $\phi^{-1}(\tau) \neq i_{j}$, then $y_{\tau}=f_{\phi^{-1}(\tau)-1}=f_{\phi^{-1}(\tau)}=f_{\tau}^{\prime}=f_{\tau-1}^{\prime}$. If $\phi^{-1}(\tau)=i_{j}$, then $y_{\tau}=f_{\phi^{-1}(\tau)-1}=\overline{f_{\phi^{-1}(\tau)}}=\overline{f_{\tau}^{\prime}}=f_{\tau-1}^{\prime}$. Secondly assume $f_{\phi^{-1}(\tau)} \neq f_{\tau}^{\prime}$. Then $y_{\tau}=\overline{f_{\phi^{-1}(\tau)-1}}$. If $\phi^{-1}(\tau) \neq i_{j}$, then $y_{\tau}=\overline{f_{\phi^{-1}(\tau)-1}}=\overline{f_{\phi^{-1}(\tau)}}=f_{\tau}^{\prime}=f_{\tau-1}^{\prime}$. If $\phi^{-1}(\tau)=i_{j}$, then $y_{\tau}=\overline{f_{\phi^{-1}(\tau)-1}}=f_{\phi^{-1}(\tau)}=\overline{f_{\tau}^{\prime}}=f_{\tau-1}^{\prime}$. Therefore in any case $y_{1} \ldots y_{d}=x_{1} f_{1}^{\prime} f_{2}^{\prime} \cdots f_{d-1}^{\prime}$.

It is well-known that transposition of coordinates, complementation of a coordinate, and compositions of such mappings are automorphisms of a hypercube. It follows therefore that ψ is an automorphism of Q_{d}. As shown above, ψ sends the vertices of A to A^{\prime}. Thus ψ is an isomorphism from $Q_{d}(f)$ to $Q_{d}\left(f^{\prime}\right)$.

To prove the converse assume that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$. We may without loss of generality assume that $\nu(f) \leq \nu\left(f^{\prime}\right)$.

Assume $\nu(f)=0$. Then $f_{1} f=f f_{|f|}$ and hence $|A|=3$, while $\left|A^{\prime}\right|=4$ if $\nu\left(f^{\prime}\right) \neq 0$. Therefore $\nu\left(f^{\prime}\right)=0$.

Assume $\nu(f)=1$. Then note that the vertices from A induce a path on four vertices and hence $\left|E\left(Q_{d}(f)\right)\right|=d 2^{d-1}-(4 d-3)$. If $\nu\left(f^{\prime}\right)>1$, then the vertices from A^{\prime} induce two disjoint copies of K_{2} and hence $\left|E\left(Q_{d}\left(f^{\prime}\right)\right)\right|=d 2^{d-1}-(4 d-2) \neq\left|E\left(Q_{d}(f)\right)\right|$. We conclude that $\nu\left(f^{\prime}\right)=1$.

For the rest of the proof we can thus assume that $\nu(f) \geq 2$. The subgraph of Q_{d} induced on A consists of two edges $\left\{\overline{f_{1}} f, f_{1} f\right\}$ and $\left\{f f_{|f|}, f \overline{f_{|f|}}\right\}$ where $d\left(f_{1} f, f f_{|f|}\right)=\nu(f)$ and $d\left(\overline{f_{1}} f, f \overline{f_{|f|}}\right)=\nu(f)+2$. Denote $\overline{f_{1}} f, f_{1} f, f f_{|f|}, f \overline{f_{|f|}}$ by a, b, c, d, respectively. Consider the shortest b, c-path constructed by changing from left to right the bits in which b and c differ:

$$
b=f_{1} f \rightarrow f_{1} f+e_{i_{1}} \rightarrow f_{1} f+e_{i_{1}}+e_{i_{2}} \rightarrow \cdots \rightarrow f_{1} f+e_{i_{1}}+\cdots+e_{i_{\nu(f)}}=f f_{|f|}=c,
$$

where addition is taken modulo 2 .
Denote the j-th internal vertex $f_{1} f+e_{i_{1}}+\cdots+e_{i_{j}}$ of this path by x_{j} for $1 \leq j \leq \nu(f)-1$. Similarly, denote $\overline{f_{1}^{\prime}} f^{\prime}, f_{1}^{\prime} f^{\prime}, f^{\prime} f_{|f|}^{\prime}, f^{\prime} \overline{f_{|f|}^{\prime}}$ by $a^{\prime}, b^{\prime}, c^{\prime}$, d^{\prime}, respectively. Set $k=\nu(f)-1, \ell=\nu\left(f^{\prime}\right)-1$, and recall that $k \geq 1$. Let $\psi: Q_{d}(f) \rightarrow Q_{d}\left(f^{\prime}\right)$ be an isomorphism and let $x_{j}^{\prime}=\psi\left(x_{j}\right)$ for $1 \leq j \leq k$.
Assume $k=1$. Then x_{1} is of degree $d-2$ and hence $\operatorname{deg}_{Q_{d}\left(f^{\prime}\right)}\left(x_{1}^{\prime}\right)=d-2$. This means that x_{1}^{\prime} is adjacent to two vertices among $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$. As Q_{d} is bipartite, x_{1}^{\prime} is adjacent to one of a^{\prime}, b^{\prime} and one of c^{\prime}, d^{\prime}. If x_{1}^{\prime} is adjacent to b^{\prime} and c^{\prime}, then $\ell+1=d_{Q_{d}}\left(b^{\prime}, c^{\prime}\right) \leq 2$ and hence $\ell=1$. If x_{1}^{\prime} is adjacent to a^{\prime} and c^{\prime}, then $\ell+2=d_{Q_{d}}\left(a^{\prime}, c^{\prime}\right) \leq 2$, a contradiction. Similarly we get contradictions if x_{1}^{\prime} is adjacent to d^{\prime}.
Assume $k \geq 2$. Then the vertices x_{1} and x_{k} of $Q_{d}(f)$ are of degree $d-1$. Considering that $x_{1} \rightarrow \cdots \rightarrow x_{k}$ is a path in $Q_{d}(f)$, we see that $d_{Q_{d}(f)}\left(x_{1}, x_{k}\right)=k-1$. Therefore the vertices x_{1}^{\prime} and x_{k}^{\prime} of $Q_{d}\left(f^{\prime}\right)$ are of degree $d-1$ and $d_{Q_{d}\left(f^{\prime}\right)}\left(x_{1}^{\prime}, x_{k}^{\prime}\right)=k-1$. We distinguish three cases.

Case 1: x_{1}^{\prime} and x_{k}^{\prime} are adjacent to a common vertex among $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$.
Now, $k-1=d_{Q_{d}}\left(x_{1}^{\prime}, x_{k}^{\prime}\right) \leq 2$ and hence $k \leq 3$. Also, k is odd as Q_{d} is bipartite, and thus $k=3$.

Considering that $x_{1} x_{2} x_{3}$ is a shortest path in Q_{d}, it follows that x_{1} and x_{3} have distance two and hence have a common neighbor which is different from x_{2} in Q_{d}. Call it u. Then, u is not a, b, c, or d because of its distances from x_{1} and x_{3}. Therefore $u \in Q_{d}(f)$. Set $u^{\prime}=\psi(u)$. Then $u^{\prime} \in Q_{d}\left(f^{\prime}\right)$ and hence $d_{Q_{d}}\left(x_{1}^{\prime}, u^{\prime}\right) \leq d_{Q_{d}\left(f^{\prime}\right)}\left(x_{1}^{\prime}, u^{\prime}\right)=d_{Q_{d}(f)}\left(x_{1}, u\right)=1$, which means that $d_{Q_{d}}\left(x_{1}^{\prime}, u^{\prime}\right)=1$. Similarly, $d_{Q_{d}}\left(x_{3}^{\prime}, u^{\prime}\right)=1$. Hence in Q_{d}, x_{1}^{\prime} and x_{3}^{\prime} have three common neighbors: $u^{\prime}, x_{2}^{\prime}$, and one of $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$. This is a contradiction, because hypercubes are $K_{2,3}$-free.

From now on we regard that x_{1}^{\prime} and x_{k}^{\prime} are not adjacent to a common vertex among $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$.
Case 2: x_{1}^{\prime} and x_{k}^{\prime} are either adjacent to a^{\prime} and b^{\prime} or adjacent to c^{\prime} and d^{\prime}.
We may without loss of generality assume the first. Then $k-1=d_{Q_{d}}\left(x_{1}^{\prime}, x_{k}^{\prime}\right) \leq 3$ and hence $k \leq 4$. Also, k is even as Q_{d} is bipartite. Therefore $k=2$ or $k=4$. We distinguish two subcases.

Case 2a: $k=2$.
It is well-known that in Q_{d} a given edge lies in $d-1$ cycles of length 4. Among the 4 -cycles containing the edge $x_{1} x_{2}$, one contains b and another contains c. This means that there are $d-3$ cycles of length 4 containing the edge $x_{1} x_{2}$ in $Q_{d}(f)$. Among the 4 -cycles containing the edge $x_{1}^{\prime} x_{2}^{\prime}$, only one contains a^{\prime} and b^{\prime} together, and no other contains $a^{\prime}, b^{\prime}, c^{\prime}$, or d^{\prime}. This means that there are $d-2$ cycles of length 4 containing the edge $x_{1}^{\prime} x_{2}^{\prime}$ in $Q_{d}\left(f^{\prime}\right)$, a contradiction.

Case 2b: $k=4$.
It is known that for two given vertices at distance three, there are exactly three internally vertexdisjoint shortest paths in Q_{d}, and therefore there are such paths between x_{1} and x_{4}. Let $R=x_{1} u v x_{4}$ be any one of them which is different from $x_{1} x_{2} x_{3} x_{4}$. Considering the distances of u, v from x_{1}, x_{k}, we obtain that $u, v \in Q_{d}(f)$ and hence R is a path in $Q_{d}(f)$. Therefore $\psi(R)$ is a path in $Q_{d}\left(f^{\prime}\right)$. By the assumption that $k=4$, there is also an $x_{1}^{\prime}, x_{4}^{\prime}$-path through a^{\prime} and b^{\prime}, implying that there are (at least) four internally disjoint shortest paths between x_{1}^{\prime} and x_{4}^{\prime} in Q_{d}, which is a contradiction.

Case 3: x_{1}^{\prime} is adjacent to one of a^{\prime} and b^{\prime} while x_{k}^{\prime} is adjacent to one of c^{\prime} and d^{\prime}, or vice versa.
Firstly, assume that x_{1}^{\prime} is adjacent to b^{\prime} while x_{k}^{\prime} is adjacent to c^{\prime}. Then

$$
\begin{aligned}
\ell+1 & =d_{Q_{d}}\left(b^{\prime}, c^{\prime}\right) \\
& \leq d_{Q_{d}}\left(b^{\prime}, x_{1}^{\prime}\right)+d_{Q_{d}}\left(x_{1}^{\prime}, x_{k}^{\prime}\right)+d_{Q_{d}}\left(x_{k}^{\prime}, c^{\prime}\right) \\
& =2+d_{Q_{d}}\left(x_{1}^{\prime}, x_{k}^{\prime}\right) \\
& \leq 2+d_{Q_{d}\left(f^{\prime}\right)}\left(x_{1}^{\prime}, x_{k}^{\prime}\right) \\
& =2+d_{Q_{d}(f)}\left(x_{1}, x_{k}\right) \\
& =k+1 .
\end{aligned}
$$

Hence, under this assumption $\ell=k$.
Alternatively, assume that x_{1}^{\prime} is adjacent to a^{\prime} while x_{k}^{\prime} is adjacent to c^{\prime}. Then,

$$
\begin{aligned}
\ell+2 & =d_{Q_{d}}\left(a^{\prime}, c^{\prime}\right) \\
& \leq d_{Q_{d}}\left(a^{\prime}, x_{1}^{\prime}\right)+d_{Q_{d}}\left(x_{1}^{\prime}, x_{k}^{\prime}\right)+d_{Q_{d}}\left(x_{k}^{\prime}, c^{\prime}\right) \\
& \leq 2+d_{Q_{d}\left(f^{\prime}\right)}\left(x_{1}^{\prime}, x_{k}^{\prime}\right) \\
& =k+1
\end{aligned}
$$

a contradiction. The other cases similarly lead to contradictions.
If $|f|=\left|f^{\prime}\right| \leq d-2$, then $\nu(f)=\nu\left(f^{\prime}\right)$ in general no longer implies that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$. For instance, it can be checked that $Q_{6}(0110) \not \approx Q_{6}(0100)$ despite the fact that $\nu(0110)=\nu(0100)$. On the other hand we pose the following conjecture.

Conjecture 3.2. Let f, f^{\prime} be a non-trivial pair such that $Q_{d}(f) \cong Q_{d}\left(f^{\prime}\right)$. Then $\nu(f)=\nu\left(f^{\prime}\right)$.

This conjecture has also been verified for all dimensions up to 11 (and all non-trivial pairs f, f^{\prime}).
We conclude the paper with a brief description how the computer checking was performed on the case of Conjecture 2.4. The other conjectures were tested similarly. Let genFib(d,f) be a Python method returning $Q_{d}(f)$ and let $\operatorname{allStr}(k)$ be a method that returns all binary strings of length k modulo binary complements and inverses. Then a function isom_classes that returns a dictionary whose entries are classes of isomorphic strings is defined as follows:

```
def isom_classes(d):
    D = {}
    for k in range(3,d):
        for f in allStr(k):
            G = genFib(d,f)
            s = G.canonical_label().graph6_string()
            if s not in D:
                D[s] = [f]
            else:
                D[s]+=[f]
    return D
```

The idea of the above method is that to every generalized Fibonacci cube we compute a string associated to it such that isomorphic generalized Fibonacci cubes are assigned the same string. This string can be thus considered as an isomorphism certificate. In the method this is done in the assignment s = G.canonical_label().graph6_string(). Now, using the method, Conjecture 2.4 was tested as follows.

```
def testConj1(d):
    D = isom_classes(d)
    for key in D:
            for f1,f2 in Combinations(D[key],2):
                G1 = genFib(d-1,f1)
                G2 = genFib(d-1,f2)
                if not G1.is_isomorphic(G2):
                return False
    return True
sage: all(testConj1(i) for i in xrange(2,12))
True
```


AcKnowledgments

We are grateful to three anonymous referees for several useful remarks.
This research was supported by the bilateral Korean-Slovenian project BI-KR/13-14-005 and the International Research \& Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea(Grant number: NRF2013K1A3A1A15003503). J.A. and S.K. are supported by the Ministry of Science of Slovenia under the grant P1-0297. J.L. and Y.R. are supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology grant 2011-00253195.
J.P.s research was sponsored by the National Science Foundation under Grant Number DMS-
1301692. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein.

References

[1] J. Azarija, S. Klavžar, J. Lee, Y. Rho, Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes, Discrete Math. Theor. Comput. Sci. 17 (2015) 79-88.
[2] L.J. Guibas, A.M. Odlyzko, String overlaps, pattern matching, and nontransitive games, J. Combin. Theory Ser. A 30 (1981) 183-208.
[3] W.-J. Hsu, Fibonacci cubes-a new interconnection topology, IEEE Trans. Parallel Distrib. Syst. 4 (1993) 3-12.
[4] A. Ilić, S. Klavžar, Y. Rho, Generalized Fibonacci cubes, Discrete Math. 312 (2012) 2-11.
[5] A. Ilić, S. Klavžar, Y. Rho, The index of a binary word, Theoret. Comput. Sci. 452 (2012) 100-106.
[6] A. Ilić, S. Klavžar, Y. Rho, Parity index of binary words and powers of prime words, Electron. J. Combin. 19 (2012) \#P44.
[7] S. Klavžar, Structure of Fibonacci cubes: A survey, J. Comb. Optim. 25 (2013) 505-522.
[8] S. Klavžar, M. Mollard, Asymptotic properties of Fibonacci cubes and Lucas cubes, Ann. Comb. 18 (2014) 447-457.
[9] S. Klavžar, S. Shpectorov, Asymptotic number of isometric generalized Fibonacci cubes, European J. Combin. 33 (2012) 220-226.
[10] J. Liu, W.-J. Hsu, M. J. Chung, Generalized Fibonacci cubes are mostly Hamiltonian, J. Graph Theory 18 (1994) 817-829.
[11] R. Sedgewick, P. Flajolet, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.
[12] W. A. Stein et al., Sage Mathematics Software (Version 6.0.0), The Sage Development Team, 2013, http://www.sagemath.org.
[13] A. Taranenko, A. Vesel, Fast recognition of Fibonacci cubes, Algorithmica 49 (2007) 81-93.
[14] N. Zagaglia Salvi, On the existence of cycles of every even length on generalized Fibonacci cubes, Matematiche (Catania) 51 (1996) 241-251.
[15] A. Vesel, Linear recognition and embedding of Fibonacci cubes, Algorithmica 71 (2015) 10211034.
[16] J. Wei, H. Zhang, Solution to a conjecture on words that are bad and 2-isometric, Theoret. Comput. Sci. 562 (2015) 243-251.

[^0]: Date: April 15, 2015
 Key words and phrases. Fibonacci cube; generalized Fibonacci cube; graph isomorphism; combinatorics on words; autocorrelation polynomial

 AMS 2010 Subject Classification. 05C60, 68R15

