
Wiener Numbers of Periondensed Benzenoid HydroarbonsSandi Klav�zarDepartment of Mathematis, PEF, University of MariborKoro�ska 160, 2000 Maribor, SloveniaIvan GutmanFaulty of Siene, University of KragujevaP. O. Box 60, 34000 Kragujeva, YugoslaviaAmal RajapakseDepartment of Mathematis and Applied GeometryMontanuniversit�at Leoben, A-8700 Leoben, AustriaReeived 1997Using a reently developed tehnique for the alulation of the Wiener number (W ) ofbenzenoid systems we determine expliit expressions for W for several homologous seriesof periondensed benzenoid hydroarbons. An elementary proof for the orretness of theused method is also inluded.Suggested running head: Wiener Numbers of Benzenoid SystemsINTRODUCTIONFinding expliit ombinatorial expressions for the Wiener numbers (W ) of partiularlasses of moleular graphs was initiated in 1977 by Bonhev and Trinajsti�1 and wasfollowed by numerous subsequent researhes. Espeially numerous were the results obtainedfor ayli moleular graphs.2{8 Expressions for W of polyyli systems were somewhatmore diÆult to dedue and, until relatively reently, signi�antly fewer results of this kindhave been ommuniated. With a few exeptions,9,10 the only polyyli systems studiedwere ataondensed benzenoid hydroarbons.11{14Few years ago the situation hanged.First, Shiu and Lam, mathematiians from Hong Kong, developed a ombinatorial algo-rithm by whih they sueeded to �nd the formula for W of the benzene/oronene/irum-oronene series.15 The Shiu{Lammethods divides the alulation ofW into many individual1



steps, eah based on the �nding of an expression for distanes between partiular familiesof verties of the moleular graph onsidered. Therefore, the method requires extensiveand rather tedious omputations and deals with diÆult{to{handle algebrai expressions.Nevertheless, the Shiu{Lam proedure was reently suessfully aomplished for severallasses of periondensed benzenoid systems.16{19Seond, another tehnique for omputingW , appliable (among others) to all benzenoidsystems, was reently ommuniated by two of the present authors and Mohar.20,21 Thismethod is based on a simple formulaW =XC n1(C)n2(C) (1)in whih C denotes an elementary edge{ut of the respetive benzenoid system and thesummation goes over all edge{uts. The edge{ut C dissets the benzenoid system into twoparts, having n1(C) and n2(C) verties. (Thus, n1(C) +n2(C) is independent of the ut Cand is equal to the number N of verties of the respetive benzenoid system.)Preise de�nitions of elementary edge{uts and more details with regard to formula (1)an be found in our earlier publiations.20{22 A self{explanatory example is given in thesubsequent setion. An elementary proof of formula (1) is given in the Appendix.The main purpose of this paper is to demonstrate that the method of edge{uts isvery simple to apply and that general expressions for W are easily obtained. This alreadyhas been demonstrated in the ase of benzene/oronene/irumoronene series,21 and inthis paper we o�er quite a few additional formulas of the same kind. We believe that foradditional benzenoid systems of interest to the readers it will not be diÆult to obtain theorresponding formulas for W along the same lines. In the appendix we also give a simple,elementary proof for the validity of the used proedure.COMPUTATIONAL DETAILSIn all benzenoid systems G onsidered we will partition the elementary edge{uts ofG into the sets of parallel elementary uts C1; C2; C3. Figure 1 shows an example of abenzenoid system and the orresponding partition of uts.Figure 1 omes about hereThroughout the paper, N will denote the number of verties of the benzenoid systemonsidered. In addition, expressions of the form2



kXi=1 i(2n+ 2)� 1! N � (i(2n + 2)� 1)! ;will be written askXi=1 i(2n+ 2)� 1! N �F! ;i.e., F will stand for the value of the \�rst braket". In the above example we thus haveF = i(2n+ 2)� 1. For a benzenoid system G we will also use the following notions:W1 = XC2C1 n1(C)n2(C) ;W2 = XC2C2 n1(C)n2(C) ;and W3 = XC2C3 n1(C)n2(C) :Then, in view of Eq. (1), we have W (G) =W1 +W2 +W3.PARALLELOGRAMS AND TRAPEZIUMSIn this setion we ompute W of two relatively simple families of benzenoid systems:parallelograms and trapeziums. ParallelogramsFor n � 1 and 1 � k � n let P (n; k) be the parallelogram benzenoid system. Thede�nition of P (n; k) should be lear from the example P (7; 4) whih is shown on Figure 2.Figure 2 omes about hereFor P (n; k) we have:N = (2k + 2)(n+ 1)� 2 ;W1 = kXi=1 " i(2n+ 2)� 1! N �F!# ;W2 = nXi=1 " i(2k + 1) + i� 1! N �F!# :3



It remains to onsider the C3 uts. We �rst onsider the �rst k� 1 uts (from left to right)and the last k � 1 uts. We obtain:W 03 = 2 k�1Xi=1 " iXj=1(3 + 2(j � 1))! N �F!# :Finally, for the middle n+ 3� 2k uts from C3 we haveW 003 = n�k+1Xi=1 " k�1Xj=1(3 + 2(j � 1)) + i(2k + 1) + i� 1! N �F!# :Clearly, W3 = W 03 + W 003 . Simplifying the expression W1 + W2 + W 03 + W 003 we get thefollowing expression for W (P (n; k)):W = 4n3(k2 + 2k + 1)3 + 2kn2(k2 + 9k + 8)3 +n(k4 + 8k3 + 16k2 + 2k � 1)3 � k(k4 � 20k2 + 4)15 :For instane, for k = 1 the above expression redues toW (P (n; 1)) = 13(16n3 + 36n2 + 26n+ 3) ;whih is the well-known formula for W of polyaenes, usually denoted by Lh, i.e., Lh =P (h; 1). TrapeziumsFor n � 1 and 1 � k � n let T (n; k) be the trapezium benzenoid system. The de�nitionof T (n; k) should be lear from the example T (9; 5) whih is shown on Figure 3.Figure 3 omes about hereFor T (n; k) we have:N = (k + 1)(2n+ 1)� k(k � 1) ;W1 = kXi=1 " i(2n+ 1)� (i� 1)(i � 2)! N �F!# .Consider the �rst k uts (from left to right) from C2. We obtain:W 02 = kXi=1 "i(i+ 2)#"N �F# : 4



For the remaining n� k uts from C2 we haveW 002 = n�kXi=1 "k(k + 2) + i(2k + 2)#"N �F# :Clearly, W2 = W 02 +W 002 and by symmetry we have, W3 = W2. Simplifying the expressionW1 + 2(W 02 +W 002 ) we get the following expression for W (T (n; k)):W = 4n3(k2 + 2k + 1)3 � 2n2(k + 1)(2k2 � 8k � 3)3 +2n(k4 � 4k3 + 6k2 + 9k + 1)3 � k(8k4 + 35k2 � 45k � 28)30 :Again, for k = 1, the above expression redues toW (P (n; 1)) = 13(16n3 + 36n2 + 26n+ 3) :PARALLELOGRAM{LIKE BENZENOID SYSTEMSFirst exampleFor n � 1 and 1 � k � n let P1(n; k) be the parallelogram-like benzenoid system oftype 1. The de�nition of P1(n; k) should be lear from the example P1(7; 3) whih is shownon Figure 4. Figure 4 omes about hereFor P1(n; k) we have:N = 2n+ 4k(n+ 1) ;W1 = 2kXi=1 " i(2n+ 2)� 1! N �F!# :For the C2 uts, we �rst onsider the �rst k uts (from left to right) and the last k uts.We obtain:W 02 = 2 kXi=1 " iXj=1 4j � 1)! N �F!# :For the next ut just after the �rst k uts from the left we have5



W 002 = " kXj=1(4j � 1) + (4k + 1)# N �F! :For the remaining middle n� (k + 1) uts from C2 we haveW 0002 = n�(k+1)Xi=1 " kXj=1(4j � 1) + (4k + 1) + i(4k + 2)#"N �F# :Clearly, W2 =W 02 +W 002 +W 0002 . Finally, for the C3 uts, again we onsider the �rst k uts(from left to right) and the last k uts. We obtain:W 03 = 2 kXi=1 " iXj=1 4j + 1)! N �F!# :For the middle n� (k + 1) uts from C3 we haveW 003 = n�(k+1)Xi=1 " kXj=1(4j + 1) + i(4k + 2)#"N �F# :Clearly, W3 =W 03 +W 003 . Simplifying the expression W1 +W 02 +W 002 +W 0002 +W 03 +W 003 weget for W (P1(n; k)):W = 4n3(2k + 1)23 + 8kn2(k + 4)(2k + 1)3 +n(8k4 + 48k3 + 78k2 + 14k � 1)3 � k(8k4 � 20k3 � 110k2 � 25k + 27)15 :Seond exampleFor n � 1 and 1 � k � n let P2(n; k) be the parallelogram-like benzenoid system oftype 2. The de�nition of P2(n; k) should be lear from the example P2(7; 4) whih is shownon Figure 5. Figure 5 omes about hereFor P2(n; k) we have:N = 2k(2n+ 1) ;W1 = 2k�1Xi=1 "i(2n+ 1)#"N �F# :For the C2 uts, we �rst onsider the �rst k uts (from left to right) and the last k uts.We obtain: 6



W 02 = 2 kXi=1 " iXj=1(4j � 1) N �F!# :For the middle n� (k + 1) uts from C2 we haveW 002 = n�(k+1)Xi=1 " kXj=1(4j � 1) + i(4k)#"N �F# :Clearly, W2 = W 02 +W 002 , and by symmetry W3 = W2 Hene, simplifying the expressionW1 + 2(W 02 +W 002 ) we get for W (P2(n; k)):W = 16k2n33 + 4kn2(4k2 + 6k � 1)3 +2kn(4k3 + 8k2 + 3k � 2)3 � k(8k4 � 20k3 � 30k2 + 20k + 7)15 :For instane, for k = 1 the above expression, as previously, redues toW (P2(n; 1)) = 13(16n3 + 36n2 + 26n+ 3).Third exampleFor n � 1 and 1 � k � n+ 1 let P3(n; k) be the parallelogram-like benzenoid system oftype 3. The de�nition of P3(n; k) should be lear from the example P3(4; 3) whih is shownon Figure 6. Figure 6 omes about hereFor P3(n; k) we have:N = 2k(2n+ 3)� 4 ;W1 = 2k�1Xi=1 ""i(2n+ 3)� 2# N �F!# :For the C2 uts, we �rst onsider the �rst k � 1 uts (from left to right) and the last k � 1uts. We obtain:W 02 = 2 k�1Xi=1 " iXj=1 4j + 1)! N �F!# :For the next ut just after the �rst k � 1 uts from the left we have7



W 002 = " k�1Xj=1(4j + 1) + (4k � 1)# N �F! :For the remaining middle n� k uts from C2 we haveW 0002 = n�kXi=1 " k�1Xj=1(4j + 1) + (4k � 1) + i(4k)#"N �F# :Clearly,W2 =W 02+W 002+W 0002 , and by symmetryW3 =W2 Hene, simplifying the expressionW1 + 2(W 02 +W 002 +W 0002 ) we get for W (P3(n; k)):W = 16k2n33 + 4kn2(4k2 + 18k � 13)3 +2n(4k4 + 24k3 + 27k2 � 54k + 12)3 �(8k5 � 60k4 � 110k3 + 180k2 + 27k � 60)15 :For instane, for k = 1 the above expression, as previously, redues toW (P3(n; 1)) = 13(16n3 + 36n2 + 26n+ 3).BITRAPEZIUMSIn this setion we onsider W of bitrapeziums whih inlude the speial ases of thetrapeziums and the parallelograms. To onsider these speial ases and most importantly,to inlude all kinds of bitrapeziums, we need to onsider two ases.Case 1. For n � 1, 0 � k1 � n � 1, 0 � k2 � n � 1 and k1 + k2 <= n let BT (n; k1; k2)be the bitrapezium benzenoid system. The de�nition of BT (n; k1; k2) should be lear fromthe example BT (6; 2; 3) whih is shown on Figure 7.Figure 7 omes about hereFor BT (n; k1; k2) we have:N = 2n(k1 + k2 + 2)� k21 � k22 + 2 :For the �rst k1 + 1 uts from C1 (from the top) we obtain8



W 01 = k1+1Xi=1 "i(i + 2n� 2k1) N �F!# :For the last k2 uts from C1 (from the bottom) we obtainW 001 = k2Xi=1 "i(i + 2n� 2k2) N �F!# :Clearly, W1 =W 01 +W 001 : Now, for the �rst k1 + 1 uts from C2 (from the left) we obtainW 02 = k1+1Xi=1 "i(i + 2k2 + 2) N �F!# :For the last k2 uts from C2 (from the right) we obtainW 002 = k2Xi=1 "i(i + 2k1 + 2) N �F!# :For the middle n� (k1 + k2 + 1) uts from C2 we obtainW 0002 = n�(k1+k2+1)Xi=1 "(k1 + 1)(k1 + 2k2 + 3) + i(2k1 + 2k2 + 4) N �F!# :Clearly, W2 = W 02 + W 002 + W 0002 and by symmetry, W3 = W2. Hene, simplifying theexpression W1 + 2W2 we get for W (BT (n; k1; k2)):W = 4n3(k1 + k2 + 2)23 �2n2(2k31 � k1(12k2 + 17) + 2k32 � 17k2 � 18)3 +2n(k41 + k1(11k2 + 13) + k42 + 13k2 + 13)3 �8k51 + 20k41(k2 + 2) + 5k31(16k2 + 23) + 5k21(23k2 + 28)30 �k1(20k42 + 80k32 + 115k22 + 80k2 + 27)30 �8k52 + 40k42 + 115k32 + 140k22 + 27k2 � 3030 :For instane, for k1 = k2 = 0 the above expression, as previously, redues to formula for Wof polyaenes. i.e.W (BT (n; 0; 0)) = 13(16n3 + 36n2 + 26n+ 3) :Moreover, for k1 = 0; k2 = k � 1 (respetively, k2 = 0; k1 = k � 1) we obtain the formulafor W of trapeziums benzenoid systems. i.e. W (BT (n; 0; k � 1)) is:W = 4n3(k2 + 2k + 1)3 � 2n2(k + 1)(2k2 � 8k � 3)3 +2n(k4 � 4k3 + 6k2 + 9k + 1)3 � k(8k4 + 35k2 � 45k � 28)30 :9



Case 2. We may without loss of generality assume that k1 � k2. For n � 1, 0 � k1 � n�1,0 � k2 � n � 1 and k1 + k2 � n let BT (n; k1; k2) be the bitrapezium benzenoid system.In this ase, the de�nition of BT (n; k1; k2) should be lear from the example BT (7; 4; 5)whih is shown on Figure 8. Figure 8 omes about hereFor BT (n; k1; k2) we have:N = 2n(k1 + k2 + 2)� k21 � k22 + 2 :For the �rst k1 + 1 uts from C1 (from the top) we obtainW 01 = k1+1Xi=1 "i(i + 2n� 2k1) N �F!# :For the last k2 uts from C1 (from the bottom) we obtainW 001 = k2Xi=1 "i(i + 2n� 2k2) N �F!# :Clearly, W1 =W 01 +W 001 : Now, for the �rst n� k1 uts from C2 (from the left) we obtainW 02 = n�k1Xi=1 "i(i+ 2k1 + 2) N �F!# :For the last n� k2 uts from C2 (from the right) we obtainW 002 = n�k2Xi=1 "i(i+ 2k2 + 2) N �F!# :For the middle (k1 + k2 � n) uts from C2 we obtainW 0002 = (k1+k2�n)Xi=1 "(n� k1)(n+ k1 + 2) + i(2n+ 2)#"N �F## :Clearly, W2 = W 02 + W 002 + W 0002 and by symmetry, W3 = W2. Hene, simplifying theexpression W1 + 2W2 we get for W (BT (n; k1; k2)):W = �2n515 + 2n4(k1 + k2 + 1)3 + 4n3(2k1 + 2k2 + 3)3 +2n2(6k21(k2 + 1) + k1(6k22 + 24k2 + 23) + 6k22 + 23k2 + 20)3 �2n(20k31(k2 + 1) + 30k21(k22 + 2k2 + 1))15 �10



2n(5k1(4k32 + 12k22 + k2 � 9) + 20k32 + 30k22 � 45k2 � 61)15 �(4k51 + 20k41 + 5k31(15� 8k22)� 5k21(8k32 + 24k22 + k2 � 20))30 �(k1(11 � 5k22) + 4k52 + 20k42 + 75k32 + 100k22 + 11k2 � 30)30 :For instane, for k1 = k2 = n � 1 the above expression redues to the formula forW (BT (n; n� 1; n� 1)):W = n(34n4 + 170n3 + 200n2 + 10n� 9)15 ;whih is the formula for W of parallelogram benzenoid system P (n; n). Notie that theabove formula an also be obtained from the formula for W of parallelogram benzenoidsystem P (n; k) by substituting k = n. i.e. W (BT (n; n� 1; n� 1)) =W (P (n; n)).GENERAL CASEIn this setion we onsider W of general benzenoid systems whih inlude many speialases, for instane the trapeziums, the bitrapeziums and the parallelograms.For n � 1, 0 � k1 � k3 � n, 0 � k4 � k2 � n and k1 + k2 = k3 + k4 letGB(n; k1; k2; k3; k4) be the general benzenoid system. Its de�nition should be lear fromthe example GB(7; 3; 4; 5; 2) whih is shown on Figure 9.Figure 9 omes about hereFor GB(n; k1; k2; k3; k4) we have:N = 2n(k3 + k4 + 2)� k21 + k1(2k3 + 2k4 + 2) + 2k3 � k24 + 2 :For the �rst k1 + 1 uts from C1 (from the bottom) we obtainW 01 = k1+1Xi=1 "i(i + 2n) N �F!# :For the last k4 + 1 uts from C1 (from the top) we obtainW 001 = k4+1Xi=1 " i2 + 2i(n+ k1 � k4)! N �F!# :For the middle k3 � (k1 + 1) uts from C1 we obtain11



W 0001 = k3�(k1+1)Xi=1 "(k1 + 1)(k1 + 2n+ 1) + i(2k1 + 2n+ 2) N �F!# :Clearly, W1 =W 01 +W 001 +W 0001 . For the �rst k2 + 1 uts from C2 (from the left) we haveW 02 = k2+1Xi=1 "i(i + 2k1 + 2) N �F!# :For the last k3 uts from C2 (from the right) we obtainW 002 = k3Xi=1 "i(i + 2k4 + 2) N �F!# :For the middle n� (k2 + 1) uts from C2 we obtainW 0002 = n�(k2+1)Xi=1 "(k2 + 1)(2k1 + k2 + 3) + i(2k1 + 2k2 + 4) N �F!# :Clearly, W2 =W 02 +W 002 +W 0002 . For the �rst k1 + 1 uts from C3 (from the left) we haveW 03 = k1+1Xi=1 "i(i + 2k2 + 2) N �F!# :For the last k4 + 1 uts from C3 (from the right) we obtainW 003 = k4+1Xi=1 "i(i+ 2k3 + 2) N �F!# :For the middle n� (k4 + 2) uts from C3 we obtainW 0003 = n�(k4+2)Xi=1 "(k1 + 1)(k1 + 2k2 + 3) + i(2k1 + 2k2 + 4) N �F!# :Clearly, W3 = W 03 + W 003 + W 0003 . Simplifying the expression W1 + W2 + W3 we get forW (GB(n; k1; k2; k3; k4)):W = �4n3(k1 + k2 + 2)(2k1 + 2k2 � 3k3 � 3k4 � 2)3 �2n2(6k31 � 3k21(4k2 � 3k3 � 5k4 + 2))3 �2n2(3k1(k22 � 2k2(2k3 + 4k4 + 1) + 2k3(k4 � 4) + 3k24 � 10k4 � 8))3 �2n2(�3k32 � k33 � 3k23(k4 + 2)� k3(3k24 + 17)� k34 + 12k24 � 5k4)3 �2n2(3(k22(k3 � k4 � 2) + k2(2k3k4 + 3k24 � 2k4 � 4)� 6))3 �n(7k41 + 2k31(9k2 � 5k3 � 14k4 + 1) + 3k21(3k22 � 2k2(3k3 + 10k4 + 4))3 +12



n(3k21(k23 + k3(8k4 � 5) + 12k24 � 11k4 � 13) + 2k1(3k22k3 � 3k4 � 2))3 �n(2k1(3k22(k3 � 3k4 � 2))3 �n(2k1(k2(3k3(4k4 + 1) + 27k24 + 3k4 � 20))3 �n(2k1(�2k33 � 3k23(2k4 + 3)� k3(9k24 � 3k4 + 11) � 8k34)3 �n(2k1(27k24 + 25k4 � 11) + 3k42 � 2k32(k3 + k4 � 1)3 �n(k22(3k3 + 9k24 + 9k4 � 2)� k2(k3(6k24 � 6k4 � 11) + 12k34)3 �n(�k2(�24k24 � 59k4 � 14) � 2k43 � k33(8k4 + 17) � k23(9k24 + 51k4 + 55))3 �n(�k3(4k34 + 57k24 + 111k4 + 76) � 35k34 � 57k24 � 2(20k4 + 13))3 �(22k51 + 20k41(3k2 � 2k3 � 5k4) + 10k31(4k22 � k2(6k3 + 24k4 + 7)))30 �(10k31(3k23 + k3(12k4 � 1) + 2(10k24 � 3)) + 5k21(2k32 � 3k22(8k4 + 3)))30 �(5k21(k2(24K3k4 + 72k24 + 30k4 � 17) � 2k33 + 3k23(1� 2k4))30 �(5k21(�k3(24k24 � 24k4 � 19)� 2(16k34 � 24k24 � 53k4 � 18))30 �2k1(5k42 � 10k32(k3 + k4 � 1)� 5k22(3k3 � 12k24 � 9k4 � 4))30 �2k1(�5k2(k3(6k24 � 6k4 � 5) + 20k34 � 9k24 � 49k4 � 23)� 10k43)4))30 �2k1(�5k33(8k4 + 15)� 5k23(9k24 + 45k4 + 40) � 5k3(4k34 + 63k24)30 �2k1(�5k3(105k4 + 53) + 15k44 � 22ok34 � 475k24 � 290k4 � 56)30 �(�4k52 + 6k53 + 5k43(6k4 + 5) + 10k33(5k24 + 8k4 � 2))30 �(5k23(14k34 + 51k24 + 22k4 � 26) + k3(60k44 + 400k34 + 625k24 + 180k4 � 121))30 �2(6k54 + 105k44 + 230k34 + 150k24 + 4k4 � 15) + 5k42 � 10k32(2k3 � k24 � 3))30 �(�5k22(6k3 + 8k34 + 9k24 + 4k4 � 8)� k2(10k3(6k24 + 6k4 + 1))30 �k2(�30k44 + 130k34 + 355k24 + 200k4 � 19)30 :
13



SOME SPECIAL CASESFrom the formula for W of general benzenoid systems obtained above, it is possible toobtain the formulas for W of the most of the benzenoid systems onsidered earlier. Weonsider the following speial ases: PolyaenesIf we set k1 = k2 = k3 = k4 = 0 in the above expression, it redues to the formula forW of polyaenes (i.e. Lh = GB(n; 0; 0; 0; 0)):W (GB(n; 0; 0; 0; 0)) = 13(16n3 + 36n2 + 26n+ 3) :ParallelogramsWe have P (n; k) = GB(n; 0; k�1; k�1; 0). Thus in this speial ase the above expressionredues to the formula for W of parallelograms:W = 4n3(k2 + 2k + 1)3 + 2kn2(k2 + 9k + 8)3 +n(k4 + 8k3 + 16k2 + 2k � 1)3 � k(k4 � 20k2 + 4)15 :TrapeziumsTrapeziums an be desribed asT (n; k) = GB(n� k + 1; k � 1; 0; k � 1; 0) = GB(n; 0; k � 1; 0; k � 1) ;hene we an again use the general formula to obtain the expression for the trapeziums:W = 4n3(k2 + 2k + 1)3 � 2n2(k + 1)(2k2 � 8k � 3)3 +2n(k4 � 4k3 + 6k2 + 9k + 1)3 � k(8k4 + 35k2 � 45k � 28)30 :
14



BitrapeziumsBitrapeziums an be desribed as BT (n; k1; k2) = GB(n� k1; k1; k2; k1; k2) : So, in thisspeial ase the general formula redues toW = 4n3(k1 + k2 + 2)23 � 2n2(2k31 � k1(12k2 + 17) + 2k32 � 17k2 � 18)3 +2n(k41 + k1(11k2 + 13) + k42 + 13k2 + 13)3 �8k51 + 20k41(k2 + 2) + 5k31(16k2 + 23) + 5k21(23k2 + 28)30 �k1(20k42 + 80k32 + 115k22 + 80k2 + 27)30 �8k52 + 40k42 + 115k32 + 140k22 + 27k2 � 30)30 :Coronene/irumoronene seriesAs the �nal example we onsider the oronene/irumoronene series (Hk). Namely,Hk = GB(k; k� 1; k � 1; k � 1; k � 1). Thus, inserting these speial values into the generalformula for the W (GB) we obtainW (Hk) = 15 (164 k5 � 30 k3 + k) :APPENDIX: PROOF OF FORMULA (1)Let G be a onneted graph. The distane between the verties x and y of G is thelength (= number of edges) in a shortest path onneting x and y . The Wiener number ofG is de�ned as the sum of distanes between all pairs of verties of G .Suppose for a moment that the shortest path between any two vertex of G is unique.Then instead of summing the distanes of all pairs of verties, we may ount how manyshortest paths go through a given edge, and sum these ounts over all edges of G. [Thismethod for omputing W is appliable for ayli graphs and was �rst put forward inWiener's pioneering paper.23℄The above argument is ertainly not appliable to benzenoid systems sine in themthere are many pairs of verties whih are onneted by several shortest paths.15



Let B be the moleular graph of a benzenoid hydroarbon and let x and y be itstwo distint verties. In the general ase there are several shortest paths onneting xand y. Choose in an arbitrary manner one of these shortest paths. Repeat this for allpairs of verties of B . Denote by �(B) the olletion of all hosen shortest paths. Thus,by de�nition, �(B) onsists of N(N � 1)=2 elements, one shortest path for eah pair ofverties. The sum of the lengths of the paths from �(B) is just the Wiener number of B.Let C be an elementary edge{ut of B , disseting B into fragments B0 and B00 , withn1(C) and n2(C) verties, respetively. It is easy to see that between any vertex of B0 andany vertex of B00 there is a path from �(B) whih is interseted by C. Furthermore, eahsuh path is interseted exatly one (otherwise it would not have minimal length). ThusC intersets exatly n1(C)n2(C) paths from �(B) , and intersets exatly one edge in eahof them.On the other hand, the olletion of all elementary uts of B interset all edges of Band therefore all edges of all elements of �(B) . No two elementary edge{uts interset thesame edge.Then, in analogy with Wiener's original argument,23 we may obtain W (B) by ountinghow many paths from �(B) are interseted by an elementary ut C , and then summingthese ounts over all elementary uts. Beause the number of paths from �(B) , intersetedby C , is just n1(C)n2(C) we arrived at formula (1).Referenes[1℄ D. Bonhev and N. Trinajsti�, J. Chem. Phys. 67 (1977) 4517.[2℄ E. R. Can�eld, R. W. Robinson and D. H. Rouvray, J. Comput. Chem. 6 (1985) 598.[3℄ D. Bonhev and O. E. Polansky, Commun. Math. Chem. (MATCH) 21 (1986) 133.[4℄ D. Bonhev and O. E. Polansky, Commun. Math. Chem. (MATCH) 21 (1986) 341.[5℄ I. Gutman, J. Mol. Strut. (Theohem) 285 (1993) 137.[6℄ I. Gutman, J. Serb. Chem. So. 58 (1993) 745.[7℄ I. Lukovits, J. Chem. Inf. Comput. Si. 31 (1991) 503.[8℄ P. E. John, Commun. Math. Chem. (MATCH) 31 (1994) 123.[9℄ P. E. John, Commun. Math. Chem. (MATCH) 32 (1995) 207.16
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Figure CaptionsFigure 1. A benzenoid system and the orresponding elementary uts C1; C2; C3.Figure 2. Parallelogram P (7; 4).Figure 3. Trapezium T (9; 5).Figure 4. Parallelogram-like benzenoid system P1(7; 3).Figure 5. Parallelogram-like benzenoid system P2(7; 4).Figure 6. Parallelogram-like benzenoid system P3(4; 3).Figure 7. Bitrapezium BT (6; 2; 3).Figure 8. Bitrapezium BT (7; 4; 5).Figure 9. General benzenoid GB(7; 3; 4; 5; 2).
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