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Abstract

A vertex subset S of a graph G is a general position set of G if no vertex
of S lies on a geodesic between two other vertices of S. The cardinality of a
largest general position set of G is the general position number gp(G) of G. It
is proved that S ⊆ V (G) is a general position set if and only if the components
of G[S] are complete subgraphs, the vertices of which form an in-transitive,
distance-constant partition of S. If diam(G) = 2, then gp(G) is the maximum
of the clique number of G and the maximum order of an induced complete
multipartite subgraph of the complement of G. As a consequence, gp(G)
of a cograph G can be determined in polynomial time. If G is bipartite,
then gp(G) ≤ α(G) with equality if diam(G) ∈ {2, 3}. A formula for the
general position number of the complement of a bipartite graph is deduced
and simplified for the complements of trees, of grids, and of hypercubes.
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1 Introduction

Motivated by the century old Dudeney’s no-three-in-line problem [4] (see [9, 12, 15]
for recent developments on it) and by the general position subset selection prob-
lem [5, 14] from discrete geometry, the natural related problem was introduced to
graph theory in [10] as follows. Let G = (V (G), E(G)) be a graph. Then we wish
to find a largest set of vertices S ⊆ V (G), called a gp-set of G, such that no vertex
of S lies on a geodesic (in G) between two other vertices of S. The general position
number (gp-number for short), gp(G), of G is the cardinality of a gp-set of G.

As it happens, the same concept has already been studied two years earlier in [18]
under the name geodetic irredundant sets. The concept was formally defined in a
different, more technical language, see the preliminaries below. In [18] graphs G
with gp(G) ∈ {2, n(G)− 1, n(G)} were characterized and several additional results
about the general position number deduced. The term general position problem was
coined in [10], where different general upper and lower bounds on the gp-number
are proved. In the same paper it is demonstrated that the in a block graph the set
of its set of simplicial vertices forms a gp-set and that the problem is NP-complete
in the class of all graphs. In the subsequent paper [11] the gp-number is determined
for a large class of subgraphs of the infinite grid graph, for the infinite diagonal grid,
and for Beneš networks.

In this paper we continue the investigation of general position sets in graphs. In
the following section definitions and preliminary observations are listed. In Section 3
we prove a characterization of general position sets and demonstrate that some
earlier results follow directly from the characterization. In the subsequent section
we consider graphs of diameter 2. We prove that if G is such a graph, then gp(G)
is the maximum of the clique number of G and the maximum order of an induced
complete multipartite subgraph of the complement of G. In the case of cographs the
latter invariant can be replaced by the independence number which in turn implies
that gp(G) of a cograph G can be determined in polynomial time. Moreover, we
determine a formula for gp(G) for graphs with at least one universal vertex. In
Section 5 we consider bipartite graphs and their complements. If G is bipartite,
then gp(G) ≤ α(G) with equality if diam(G) ∈ {2, 3}. We prove a formula for the
general position number of the complement of a bipartite graph and simplify it for
the complements of trees, of grids, and of hypercubes. In particular, if T is a tree,
then gp(T ) = max{α(T ),∆(T ) + 1}.
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2 Preliminaries

Graphs in this paper are finite, undirected, and simple. Let G be a connected graph
and u, v ∈ V (G). The distance dG(u, v) between u and v is the minimum number of
edges on a u, v-path. The maximum distance between all pairs of vertices of G is the
diameter diam(G) of G. An u, v-path of length dG(u, v) is called an u, v-geodesic.
The interval IG[u, v] between vertices u and v of a graph G is the set of vertices
x such that there exists a u, v-geodesic which contains x. For S ⊆ V (G) we set
IG[S] =

⋃
u,v∈S

IG[u, v]. To simplify the writing, we may omit the index G in the
above notation provided that G is clear from the context.

A set of vertices S ⊆ V (G) is a general position set of G if no three vertices of S
lie on a common shortest path. A gp-set is thus a largest general position set. Call
a vertex v ∈ T ⊆ V (G) to be an interior vertex of T , if v ∈ I[T − {v}]. Now, T is a
general position set if and only if T contains no interior vertices. In this way general
position sets were introduced in [18] under the name geodetic irredundant sets.

The set S is convex in G if I[S] = S. The convex hull H(S) of S is the smallest
convex set that contains S, and S is a hull set of G if H(S) = V (G). A smallest
hull set is a minimum hull set of G, its cardinality is the hull number h(G) of G. A
hull set S in a graph G is a minimal hull set if no proper subset of S is a hull set
of G. The maximum cardinality of a minimal hull set of G is the upper hull number
h+(G) of G. It is clear that in any graph G, every minimum hull set is a minimal
hull set of G and hence h(G) ≤ h+(G). The following fact is obvious.

Observation 2.1 Let G be a connected graph, S a minimal hull set, u, v ∈ S, and
P a u, v-geodesic. If w ∈ P , where w 6= u, v, then w /∈ S.

It follows from Observation 2.1 that every minimal hull set of G is its general
position set. Consequently,

2 ≤ h(G) ≤ h+(G) ≤ gp(G) ≤ n(G) ,

where n(G) = |V (G)|. The upper hull number of a graph can be arbitrary smaller
than its gp-number. For instance, if n ≥ 2, then h+(Kn,n) = 2 and gp(Kn,n) = n.

With respect to convexities we mention the following parallel concept to the
general position number, where in the definition of the interior vertex we replace
“I” with “H”. More precisely, the rank of a graph G is the cardinality of a largest
set S such that v /∈ H(S − {v}) for every v ∈ S, see [7]. Actually, the graph rank
can be studied for any convexity, cf. [19], the one defined here is the rank w.r.t. the
geodesic convexity.

A vertex x of a graph G is simplicial if its open neighborhood N(x) induces a
complete subgraph. Note that this is equivalent to saying that N(x) is convex in G.
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If S ⊆ V (G), then the subgraph of G induced by S is denoted by G[S]. The size
of a largest complete subgraph of a graph G and the size of its largest independent
set are denoted by ω(G) and α(G), respectively. A vertex of degree n(G) − 1 is
a universal vertex of G. The complement of a graph G will be denoted with G.
The join G + H of disjoint graphs G and H is obtained from the disjoint union
of G and H by adding all edges gh, where g ∈ V (G) and h ∈ V (H). Finally, set
[n] = {1, . . . , n} for n ∈ N.

3 The characterization

In this section we characterize general position sets in graphs. For this sake the
following concepts are needed.

Let G be a connected graph, S ⊆ V (G), and P = {S1, . . . , Sp} a partition of
S. Then P is distance-constant if for any i, j ∈ [p], i 6= j, the distance d(u, v),
where u ∈ Si and v ∈ Sj is independent of the selection of u and v. (We note
that in [7, p. 331] the distance-constant partition is called “distance-regular”, but
we decided to rather avoid this naming because distance-regular graphs form a
well-established term, cf. [2].) If P is a distance-constant partition, and i, j ∈ [p],
i 6= j, then let d(Si, Sj) be the distance between a vertex from Si and a vertex
from Sj. Finally, we say that a distance-constant partition P is in-transitive if
d(Si, Sk) 6= d(Si, Sj) + d(Sj, Sk) holds for arbitrary pairwise different i, j, k ∈ [p].
With these concepts in hand we can characterize general position sets as follows.

Theorem 3.1 Let G be a connected graph. Then S ⊆ V (G) is a general position
set if and only if the components of G[S] are complete subgraphs, the vertices of
which form an in-transitive, distance-constant partition of S.

Proof. Let G be a connected graph and let S ⊆ V (G). Let G1, . . . , Gp be the
components of G[S] and let P be the partition of S induced by the vertex sets of
the components, that is, P = {V (G1), . . . , V (Gp)}. To simplify the notation let
Vi = V (Gi) for i ∈ [p], so that P = {V1, . . . , Vp}.

Suppose first that G1, . . . , Gp are complete subgraphs of G and that P forms an
in-transitive, distance-constant partition of S. We claim that S is a general position
set and assume by the way of contradiction that S contains three vertices u, v, w,
such that v lies on a u,w-geodesic. Since G1, . . . , Gp are complete subgraphs, u and
w lie in different parts of P , say u ∈ Vi and w ∈ Vj, where i, j ∈ [p], i 6= j. Since
P is distance-constant, we infer that v /∈ Vi as well as v /∈ Vj. Therefore, v ∈ Vk
for some k ∈ [p], k 6= i, j. But then d(Vi, Vj) = d(Vi, Vk) + d(Vk, Vj), a contradiction
with the assumption that P is an in-transitive partition. This proves the asserted
claim for S.
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Conversely, let S be a general position set. If Gi is not complete for some
i ∈ [p], then Gi contains an induced P3, say uvw. But this means that S is not
a general position set. Hence Gi is a complete subgraph of G for every i ∈ [p].
Next, let u, v ∈ Vi and w ∈ Vj for i, j ∈ [p], i 6= j. Since Gi and Gj are complete,
uv ∈ E(G) and hence |d(u,w)− d(v, w)| ≤ 1. Moreover, neither v can be on a u,w-
geodesic, nor u lies on a v, w-geodesic and consequently d(u,w) = d(v, w). Since
u, v are arbitrary vertices of Gi and w and arbitrary vertex of Gj, this means that
d(Vi, Vj) = d(u,w) = d(v, w) is well defined. Consequently, P is a distance-constant
partition. Finally, P must also be an in-transitive partition, for otherwise we get an
obvious contradiction with the assumption that S is a general position set. �

Theorem 3.1 in particular implies some earlier results. First, it immediately
implies [10, Lemma 3.5] asserting that the set of simplicial vertices of a graph is
a general position set. Also, setting d(e, f) = min{d(u, x), d(u, y), d(v, x), d(v, y)}
for edges e = uv and f = xy of a graph G, the following result was proved in [10,
Proposition 4.4].

Corollary 3.2 Let G be a graph with diam(G) ≥ 2. If F ⊆ E(G) is such that
d(e, e′) = diam(G), e, e′ ∈ F , e 6= e′, then gp(G) ≥ 2|F |.

Proof. For e ∈ F let xe and ye be the end-vertices of e. Then, having in mind
that diam(G) ≥ 2, it is straightforward to see that {{xe, ye} : e ∈ F} form an
in-transitive, distance-constant partition. �

4 Graphs of diameter 2

In this section we are going to use Theorem 3.1 in the case of graphs of diameter 2.
For this sake we denote with η(G) the maximum order of an induced complete mul-
tipartite subgraph of G. Note that the complete graph Kn is a complete multipartite
graph with η(Kn) = 1 and ω(Kn) = n.

Theorem 4.1 If diam(G) = 2, then gp(G) = max{ω(G), η(G)}.

Proof. Since the vertices of an arbitrary complete subgraph of a graph G form
a general position set of G, we have gp(G) ≥ ω(G). Suppose H is a complete
multipartite subgraph of G. Then in G the vertices of H induce a disjoint union
of complete graphs. Since diam(G) = 2, the vertices of these complete subgraphs
clearly form an in-transitive, distance-constant partition. Hence by Theorem 3.1,
gp(G) ≥ η(G). Therefore, gp(G) ≥ max{ω(G), η(G)}.
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Let now S be a general position set ofG. Then by Theorem 3.1 the components of
G[S] are complete subgraphs, the vertices of which form an in-transitive, distance-
constant partition of S. If there is only one such component, then |S| ≤ ω(G),
and if there are at least two components, then |S| ≤ η(G). Hence, gp(G) ≤
max{ω(G), η(G)}. �

If P is the Petersen graph, then ω(P ) = 2 and η(P ) = 6, hence by Theorem 4.1
we have gp(P ) = 6 = η(P ). Let further Gn,k, be the graph obtained from Kn and one
more vertex that is adjacent to k+1 vertices of Kn, where n ≥ 3 and 1 ≤ k+1 < n.
Then ω(G) = n and η(G) = n − k, so that gp(Gn,k) = n = ω(G). These examples
show that the values from the maximum in Theorem 4.1 are independent.

Cographs form an important class of graphs that is still extensively investi-
gated, [1, 17] is a selected couple of recent studies. Recall that G is a cograph if
G contains no induced path on four vertices. These graphs were independently in-
troduced several times and can be characterized in many different ways, see [3]. In
particular, cographs are precisely the graphs that can be obtained from K1 by means
of the disjoint union and join of graphs. Note that this implies that every connected
cograph of order at least 2 is the join of at least two smaller connected cographs.
This implies that if G is a connected cograph, then diam(G) ≤ 2.

Theorem 4.2 If G be a connected cograph, then gp(G) = max{ω(G), α(G)}.

Proof. If G = Kn, then gp(Kn) = n = max{ω(Kn), α(Kn)}. Hence assume in the
rest that G is a connected cograph with diam(G) = 2.

We are going to show that η(G) = α(G) and proceed by induction on n(G). The
assertion is clear if n(G) = 3, that is, for G = P3. Assume now that G is a connected
cograph with diam(G) = 2 and n(G) ≥ 4. Then G = G1 + · · · + Gk, where k ≥ 2
and Gi, i ∈ [k], are connected cographs. Since for arbitrary graphs X and Y we
have α(X + Y ) = max{α(X), α(Y )} and η(X + Y ) = max{η(X), η(Y )}, we get, by
the induction assumption, that

η(G) = max{η(G1), . . . , η(Gk)} = max{α(G1), . . . , α(Gk)} = α(G) .

The result now follows from Theorem 4.1. �

If G is a cograph, then α(G) and ω(G) can be determined in polynomial time,
cf. [3, 13]. Hence Theorem 4.2 implies that the general position problem is polyno-
mial on connected cographs. Since the general position function of a graph is clearly
additive on its components, the general position problem is thus polynomial on all
cographs.

Suppose that G is a non-complete graph that contains at least one universal
vertex. Then diam(G) = 2 and Theorem 4.1 applies. For this situation the theorem
can be reformulated as follows.
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Corollary 4.3 Let G be a non-complete graph, U 6= ∅ the set of its universal ver-
tices, and let U ′ = V (G)− U . Then

gp(G) = max{|U |+ ω(G[U ′]), η(G[U ′])} .

Proof. Since U contains universal vertices, every largest complete subgraph of G
contains U . Hence ω(G) = |U | + ω(G[U ′]). In G every vertex from U is isolated.
Hence every induced complete multipartite subgraph of G with at least two parts
contains only vertices from U ′. It follows that η(G) = η(G[U ′]). �

Every graph G can be represented as the graph obtained from Kn(G) by removing
appropriate edges. To present examples how Corollary 4.3 can be applied, let us
use the notation Kn − E(H) to denote the graph obtained by considering H as
a subgraph of Kn and then deleting the edges of H from Kn. Then we have the
following formulas that can be easily deduced from Corollary 4.3.

• gp(Kn − E(Kk)) = max{k, n− k + 1}, where 2 ≤ k < n.

• gp(Kn − E(K1,k)) = max{k + 1, n− 1}, where 2 ≤ k < n.

• gp(Kn − E(Pk)) = max{3, n− k + dn
2
e}, where 3 ≤ k < n.

• gp(Kn − E(Kr,s)) = max{r + s, n− r}, where 2 ≤ r ≤ s and r + s < n.

• gp(Kn − E(Wk)) = max{3, n− k + bk−1
2
c}, where 5 ≤ k < n.

• gp(Kn − E(Ck)) =

{
max{3, n− k + bk

2
c}, 5 < k < n;

max{4, n− 2}, k = 4.

5 Bipartite graphs and their complements

For bipartite graphs we have the following result.

Theorem 5.1 If G is bipartite, then gp(G) ≤ α(G). Moreover, if diam(G) ∈ {2, 3},
then gp(G) = α(G).

Proof. As observed in [18], if G = Pn or G = C4, then gp(G) = 2. Thus gp(G) ≤
α(G) clearly holds in these cases. In the rest we may thus assume that G is neither
a path nor C4, so that gp(G) ≥ 3.

Let S be a gp-set of G and let S1, . . . , Sk be the components of G[S]. As gp(G) ≥
3 and G is bipartite, Theorem 3.1 implies that k ≥ 2. Also, since G is bipartite,
|Si| ∈ [2] for i ∈ [k]. We claim that actually |Si| = 1 for every i ∈ [k]. Suppose
on the contrary that, without loss of generality, S1 = {u, v}. Let w ∈ S2. Then,
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since uv ∈ E(G) and G is bipartite, |d(u,w) − d(v, w)| = 1, which in turn implies
that either v lies on a u,w-geodesic or u lies on a v, w-geodesic. This contradiction
proves the claim, that is, S is an independent set. We conclude that gp(G) ≤ α(G).

Assume now that diam(G) = 2. The complement of an independent set I of
a graph G induces the complete graph K|I| which is an instance of a complete
multipartite graph. Hence α(G) ≤ η(G) and Theorem 4.1 implies that α(G) ≤
gp(G) holds for a graph G of diameter 2.

Assume finally that diam(G) = 3. Then we recall from [10, Corollary 4.3] that
every independent set is a general position set. Hence α(G) ≤ gp(G) holds also in
this case. �

If G is bipartite, gp(G) can be arbitrary smaller than α(G). Consider first the
paths Pn, n ≥ 2, for which we have gp(Pn) = 2 and α(Pn) = dn/2e. We also note
that none of the two assertions of Theorem 5.1 need not hold if G is not bipartite. To
see this, consider again the Petersen graph P . (Of course, diam(P ) = 2.) As already
noticed, gp(P ) = 6, while α(P ) = 4. For a corresponding example of diameter 3
just add a pendant vertex to P .

We now turn our attention to complements of bipartite graphs for which some
preparation is needed. If G = (V (G), E(G)) is a bipartite graph and V (G) = A∪B
is its bipartition, then we will write G as triple (A,B,E(G)). If G = (A,B,E(G)) is
a bipartite graph, then let MG be the set of vertices of G that are of largest possible
degree, more precisely,

MG = {u ∈ A : deg(u) = |B|} ∪ {u ∈ B : deg(u) = |A|} .

Let in addition ψ(G) be the maximum order of an induced complete bipartite sub-
graph of G. Note that if G is a bipartite graph which is not a complete bipartite
graph, then diam(G) ≤ 3. Now we can formulate the following result.

Theorem 5.2 If G = (A,B,E(G)) is a bipartite graph, then

gp(G) =


n(G), diam(G) ∈ {1,∞};
max{α(G), ψ(G)}, diam(G) = 2;
max{α(G), ψ(G \ (MG ∩ A)), ψ(G \ (MG ∩B)), |MG|}, diam(G) = 3.

Proof. Let G = (A,B,E(G)) be a bipartite graph. Then G is disconnected if and
only if G is a complete bipartite graph. In this case we have diam(G) = ∞ and
G is a disjoint union of K|A| and K|B|. Therefore, gp(G) = |A| + |B| = n(G).
Further, diam(G) = 1 if and only if G is edge-less, hence again gp(G) = n(G).
If diam(G) = 2, then by Theorem 4.1 we have gp(G) = max{ω(G), η(G)}. Since
ω(G) = α(G) and η(G) = ψ(G), the assertion for the diameter 2 follows.

8



In the rest we may thus assume |A| ≥ 2, |B| ≥ 2, and diam(G) = 3. Note that if
u ∈MG∩A, then u has no neighbor in B and if u ∈MG∩B, then u has no neighbor
in A. Consequently, in G two vertices are at distance 3 if and only if one lies in
MG ∩ A and the other in MG ∩ B. Since diam(G) = 3 it follows that MG ∩ A 6= ∅
and MG ∩B 6= ∅.

Consider a general position set T of G and set TA = T ∩ A, TB = T ∩ B. If T
has at least one vertex in MG ∩A, say x, and at least one vertex in MG ∩B, say y,
then every vertex from (A ∪ B) \MG lies on a x, y-geodesic. Therefore, T ⊆ MG.
This means that |T | ≤ |MG|. Suppose next that T ∩ (MG ∩ A) = ∅. If there is an
edge between a vertex from TA and a vertex from TB, then T must induce a clique
and hence |T | ≤ ω(G) = α(G). Otherwise, in view of Theorem 3.1, the vertices
from TA and from TB are pairwise at distance 2. But then T induces a complete
bipartite graph in G \ (MG ∩A) and therefore |T | ≤ ψ(G \ (MG ∩A)). Analogously,
if T ∩ (MG ∩ B) = ∅ then we get that |T | ≤ α(G) or |T | ≤ ψ(G \ (MG ∩ B)). In
summary,

gp(G) ≤ max{α(G), ψ(G \ (MG ∩ A)), ψ(G \ (MG ∩B)), |MG|} .

On the other hand, we clearly have gp(G) ≥ ω(G) = α(G). Note next that each
vertex from MG is simplicial in G and consequently gp(G) ≥ |MG|. Finally, an
induced complete bipartite graph in G \ (MG ∩ A) as well as in G \ (MG ∩ A)
corresponds to a disjoint union of cliques in G which form an in-transitive, distance
constant partition (with constant 2). Hence we also have gp(G) ≥ ψ(G \ (MG ∩A))
and gp(G) ≥ ψ(G \ (MG ∩B)). �

If n ≥ 5, then diam(Pn) = 2 and for n ≥ 7 we have ψ(Pn) = 3 < dn/2e = α(Pn).
Let next Gn be a bipartite graph with the bipartition A = {x1, . . . , xn, a1, a2} and
B = {y1, . . . , yn, b1, b2}, where vertices (A ∪ B) \ {a1, a2, b1, b2} induce a complete
bipartite graph Kn,n, and the remaining edges of Gn are a1y1, a2y2, b1x1, and b2x2.
For n ≥ 3 we have ψ(Gn) = 2n > n + 2 = α(Gn). As diam(Gn) = 2, these two
examples demonstrate that the values in Theorem 5.2 are independent in the case
diam(G) = 2.

Let H(n,m, s, t), n,m, s, t ≥ 2, be a bipartite graph with the bipartition A =
A1∪A2∪A3 and B = B1∪B2∪B3, where |A1| = n, |B1| = m, |A2| = |B3| = s, and
|A3| = |B2| = t. The vertices (A1 ∪ A2) ∪ (B1 ∪ B2) induce Kn+s,m+t, the vertices
A2 ∪B3 induce Ks,s and the vertices A3 ∪B2 induce Kt,t. These are all the edges of
H(n,m, s, t). Assume that n ≤ m and set H = H(n,m, s, t). Then MH ∩ A = A2

and MH ∩B = B2 and we have:

• |MH | = s+ t,

• α(H) = m+ s+ t,
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• ψ(H \ A2) = max{m+ n+ t, 2t}, and

• ψ(H \B2) = max{m+ n+ s, 2s}.

It is now clear that the parameters n, s, and t can be selected such that exactly one
of α(H), ψ(H \ A2), and ψ(H \B2) is strictly larger than the other two (as well as
bigger than |MH |). Note finally that diam(H) = 3.

To see that |MG| can be strictly larger than the other three terms from The-
orem 5.2 when diam(G) = 3, consider the edge deleted complete bipartite graph
K = Kn,n − e. Then diam(K) = 3, and |MK | = 2n− 2.

In the rest of the section we determine the general position number for some
natural families of bipartite complements.

In [18, Theorem 2.5] and in [10, Corollary 3.7] it was independently observed
that the gp-number of a tree T is the number of its leaves. (Actually, the set of
leaves is the unique gp-set of T .) For the complements of trees we have:

Corollary 5.3 It T is a tree, then gp(T ) = max{α(T ),∆(T ) + 1}.

Proof. Let T = (A,B,E(T )).
If diam(T ) ≤ 2, then it is clear that T is a star. Hence diam(T ) = ∞. By

Theorem 5.2 we thus have gp(T ) = n(T ) = ∆(T ) + 1.
If diam(T ) = 3, then T it is straightforward to see that T is isomorphic to

a double star. Therefore, |MT ∩ A| = 1 and |MT ∩ B| = 1. Thus |MT | = 2,
α(T ) = |n(T )| − 2, and ψ(T \ (MT ∩ A)) = |A|; ψ(T \ (MT ∩ B)) = |B|. Since
|n(T )| ≥ 4 and |A| ≥ 2 and |B| ≥ 2, we have gp(T ) = |n(T )| − 2 = α(T ).

Let finally diam(T ) ≥ 4. Then from [16, Lemma 2.2] we deduce that diam(T ) =
2. Since T has no cycles, we have that ψ(T ) is the order of a maximum induced
star, that is, ψ(T ) = ∆(T ) + 1. Thus gp(T ) = max{α(T ),∆(T ) + 1}. �

Recall that the Cartesian product G�H of graphs G and H is the graph with
V (G�H) = V (G)×V (H), vertices (g, h) and (g′, h′) being adjacent if either g = g′

and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G), cf. [6]. In [11, Theorem 3.1] it was
proved that gp(P∞�P∞) = 4, where P∞ is the two-way infinite path. If follows
from this result that if n,m ≥ 3, then gp(Pn�Pm) = 4 as well. For the complements
of these grids we have:

Corollary 5.4 If n,m ≥ 2, then

gp(Pn �Pm) =

{
4, n = m = 2;⌈
n
2

⌉ ⌈
m
2

⌉
+
⌊
n
2

⌋ ⌊
m
2

⌋
, otherwise .
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Proof. P2�P2 = C4, hence the assertion for n = m = 2. P2�P3 is the graph
obtained by adding edges v1v3 and v4v6 to the 6-cycle v1v2 . . . v6. The assertion then
follows immediately.

Suppose in the rest that n,m ≥ 3 and set G = Pn�Pm. Applying [16, Lemma
2.2] once more we get that diam(G) = 2. Hence by Theorem 5.2 we see that
gp(G) = max{α(G), ψ(G)}. Since the only induced complete bipartite subgraphs in
Pn�Pm are isomorphic to K2,2 or K1,r, r ∈ [4], we get gp(G) = α(G). The assertion
of the theorem now follows from the fact that α(Pn�Pm) =

⌈
n
2

⌉ ⌈
m
2

⌉
+
⌊
n
2

⌋ ⌊
m
2

⌋
, a

result that can be deduced from [8, Theorem 4.2]. �

Using parallel arguments as in the proof of Corollary 5.4 we also get the general
position number of the complements of hypercubes. (The k-cube Qk has the vertex
set {0, 1}k, two vertices being adjacent if they differ in precisely one coordinate.)

Corollary 5.5 If k ≥ 3, then gp(Qk) = 2k−1.
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[8] S. Klavžar, Some new bounds and exact results on the independence number
of Cartesian product graphs, Ars Combin. 74 (2005) 173–186.

[9] C. Y. Ku, K. B. Wong, On no-three-in-line problem on m-dimensional torus,
Graphs Combin. 34 (2018) 355–364.
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[11] P. Manuel, S. Klavžar, The graph theory general position problem on some
interconnection networks Fund. Inform. 163 (2018) 339–350.
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