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Abstract

Given a graph G, the (graph theory) general position problem is to find
the maximum number of vertices such that no three vertices lie on a common
geodesic. This graph invariant is called the general position number (gp-
number for short) of G and denoted by gp(G). In this paper, the gp-number
is determined for a large class of subgraphs of the infinite grid graph and for
the infinite diagonal grid. To derive these results, we introduce monotone-
geodesic labeling and prove a Monotone Geodesic Lemma that is in turn
developed using the Erdös-Szekeres theorem on monotone sequences. The
gp-number of the 3-dim infinite grid is bounded. Using isometric path covers,
the gp-number is also determined for Beneš networks.
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1 Introduction

A set S of vertices of a graph G is called a general position set if no three vertices
of S lie on a common geodesic. A general position set S of maximum cardinality is
a gp-set of G and its cardinality is the general position number (in short gp-number)
of G denoted by gp(G). The general position problem was introduced in [14] and
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in particular motivated by the discrete geometry General Position Subset Selection
Problem [10,17] which is to determine a largest subset of points in general position.
The classical no-three-in-line problem however goes back all the way to Dudeney [6];
for more recent developments on it see [15, 19] and references therein.

In [14], several upper bounds on gp(G) were given. Connections between general
position sets and packings were also investigated in order to obtain lower bounds
on the gp-number. In addition, the general position problem was shown to be NP-
complete. In this paper, we continue the study of the graph theory general position
problem and focus on classes of interconnection networks. In order to determine
their gp-number, a couple of new techniques are developed along the way.

We proceed as follows. In the rest of this section definitions needed are listed.
In the subsequent section, some results from [14] are recalled. The concept of
monotone-geodesic labellings is also introduced and a Monotone Geodesic Lemma
is established. This lemma is derived from the Erdös-Szekeres theorem on mono-
tone sequences. A couple of other techniques related to isometric subgraphs are
also developed. Then, in Section 3, the gp-number is determined for a large class
of subgraphs of the grid graph (including the infinite grid itself) and for the infinite
diagonal grid. A lower and an upper bound on the gp-number of the 3-dim grid is
also given. In Section 4 the general position problem is solved for Beneš networks
using isometric path covers. In the concluding section some directions for further
study are suggested.

Unless stated otherwise, graphs considered in this paper are connected. The
distance dG(u, v) between vertices u and v of a graph G is the number of edges
on a shortest u, v-path. If the graph G will be clear from the context, we will
also shorty write d(u, v). Shortest paths are also known as geodesics or isometric
paths. A subgraph H = (V (H), E(H)) of a graph G = (V (G), E(G)) is isometric if
dH(x, y) = dG(x, y) holds for every pair of vertices x, y of H. The size of a largest
complete subgraph of a graph G is its clique number ω(G).

2 Monotone-geodesic labeling

To approach the general position problem on interconnection networks, we first recall
some known tools and then develop some new ones. First, the following simple fact
will also be useful to us.

Proposition 2.1 Let H be an isometric subgraph of a graph G. Then S ⊆ V (H)
is a general position set of H if and only if S is a general position set of G.

Proof. Let u, v, w ∈ V (H). Then dH(u, v) = dH(u,w) + dH(w, v) if and only if
dG(u, v) = dG(u,w) + dG(w, v). That is, u, v, w are on a common geodesic in H if
and only if they are on a common geodesic in G. �
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An isometric path cover of a graph G is a collection of geodesics that cover V (G),
cf. [9, 16]. If v is a vertex of a graph G, then let ip(v,G) be the minimum number
of isometric paths, all of them starting at v, that cover V (G). A vertex of a graph
G that lies in some gp-set of G is called a gp-vertex of G. With these concepts in
hand we can recall the following result.

Theorem 2.2 ( [14]) If R is a general position set of a graph G and v ∈ R, then

|R| ≤ ip(v,G) + 1 . (1)

In particular, if v is a gp-vertex, then gp(G) ≤ ip(v,G) + 1.

A sequence of real numbers is monotone if it is monotonically increasing or
monotonically decreasing. The celebrated Erdös-Szekeres result, cf. [4, Theorem
1.1], read as follows.

Theorem 2.3 ( [7]) For every n ≥ 2, every sequence (a1, . . . , aN) of real numbers
with N ≥ (n− 1)2 + 1 elements contains a monotone subsequence of length n.

We will also say that a sequence ((x1, y1), . . . ,(xk, yk)) of points in the Cartesian
plane is monotone if the sequences (x1, . . . , xk) and (y1, . . . , yk) are both monotone.
For example ((1, 4), (2, 4), (5, 3), (5, 2), (6, 1)) is a monotone sequence. Theorem 2.3
has the following consequence tailored for us.

Corollary 2.4 If n ∈ N and S is a set of (n−1)2 +1 points in the Cartesian plane,
then S contains n points that form a monotone sequence.

Proof. Let N = (n − 1)2 + 1 and let S = {(x1, y1), . . . , (xN , yN)} be an arbitrary
set of N points. We may assume without loss of generality that x1 ≤ · · · ≤ xN . By
Theorem 2.3, the sequence (y1, . . . , yN) contains a monotone subsequence of length
n. This subsequence together with the corresponding first coordinates xi forms a
required monotone sequence. �

If n = 3, then Corollary 2.4 asserts that any set of five points contains a monotone
sequence of length 3. For example, the set {(1, 4), (2, 3), (3, 5), (3, 2), (5, 3)} contains
a monotone subsequence ((1, 4), (2, 3), (5, 3)).

Definition 2.5 (Monotone-geodesic labeling) Let G = (V (G), E(G)) be a graph.
Then an injective mapping f : V (G)→ R2 is a monotone-geodesic labeling of G if
the following holds: If x, y and z are vertices of G such that the sequence of labels
(f(x), f(y), f(z)) is monotone, then x, y, and z lie on a common geodesic of G.

For an example see Fig. 1, where a graph is shown together with a monotone-
geodesic labeling.

We are now ready for the main insight of this preliminary section.
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Figure 1: A graph equipped with a monotone-geodesic labeling.

Lemma 2.6 (Monotone Geodesic Lemma) If a graph G admits a monotone-
geodesic labeling, then gp(G) ≤ 4.

Proof. Suppose on the contrary that S = {v1, . . . , v5} is a general position set of
G. Let f : V (G) → R2 be a monotone-geodesic labeling, where f(vi) = (xi, yi) for
i ∈ {1, 2, 3, 4, 5}. Corollary 2.4 applied for the case n = 3 yields that f(S) contains
three points (labels) that form a monotone sequence, let it be (f(vi1), f(vi2), f(vi3)).
Since f is a monotone-geodesic labeling, the vertices vi1 , vi2 , and vi3 lie on a common
geodesic of G which is a contradiction. �

From Lemma 2.6 it follows that not all graphs admit monotone-geodesic label-
ings. In particular, such a graph must necessarily have a small clique number.

Corollary 2.7 If a graph G admits a monotone-geodesic labeling, then ω(G) ≤ 4.

Proof. If G is a complete graph, then V (G) is a general position set of G. A
complete subgraph H of a graph G is an isometric subgraph of G. Thus, if K is a
complete subgraph of G, then V (K) is (in view of Proposition 2.1) a general position
set of G and so gp(G) ≥ ω(G). Hence ω(G) ≤ gp(G) ≤ 4 by Lemma 2.6. �

Characterizing graphs that admit monotone-geodesic labellings seems to be an
interesting open problem. It would also be interesting to characterize the graphs G
which satisfy ω(G) = gp(G).

3 General position sets of grid networks

By now we have prepared the main tools needed to determine (or bound) the gp-
number of several interconnection networks that are based on the Cartesian and the
strong product of graphs [11]. The Cartesian product G�H of graphs G and H is
the graph with the vertex set V (G)×V (H), vertices (g, h) and (g′, h′) being adjacent
if either g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). The Cartesian product
is a classical graph operation that is still intensively studied, cf. [2, 3, 20, 22]. The
strong product G � H is obtained from G�H by adding, for every edge gg′ ∈ E(G)

4



and every edge hh′ ∈ E(H), the edges (g, h)(g′, h′) and (g, h′)(g′, h). (We refer
to [1, 23] for a couple of recent developments on the strong product.) The infinite
2-dim grid is the Cartesian product P∞�P∞ while the infinite 2-dim diagonal grid
is the strong product P∞ � P∞. Using the standard notation from [11] we will
denote them by P � ,2

∞ and by P � ,2
∞ , respectively. Similarly, the infinite 3-dim grid is

the Cartesian product P � ,3
∞ .

3.1 2-dim grids

Let V (P∞) = {. . . , v−2, v−1, v0, v1, v2, . . .} where vi is adjacent to vj if and only if
|i− j| = 1. Then V (P � ,2

∞ ) = {(vi, vj) : i, j ∈ Z}. Set now f : V (P � ,2
∞ ) → R2 with

f(vi, vj) = (i, j); see Fig. 2(a). In this way the vertices of P � ,2
∞ are labeled with the

integer points in the Cartesian coordinate system. As this is a labeling of P � ,2
∞ that

(most probably) first comes to our minds, we call f the natural labeling of P � ,2
∞ .

Figure 2: (a) The graph P � ,2
∞ together with the natural labeling f of its vertices,

where f(vi, vj) = (i, j) is briefly written as ij. (b) The red vertices form a general
position set of P � ,2

∞ .

Let G be a graph and α : V (G) → X, where X is an arbitrary set. If H is
a subgraph of G, then we will denote with α|H the restriction of α to H, that is,
α|H : V (H) → X such that α|H(v) = α(v) for all v ∈ V (H). A graph G is a grid
graph if it is an induced connected subgraph of P � ,2

∞ . Then we have:

Theorem 3.1 Let G be a grid graph and f the natural labeling of P � ,2
∞ . If G con-

tains P3�P3 as a subgraph and f |G is a monotone-geodesic labeling, then gp(G) = 4.
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Proof. Since f |G is a monotone-geodesic labeling, gp(G) ≤ 4 by Lemma 2.6. On
the other hand a general position set of order 4 as shown in Fig. 2(b) exists in G
because it contains P3�P3 as a subgraph and since such a P3�P3 is necessarily an
isometric subgraph of G. �

Since the natural labeling f of P � ,2
∞ is monotone-geodesic, Theorem 3.1 yields:

Corollary 3.2 gp(P � ,2
∞ ) = 4.

3.2 2-dim diagonal grids

We next consider the infinite 2-dim diagonal grid P � ,2
∞ , see Fig. 3(a). One can

label the vertices of P � ,2
∞ with the natural labeling as used for P � ,2

∞ , see Fig. 3(b).
However, now this natural labeling is no longer monotone-geodesic. For instance,
the sequence ((0, 0), (2, 1), (3, 4), (5, 5)) (see the red vertices in Fig. 3(b)) is monotone
(and so is every subsequence of it of length 3), but no three of the corresponding
vertices lie on a common geodesic.

Figure 3: (a) The infinite 2-dim diagonal grid P � ,2
∞ . (b) The natural labeling of

P � ,2
∞ is not monotone-geodesic.

Despite the fact that the approach with the natural labeling does not work for
P � ,2
∞ , we still have the following result.

Theorem 3.3 gp(P � ,2
∞ ) = 4.
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Proof. In order to show that gp(P � ,2
∞ ) ≤ 4, it is enough to identify a monotone-

geodesic labeling for P � ,2
∞ . Consider the labeling of P � ,2

∞ as shown in Fig. 4(a) and
call it g. Note that g is derived from the natural labeling by rotating the Cartesian
coordinate system by 45◦.

Figure 4: (a) A different labeling of P � ,2
∞ .(b) A general position set of P � ,2

∞ .

We claim that the labeling g is monotone-geodesic. So let u, v, w be vertices of
P � ,2
∞ such that the sequence (g(u), g(v), g(w)) is monotone. We may assume without

loss of generality that g(u) = (0, 0). Let g(v) = (v1, v2) and g(w) = (w1, w2).
Consider the case when 0 ≤ v1 ≤ w1 and 0 ≤ v2 ≤ w2. Then the vertex v lies in

the quadrant above the x and y coordinate axis (in the first quadrant), cf. Fig. 4(a)
again. Apply translation of axes from u to v. Now w lies in the first quadrant of the
new translated coordinate system. To conclude that g is monotone-geodesic we need
to verify that v lies on a u,w-geodesic. To see this, consider the usual (cartesian)
horizontal levels of P � ,2

∞ , where (0, 0) lies on level 0. Suppose that (v1, v2) lies on
level i. Then, because v lies in the first quadrant (w.r.t. the above (x, y)-system), we
have d(u, v) = i. Moreover, if (w1, w2) lies in the (cartesian) horizontal level i + j,
then, using the fact that w lies in the first quadrant with respect to the system where
v is its center (and w.r.t. the above (x, y)-system), d(u,w) = i+ j and d(v, w) = j.
But then if follows that v indeed lies on a u,w-geodesic.

The other cases can be argued similarly. Therefore, gp(P � ,2
∞ ) ≤ 4 by Lemma 2.6.

Since the red vertices from Fig. 4(b) form a general position set, gp(P � ,2
∞ ) ≥ 4.

In conclusion, gp(P � ,2
∞ ) = 4. �
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3.3 3-dim grids

We next consider the infinite 3-dim grid, that is, the graph P � ,3
∞ . In view of Corol-

lary 3.2 one might expect that either gp(P � ,3
∞ ) = 2 · 3 = 6 or gp(P � ,3

∞ ) = 23 = 8.1

Hence the main result of the subsection comes as a surprise.
We start with the following simple yet useful result to be applied in identifying

general position sets in P � ,3
∞ .

Lemma 3.4 Let G = (V (G), E(G)) be a graph and S ⊆ V (G). If there exists an
integer k such that k ≤ d(x, y) < 2k holds for every different x, y ∈ S, then S is a
general position set.

Proof. Suppose S is not general position set. Then there exist vertices x, y, and z
of S such that d(x, y) = d(x, z) + d(z, y). Since d(x, z) ≥ k and d(z, y) ≥ k we have
d(x, y) ≥ 2k, a contradiction to the lemma’s hypothesis. �

Lemma 3.4 for k = 1 says that the vertex set of any complete subgraph of a
graph forms a general position set. Note also that if diameter of G is at most 3,
then Lemma 3.4 (for k = 2) asserts that every independent set of G is a general
position set.

Now we are ready for the announced surprising result.

Proposition 3.5 10 ≤ gp(P � ,3
∞ ) ≤ 16.

Proof. For the lower bound it suffices to construct a general position set of order 10.
Consider P � ,3

5 equipped with the natural labeling of its vertices set S = {(2, 2, 0),
(3, 1, 1), (1, 3, 1), (2, 0, 2), (0, 2, 2), (4, 2, 2), (2, 4, 2), (1, 1, 3), (3, 3, 3), (2, 2, 4)}. Note
that here (and in the rest of the proof) we have identified the vertices with the points
in 3-dim Euclidean space. Now, it is easy to verify that 3 ≤ d(x, y) ≤ 5 for every
pair of vertices x, y ∈ S. Thus, by Lemma 3.4, S is a general position set. Since
P � ,3
5 is an isometric subgraph of P � ,3

∞ , Proposition 2.1 implies that S is a general
position set of P � ,3

∞ .
For the upper bound consider an arbitrary set S = {(xi, yi, zi) : i ∈ {1, 2, . . . , 17}

of vertices of P � ,3
∞ or order 17. We may without loss of generality assume that

x1 ≤ x2 ≤ · · · ≤ x17. By Theorem 2.3, the sequence (y1, y2, . . . , y17) contains a
monotone subsequence of order 5, say (yi1 , . . . , yi5). Using Theorem 2.3 again, the
sequence (zi1 , . . . , zi5) contains a monotone subsequence, say (zij1 , zij2 , zij3 ). But
now, the vertices (xij1 , yij1 , zij1 ), (xij2 , yij2 , zij2 ), and (xij3 , yij3 , zij3 ) lie on a geodesic.
Indeed, set u = (xij1 , yij1 , zij1 ), v = (xij2 , yij2 , zij2 ), and w = (xij3 , yij3 , zij3 ). From
the additivity of the distance function on Cartesian product graphs (see [11]) we

1These were actually the guesses of the audience in the University Newcastle, Australia, when
one of the authors was presenting the results of this paper.
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infer that d(u,w) = |xij1 −xij3 |+ |yij1 −yij3 |+ |zij1 −zij1 |. Moreover, a u,w-geodesic
can be constructed by first changing the coordinates of u by adding/subtracting 1
in each of the coordinates such that the vertex v is reached, and then continuing
the same procedure to reach w. Hence v lies on a u,w-geodesic and consequently S
is not a general position set. �

Inductively using the argument from the second part of the proof of Proposi-
tion 3.5 we can also infer the following result:

Proposition 3.6 If k is an arbitrary positive integer, then gp(P � ,k
∞ ) <∞ .

In addition to finding the exact value of gp(P � ,3
∞ ), the gp-problem for P � ,3

∞ is
also worth-studying. Needless to mention that the gp-problem of gp(P � ,k

∞ ) and
gp(P � ,k

∞ ), where k ≥ 3, will remain a challenge to researchers.

4 Beneš networks

In this section we determine the gp-number of Beneš networks. These networks
are significant among interconnection networks because they are rearrangeable non-
blocking networks. (A network is rearrangeable non-blocking if any permutation
can be realized by edge-disjoint paths when the entire permutation is known.)

The Beneš networks consist of back-to-back butterflies [13], where in turn the
r-dim butterfly has n = 2r(r + 1) nodes arranged in r + 1 levels of 2r nodes each.
Each node has a distinct label 〈w, i〉, where i is the level of the node (1 ≤ i ≤ r+ 1)
and w is a r-bit binary number that denotes the column of the node. Two nodes
〈w, i〉 and 〈w′, i′〉 are linked by an edge if i′ = i+ 1 and either w and w′ are identical
or w and w′ differ only in the bit in position i′. We refer to [21, Section 11.4] for
basic properties of butterfly networks and to [5,12] for a recent application and the
average distance of these networks, respectively. Now, for r ≥ 1 the r-dim Beneš
network BN(r) is constructed by merging two r-dim butterfly networks as shown
in Fig. 5 for the case r = 3.

Theorem 4.1 If r ≥ 1, then gp(BN(r)) = 2r+1.

Proof. The case r = 1 can be easily verified directly. In the rest let r ≥ 2, let R be
an arbitrary general position set of BN(r), and let S be the set of degree 2 vertices
of BN(r). See Fig. 5, where the vertices of S are drawn in red color.

We will inductively show that gp(BN(r)) ≤ 2r+1 and for this sake, we distinguish
two cases.

Case 1: R ∩ S 6= ∅.
Let w ∈ R ∩ S. Then we inductively construct an isometric path cover

Ψw = {Pwv : v ∈ S, v 6= w,Pwv is a fixed w, v-geodesic}
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Figure 5: The 3-dim Beneš network BN(3). Its 2-degree vertices are marked in red
color and form a gp-set.

as follows. Let x and y be the two vertices of BN(r) adjacent to w. Removing
S from BN(r) leaves two (r − 1)-dim Beneš networks BN(r − 1). By induction
hypothesis, we can construct isometric path covers Ψx and Ψy of BN(r − 1), see
Fig. 6(a). Then extend Ψx and Ψy to construct Ψw of BN(r), see Fig. 6(b).

Since Ψw is an isometric path cover of BN(r) and w ∈ R, Theorem 2.2 implies
that

|R| ≤ ip(w,BN(r)) + 1 ≤ |Ψw|+ 1 = |S| = 2r+1 .

Case 2: R ∩ S = ∅.
In this case, no vertex of R has degree 2 in BN(r). Removing all the vertices of S
from BN(r), the graph BN(r) is disconnected into two (r− 1)-dim Beneš networks
BN(r − 1). By induction hypothesis, gp(BN(r − 1)) ≤ 2r. Since the two copies
of BN(r − 1) are isometric subgraphs of BN(r), Proposition 2.1 implies that the
restriction of R to each of the copies of BN(r − 1) contains at most 2r vertices.
Therefore, |R| ≤ 2r+1.

We have thus proved that gp(BN(r)) ≤ 2r+1. On the other hand, the set S is a
general position set of BN(r) and we are done because |S| = 2r+1. �
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Figure 6: (a) Construction of Ψx and Ψy at inductive step k = r−1. (b) Construction
of Ψw at inductive step k = r.

5 Further research

One of the key concepts of this paper is the monotone-geodesic labeling. A char-
acterization of graphs that admit monotone-geodesic labelings will be very useful
not only for the general position problem but also for other related topics. We have
established a tool to test whether a given vertex set is a general position set. Using
this result, it is demonstrated that the gp-number of the infinite 3-dim grid is be-
tween 10 and 16. However, the exact gp-number of 3-dim grids is still unknown. As
it is pointed out in Subsection 3.3, the gp-problem of gp(P � ,k

∞ ) and gp(P � ,k
∞ ) will

remain a challenge to researchers.
The general position problem for Beneš networks is solved using isometric path

covers. A Beneš network is a back-to-back butterfly network. However, the strategy
applicable to Beneš networks does not work for butterfly networks. It remains as a
challenge to prove that the gp-number of r-dim butterfly is 2r.

The general position problem for 2-dim grids and 2-dim diagonal grids is solved
using monotone-geodesic labellings and Monotone Geodesic Lemma. The structure
of triangular grids (also called boron sheets, see [8, 18]) is between 2-dim grids and
2-dim diagonal grids. The natural intuition is that the gp-number of triangular
grids is 4, because the gp-number of 2-dim grids and 2-dim diagonal grids is 4.
However, the gp-number of the triangular grids is at least 6 and we conjecture that
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it is actually equal to 6.
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