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Using a recently developed technique for the calculation of the Wiener number (W) of
benzenoid systems we determine explicit expressions for W for several homologous series
of pericondensed benzenoid hydrocarbons. An elementary proof for the correctness of the
used method is also included.
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INTRODUCTION

Finding explicit combinatorial expressions for the Wiener numbers (W) of particular
classes of molecular graphs was initiated in 1977 by Bonchev and Trinajsti¢! and was
followed by numerous subsequent researches. Especially numerous were the results obtained
for acyclic molecular graphs.>® Expressions for W of polycyclic systems were somewhat
more difficult to deduce and, until relatively recently, significantly fewer results of this kind
have been communicated. With a few exceptions,”'? the only polycyclic systems studied
were catacondensed benzenoid hydrocarbons.'' 4
Few years ago the situation changed.

First, Shiu and Lam, mathematicians from Hong Kong, developed a combinatorial algo-

rithm by which they succeeded to find the formula for W of the benzene/coronene/circum-

coronene series.'® The Shiu-Lam methods divides the calculation of W into many individual



steps, each based on the finding of an expression for distances between particular families
of vertices of the molecular graph considered. Therefore, the method requires extensive
and rather tedious computations and deals with difficult—to-handle algebraic expressions.
Nevertheless, the Shiu—-Lam procedure was recently successfully accomplished for several
classes of pericondensed benzenoid systems.'571?

Second, another technique for computing W, applicable (among others) to all benzenoid
systems, was recently communicated by two of the present authors and Mohar.2?>?! This

method is based on a simple formula
W = an(C) HQ(C) (1)
C

in which C' denotes an elementary edge—cut of the respective benzenoid system and the
summation goes over all edge—cuts. The edge—cut C' dissects the benzenoid system into two
parts, having nq(C) and ny(C) vertices. (Thus, ni(C) 4+ ny(C) is independent of the cut C
and is equal to the number N of vertices of the respective benzenoid system.)

Precise definitions of elementary edge—cuts and more details with regard to formula (1)
can be found in our earlier publications.2’2? A self-explanatory example is given in the
subsequent section. An elementary proof of formula (1) is given in the Appendix.

The main purpose of this paper is to demonstrate that the method of edge—cuts is
very simple to apply and that general expressions for W are easily obtained. This already
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has been demonstrated in the case of benzene/coronene/circumcoronene series,
this paper we offer quite a few additional formulas of the same kind. We believe that for
additional benzenoid systems of interest to the readers it will not be difficult to obtain the
corresponding formulas for W along the same lines. In the appendix we also give a simple,

elementary proof for the validity of the used procedure.

COMPUTATIONAL DETAILS

In all benzenoid systems G considered we will partition the elementary edge—cuts of
G into the sets of parallel elementary cuts Cp,Cy,Cs. Figure 1 shows an example of a

benzenoid system and the corresponding partition of cuts.

Figure 1 comes about here

Throughout the paper, N will denote the number of vertices of the benzenoid system

considered. In addition, expressions of the form



f:( 2n +2) —1) <N—(i(2n+2)—1)>,
i1=1

will be written as

g(i(2n+2)—l> (N—f),

i.e., F will stand for the value of the “first bracket”. In the above example we thus have
F =1i(2n +2) — 1. For a benzenoid system G we will also use the following notions:

W1 = Z nl(C)ng(C),
CeC

WQ = Z nl(C’) ’I’LQ(C),
CeCy

and

W3 = Z nl(C’) HQ(C) .
CeCs

Then, in view of Eq. (1), we have W(G) = Wy + W + Ws.

PARALLELOGRAMS AND TRAPEZIUMS

In this section we compute W of two relatively simple families of benzenoid systems:

parallelograms and trapeziums.

Parallelograms

For n > 1 and 1 < k < n let P(n,k) be the parallelogram benzenoid system. The
definition of P(n, k) should be clear from the example P(7,4) which is shown on Figure 2.

‘Figure 2 comes about here‘

For P(n,k) we have:
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It remains to consider the C3 cuts. We first consider the first £ — 1 cuts (from left to right)
and the last £ — 1 cuts. We obtain:

s (o))

Finally, for the middle n 4+ 3 — 2k cuts from C3 we have

n—k+1 k—1

wy= > [(Z(3+2(j — 1) +i(2k+1)+i— 1) (N—]—")] :
i=1 j=1

Clearly, W3 = Wj + WY. Simplifying the expression Wy + Wy + Wi + Wi we get the

following expression for W (P(n, k)):

4n3 (k2 + 2k +1)  2kn%(k® + 9k + 8)
3 * 3
n(k* +8k3 + 16k% + 2k — 1) Ek(k* — 20k? + 4)

3 15

1

For instance, for £ = 1 the above expression reduces to
1
W(P(n,1)) = g(16n3 + 3612 + 26n + 3),
which is the well-known formula for W of polyacenes, usually denoted by Ly, i.e., L, =
P(h,1).

Trapeziums

Forn > 1and 1 <k <nlet T'(n, k) be the trapezium benzenoid system. The definition
of T(n, k) should be clear from the example T'(9,5) which is shown on Figure 3.

‘Figure 3 comes about here‘

For T'(n, k) we have:
N=(k+1)2n+1)—-k(k-1),

)

Consider the first & cuts (from left to right) from Cy. We obtain:

zk; -7,

z+2




For the remaining n — k cuts from Cy we have

n—k
Wy =" |k(k+2)+i(2k + 2)
=1

v-z.

Clearly, Wy = W4 + W, and by symmetry we have, W5 = W,. Simplifying the expression
Wi + 2(W5 + Wy/) we get the following expression for W(T'(n, k)):

—_— 4n3(k2—;2k+ 1) 2n%(k + 1)(23/<;2 — 8k — 3) N

o2n(k* — 4k3 + 6k + 9k + 1)  k(8E* + 35k? — 45k — 28)

3 30

Again, for k = 1, the above expression reduces to

W(P(n,1)) = %(16713 + 361> 4 261 + 3).
PARALLELOGRAM-LIKE BENZENOID SYSTEMS

First example

For n > 1 and 1 < k < n let Pi(n,k) be the parallelogram-like benzenoid system of
type 1. The definition of P;(n, k) should be clear from the example P;(7,3) which is shown

on Figure 4.

‘Figure 4 comes about here

For Pi(n,k) we have:
N =2n+4k(n+ 1),

lejzé [(73(%4—2)—1) (N—]—")l.

For the Cy cuts, we first consider the first k£ cuts (from left to right) and the last & cuts.
We obtain:

o[

For the next cut just after the first £ cuts from the left we have



k

Wy = lZ(ALj — 1)+ (4k + 1)
j=1

(v-7).

For the remaining middle n — (k + 1) cuts from C we have

n—(k+1) 1 k
wy' =% l2(4j—1)+(4k+1)+i(4k+2) N—T]-
i=1  Lj=1

Clearly, Wy = W4 + W3/ + W3, Finally, for the C5 cuts, again we consider the first £ cuts
(from left to right) and the last & cuts. We obtain:

W:;:Qizk;ljzijl <4j+1)> <N—f>].

For the middle n — (k + 1) cuts from C5 we have

n—(k+1) 1 k
wyi= > l2(4j+1)+7j(4k+2) N—}"].
i=1 j=1

Clearly, W3 = W} + WY Simplifying the expression Wi + Wi + W4 + W' + Wi + Wi we
get for W(Py(n,k)):

4n3(2k +1)%  8kn?(k +4)(2k + 1)
3 * 3
n(8k* + 48Kk3 4 T8k? + 14k — 1)  k(8k* — 203 — 110k% — 25k + 27)

3 15

w

Second example

For n > 1 and 1 < k < n let Py(n,k) be the parallelogram-like benzenoid system of
type 2. The definition of P,(n, k) should be clear from the example P»(7,4) which is shown

on Figure 5.

‘Figure 5 comes about here

For Py(n,k) we have:

N =2k(2n+1),
2k—1

Wi= > li2n+1) N—]—"] :
1=1

For the Cy cuts, we first consider the first £ cuts (from left to right) and the last k cuts.
We obtain:



WQ_QXIC:LX; 45 — 1) <N—}'>].

=1

For the middle n — (k + 1) cuts from C we have

n—(k+1) 1 k
wy= > D 4ji-1)+ i(4k)] [N - ]—"] .
i=1 j=1

Clearly, Wy = W, + W)/, and by symmetry W3 = W5 Hence, simplifying the expression
Wi + 2(W5 + WJ) we get for W(Py(n, k)):

16k%n3  4kn?(4k> + 6k — 1)
+
3 3
2kn(4k® +8k* + 3k —2)  k(8k* — 20k® — 30k> + 20k +7)
3 15 '

W =

For instance, for £ = 1 the above expression, as previously, reduces to

1
W (Py(n, 1)) = §(16n3 + 36n2 + 26n + 3).

Third example

Forn>1and 1 <k <n+1 let P3(n,k) be the parallelogram-like benzenoid system of
type 3. The definition of Ps(n, k) should be clear from the example Ps(4,3) which is shown

on Figure 6.

‘Figure 6 comes about here

For P3(n,k) we have:

N =2k(2n+3)—4,

2k—1
i(2n +3) — 2] (N—f)] .

W=
For the Cy cuts, we first consider the first ¥ — 1 cuts (from left to right) and the last k£ — 1

=1

cuts. We obtain:

o[ o) ()]

For the next cut just after the first £k — 1 cuts from the left we have



k—
Wi = li(4j+1) + (4k — 1)] (N—f) :

j=1
For the remaining middle n — k cuts from Cy we have

WZIH — Z

=1

i:4]+1 4k—1)+z(4k)] [N—}'].

Clearly, Wo = W+ W45 +W4" and by symmetry W3 = W5 Hence, simplifying the expression
Wi + 2(Wy + Wy + WJ") we get for W(Ps(n, k)):

16k%n3  4kn?(4k? + 18k — 13)

W= —5—+ 3
2n(4k* + 24K3 4 27K* — 54k +12)
3
(8k° — 60k* — 110Kk + 180k2 + 27k — 60)
15 '

For instance, for £ = 1 the above expression, as previously, reduces to

1
W (Ps(n,1)) = g(16n3 + 36n% 4 260 + 3).

BITRAPEZIUMS

In this section we consider W of bitrapeziums which include the special cases of the
trapeziums and the parallelograms. To consider these special cases and most importantly,

to include all kinds of bitrapeziums, we need to consider two cases.

Case 1. Forn > 1,0<k; <n—1,0<ky <n—1and ky + ko <= n let BT (n,ky,k2)
be the bitrapezium benzenoid system. The definition of BT (n, k1, k2) should be clear from
the example BT (6,2,3) which is shown on Figure 7.

‘Figure 7 comes about here‘

For BT (n, ky, k) we have:
N =2n(k) + ko +2) — k¥ — k3 +2.

For the first k1 4+ 1 cuts from C (from the top) we obtain



ki+1

wi=>

i=1

i(i+2n—2k1)<N—}'>] .

For the last k2 cuts from C (from the bottom) we obtain
ko

Wi =" li(i +2n — 2k2)<N—}'>] .
=1

Clearly, Wy = W{ + W{'. Now, for the first k1 + 1 cuts from C5 (from the left) we obtain

ki1+1

Wy= Y

=1

i(i+2k2+2)<N—f>] .

For the last ks cuts from Co (from the right) we obtain
k2

Wy =Y i(i+2k1+2)<N—f>] :
=1

For the middle n — (k1 + ko 4+ 1) cuts from C5 we obtain

nf(k1+k2+1)

WIII — Z

i=1
Clearly, Wy = W) + W) + W) and by symmetry, W3 = W,. Hence, simplifying the
expression Wy + 2Wy we get for W (BT (n, k1, k2)):

4n3(ky + ko + 2)? B
2n2(2k{>3— ky(12ky + 17) + 2k3 — 17ky — 18) N
2n (ki 4 ki (11ky + 13?+ k5 + 13ky + 13)
8k + 20k (ko + 2) i 5k3 (16K + 23) + 5k?(23k2 + 28)
k1 (20k4 + 80k3 + 115k2 +3800k2 + 27)
8k3 + 40k5 + 115259 + 140k3 + 27ky — 30
30 '

For instance, for k1 = ko = 0 the above expression, as previously, reduces to formula for W

(k1 4 1) (k1 + 2k2 + 3) +4(2k1 + 2k2 4 4) (N—Fﬂ :

W =

of polyacenes. i.e.
1
W (BT (n,0,0)) = g(16n3 + 360 4 26n + 3).

Moreover, for k1 = 0,ko = k — 1 (respectively, ks = 0,k; = k — 1) we obtain the formula
for W of trapeziums benzenoid systems. i.e. W (BT (n,0,k — 1)) is:

W= 4n3(k2—|?—)2k+ 1) 2n%(k + 1)(23k2 — 8k — 3) N

on(k* — 4k3 4+ 6k% + 9k +1)  k(8Kk* + 35k? — 45k — 28)

3 30




Case 2. We may without loss of generality assume that k1 < ko. Forn > 1,0 < k; <n-—1,
0 <ky<n-—1andky + ky > n let BT(n,ki,ks) be the bitrapezium benzenoid system.
In this case, the definition of BT(n,ky,k2) should be clear from the example BT(7,4,5)

which is shown on Figure 8.

‘Figure 8 comes about here

For BT (n, ki, ko) we have:
N =2n(ky + ke +2) — ki — k3 +2.

For the first k1 + 1 cuts from C; (from the top) we obtain

ki+1

wi=>"

i=1

i(i+2n—2k1)<N—}'>] .

For the last ks cuts from Cy (from the bottom) we obtain

ko

Wy =>"

=1

i(i+2n—2k2)<N—.7-">] .

Clearly, W1 = W{ + W{'. Now, for the first n — ky cuts from Cs (from the left) we obtain

n—ki

Wy= Y

=1

i(i+2k1+2)<N—f>] .

For the last n — ko cuts from Cy (from the right) we obtain

n—=ko

Wy =>"

=1

z’(7j+2k2+2)<N—}">] .

For the middle (k; + k2 —n) cuts from Cy we obtain

(kl-l—kg—n)
wy' = > l(n —ki)(n+ ki +2) +i(2n +2)
i=1

w-z]|

Clearly, Wy = W, + W)/ + WJ" and by symmetry, W3 = Ws. Hence, simplifying the
expression Wy + 2Wy we get for W (BT (n, k1, k2)):

—2n°  2nt(ky + ke + 1) N 4n3(2ky + 2ky + 3)
15 3 3
2n2(6k7 (ko + 1) + k1 (6k3 + 24k + 23) + 6k3 + 23Ky + 20)
3
2n(20k3 (k2 + 1) + 30k% (k3 + 2k + 1))
15

W =

10



2n(5k1 (4k3 + 12k3 + ko — 9) + 20k3 + 30k3 — 45ky — 61)
15
(4k7 + 20k} + 53 (15 — 8k3) — 5k? (8k3 + 24k3 4 ko — 20))
30
(k1 (11 — 5k3) + 4k3 + 20k3 + 75k3 + 100k3 + 11ko — 30)
30 '

For instance, for k; = ko = n — 1 the above expression reduces to the formula for
W(BT(n,n—1,n—1)):

34n* + 17003 + 200n2 + 10n — 9)

n(
W= 15 ’

which is the formula for W of parallelogram benzenoid system P(n,n). Notice that the
above formula can also be obtained from the formula for W of parallelogram benzenoid

system P(n, k) by substituting ¥ = n. i.e. W(BT(n,n —1,n—1)) = W(P(n,n)).

GENERAL CASE

In this section we consider W of general benzenoid systems which include many special
cases, for instance the trapeziums, the bitrapeziums and the parallelograms.

Forn > 1,0 < ki < k3 <n, 0 < ks < ky <mnand*k +k = k3+ kg let
GB(n,ky, ko, ks, ks) be the general benzenoid system. Its definition should be clear from
the example GB(7,3,4,5,2) which is shown on Figure 9.

‘Figure 9 comes about here

For GB(n, ki, ks, ks, ky) we have:
N =2n(k3 + kg +2) — k% + k1 (2k3 + 2kg +2) 4+ 2k3 — kF +2.

For the first k; + 1 cuts from C (from the bottom) we obtain

ii + 2n) (N—f)] .

For the last k4 + 1 cuts from C (from the top) we obtain

<7j2 + 2i(n + Kk — k4)> (N - ]—")] .

For the middle k3 — (k1 + 1) cuts from C; we obtain

ki1+1

wi=>

=1

ka+1

W'=Y

i=1

11



(k1 + 1) (k1 4 2n + 1) +i(2k; + 2n + 2) (N—]—")] .

Clearly, Wy = W{ + W{' + W/". For the first ko + 1 cuts from Cs (from the left) we have

ko+1

Wy= Y

=1

i(i+2k1+2)<N—f>] .

For the last k3 cuts from Cy (from the right) we obtain

k3

Wy =Y

=1

i(i+2k4+2)<N—f>] .

For the middle n — (k2 + 1) cuts from Cy we obtain

n—(kz—l—l)

WZIH — Z

=1

Clearly, Wy = W3 + W& + WJ". For the first k1 + 1 cuts from C5 (from the left) we have

(ky + 1) (2k1 + ky + 3) +i(2k1 + 2ko + 4) <N—}'>] .

ki+1

Wi= >

i=1

i(i+2k2+2)<N—f>] .

For the last k4 + 1 cuts from C5 (from the right) we obtain

ka+1

Wy =Y

i=1

i(z’+2k3+2)<N—}">] .

For the middle n — (k4 + 2) cuts from C5 we obtain

n— (k4 —|—2)

WIII — Z

1=1

(k1 + 1) (k1 + 2k + 3) +i(2k1 + 2o + 4) <N - f)

Clearly, W3 = W4 + W4 + W3”. Simplifying the expression W + Wy + W3 we get for
W(GB(’H, kl, kQ, kg, k‘4)):

—4n3(/<:1 + ko + 2)(2k1 + 2ko — 3kg — 3ky4 — 2)

W = 3 -
2n” (6K — 3k{(4ky —3k3 — k4 +2))
2n2(3k1 (k3 — 2ks (?;kg, + 4k +1) + 2k3 (ks — 4) + 3k] — 10ks —8))
2n?(=3k3 — k3 — 3k3(ka +2) — li,(3k§ +17) — ki +12k% — 5ky)
2n2(3(k3 (ks — ky — 2) + k2(2kgl§4 + 3k —2ky —4) —6))
n(Tk$ + 2k3(9ks — 5k3 — 14/?:4 + 1) + 3k3(3k3 — 2ko(3k3 + 10k, + 4)) N
3

12



n(3k?(k3 + k3(8ky — 5) + 12k3 — 11k — 13) + 2k1 (3k3k3 — 3ky — 2))
3

n(2k1 (3k3 (k3 — 3k4 — 2))
n(zkl(k2(3k§(4k4 + 1) + 27k2 + 3ky4 — 20))
n(2ky (—2k3 — 3k§(2ki +3) — k3(9%F — 3ky + 11) — 8k3)
n(2k1 (27k2 + 25k, — 11) + gkg — 2k3 (k3 + kg — 1)
n(k3(3ks + 9k3 + 9k — 23) — ko(k3(6k% — 6ky — 11) + 12k3)
n(—ka(—24k3 — 59k, — 14) —32k§ — k3 (8ky + 17) — k3(9k% + 51ky + 55))
n(—k3(4k3 + 5Tk? + 111ky + 76) — gsk:z — 57k? — 2(20k4 + 13))
(22K + 20k$ (3ko — 2k3 — Bky) i 10k3 (4k2 — ko(6k3 + 24k4 + 7))
(10K3 (3k3 + k3(12ky — 1) + 2(1(?1?2 —3)) + 5k?(2k3 — 3k3(8ky + 3)))
(5k? (k2 (24K 3ky + T2k7 + 30ky —3107) — 2k3 + 3K2(1 — 2ky4))
(5k? (—k3(24k3 — 24k, — 19) 3—02(16ki’ — 24Kk2 — 53k4 — 18))
2k1 (5ks — 10k3 (k3 + kg — 1) 3—05k§(3k3 — 12k% — 9Ky — 4))
2k (—5ka (k3 (6k2 — 6ky — 5)33 20k} — 9k% — 49k — 23) — 10k3)4))
2k (—5k3 (8ky + 15) — 5E3(9k7 +3 ZSI@; 4 40) — 5k3(4k3 4 63k7)
2k1 (—5k3(105k, + 53) + 15k] 30220@ — 475k2 — 290k, — 56)
(—4k3 + 6k3 + k3 (6ky +5) +320k:§>(5k2 + 8ky — 2))
(5k2 (14K} + 51k2 + 22k43£) 26) + k3 (60K} + 400k3 + 625k7 + 180ky — 121))
2(6k3 + 105k7 + 230k3 + 150k2 + 4/50— 15) + 5k3 — 10k3 (2ks — k2 — 3))
(—5k3(6ks + 8k3 + 9k + 4ky — 8) E0/!@(10/&3(6/!@% + 6ks + 1))
ko(—30k} + 130k3 + 355k2 +:;(())0k4 —19)
30 '

13



SOME SPECIAL CASES

From the formula for W of general benzenoid systems obtained above, it is possible to
obtain the formulas for W of the most of the benzenoid systems considered earlier. We

consider the following special cases:

Polyacenes

If we set k1 = ko = k3 = k4 = 0 in the above expression, it reduces to the formula for

W of polyacenes (i.e. Ly = GB(n,0,0,0,0)):
1
W(GB(n,0,0,0,0)) = g(16n3 + 3612 + 26n + 3).
Parallelograms

We have P(n, k) = GB(n,0,k—1,k—1,0). Thus in this special case the above expression

reduces to the formula for W of parallelograms:

4n3(k* + 2k + 1) N 2kn?(k? + 9k +8) N

W= 3 3
n(k' + 8k +16k* + 2k — 1) k(k* — 20k* + 4)
3 15 ‘
Trapeziums

Trapeziums can be described as
T(n,k)=GB(n—k+1,k—1,0,k—1,0) = GB(n,0,k—1,0,k — 1),

hence we can again use the general formula to obtain the expression for the trapeziums:

W= 4n3(k2—|?—)2k+ 1) 2n%(k + 1)(23k2 — 8k — 3) N

o2n(k* — 4k3 + 6k% + 9k +1)  k(8Kk* + 35k? — 45k — 28)

3 30

14



Bitrapeziums

Bitrapeziums can be described as BT (n, k1, ko) = GB(n — k1, k1, k2, k1, k2) . So, in this

special case the general formula reduces to

An’ (ki ko +2) 2022k — k1 (12ky +17) + 2k3 — 17ky — 18) N
2n (ki —l—?;cl(lle + 13) + k3 + 13ko + 13) ’
8k7 4 20k7 (ko + 2) i 5k3 (16ko + 23) + 5k?(23ko + 28)
k1(20k3 + 80k3 + 115k3 +38%k2 +27)
8k5 + 40k3 + 11525 + 140k3 + 27ky — 30)
30 '

W =

Coronene/circumcoronene series

As the final example we consider the coronene/circumcoronene series (Hy). Namely,
Hy =GB(k,k—1,k—1,k — 1,k —1). Thus, inserting these special values into the general
formula for the W (GB) we obtain

W(H) == (164 k5 — 30 k3 + k).

O] =

APPENDIX: PROOF OF FORMULA (1)

Let G be a connected graph. The distance between the vertices z and y of G is the
length (= number of edges) in a shortest path connecting z and y. The Wiener number of
G is defined as the sum of distances between all pairs of vertices of G .

Suppose for a moment that the shortest path between any two vertex of G is unique.
Then instead of summing the distances of all pairs of vertices, we may count how many
shortest paths go through a given edge, and sum these counts over all edges of G. [This
method for computing W is applicable for acyclic graphs and was first put forward in
Wiener’s pioneering paper.23]

The above argument is certainly not applicable to benzenoid systems since in them

there are many pairs of vertices which are connected by several shortest paths.

15



Let B be the molecular graph of a benzenoid hydrocarbon and let x and y be its
two distinct vertices. In the general case there are several shortest paths connecting z
and y. Choose in an arbitrary manner one of these shortest paths. Repeat this for all
pairs of vertices of B. Denote by m(B) the collection of all chosen shortest paths. Thus,
by definition, 7(B) consists of N(N — 1)/2 elements, one shortest path for each pair of
vertices. The sum of the lengths of the paths from 7(B) is just the Wiener number of B.

Let C be an elementary edge—cut of B, dissecting B into fragments B’ and B”, with
n1(C) and ny(C) vertices, respectively. It is easy to see that between any vertex of B’ and
any vertex of B” there is a path from 7 (B) which is intersected by C. Furthermore, each
such path is intersected exactly once (otherwise it would not have minimal length). Thus
C' intersects exactly ni(C) ny(C) paths from 7(B), and intersects exactly one edge in each
of them.

On the other hand, the collection of all elementary cuts of B intersect all edges of B
and therefore all edges of all elements of w(B). No two elementary edge-cuts intersect the
same edge.

Then, in analogy with Wiener’s original argument,?® we may obtain W (B) by counting
how many paths from 7(B) are intersected by an elementary cut C', and then summing
these counts over all elementary cuts. Because the number of paths from 7(B), intersected

by C, is just nq(C) n2(C) we arrived at formula (1).
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Figure Captions

Figure 1. A benzenoid system and the corresponding elementary cuts C'y, Co, Cj.

Figure 2. Parallelogram P(7,4).

Figure 3. Trapezium 7(9,5).

Figure 4. Parallelogram-like benzenoid system Py (7,3).

Figure 5. Parallelogram-like benzenoid system Py (7,4).

Figure 6. Parallelogram-like benzenoid system P;(4,3).

Figure 7. Bitrapezium BT(6,2, 3).

Figure 8. Bitrapezium BT(7,4,5).

Figure 9. General benzenoid GB(7,3,4,5,2).
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